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Abstract

Diving ducks use their webbed feet to provide the propulsive force that moves them underwater. To hold position near the
bottom while feeding, ducks paddle constantly to resist the buoyant force of the body. Using video sequences from two
orthogonal cameras we reconstructed the 3-dimensional motion of the feet through water and estimated the forces
involved with a quasi-steady blade-element model. We found that during station holding, near the bottom, ducks use drag
based propulsion with the webbed area of the foot moving perpendicular to the trajectory of the foot. The body was
pitched at 7663.47u below the horizon and the propulsive force was directed 2661.9u ventral to the body so that 98% of
the propulsive force in the sagittal plane of the duck worked to oppose buoyancy. The mechanical work done by moving
both feet through a paddling cycle was 1.160.2 J which was equivalent to an energy expenditure of 3.760.5 W to hold
position while feeding at 1.5 m depth. We conclude that in shallow water the high energetic cost of feeding in ducks is due
to the need to paddle constantly against buoyancy even after reaching the bottom. The mechanical energy spent on
holding position near the bottom, while feeding, is approximately 2 fold higher than previous estimates that were made for
similar bottom depths but based on the presumed motion of the body instead of motion of the feet.

Citation: Ribak G, Swallow JG, Jones DR (2010) Drag-Based ‘Hovering’ in Ducks: The Hydrodynamics and Energetic Cost of Bottom Feeding. PLoS ONE 5(9):
e12565. doi:10.1371/journal.pone.0012565

Editor: Yan Ropert-Coudert, Institut Pluridisciplinaire Hubert Curien, France

Received April 12, 2010; Accepted August 6, 2010; Published September 7, 2010

Copyright: � 2010 Ribak et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding for this work included a travel fellowship to GR from the Company of Biologists (www.biologists.com), a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada (http://www.nserc-crsng.gc.ca/) to DRJ and National Science Foundation (http://www.nsf.gov/) CAREER
award grant no. IOB-00448060 to JGS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gal.ribak@gmail.com

¤ Current address: Technion Autonomous Systems Program, Faculty of Aerospace Engineering, Technion I.I.T, Haifa, Israel

Introduction

Many diving ducks are bottom feeders that make shallow

vertical dives from the surface to the benthos. They propel their

body underwater by synchronized paddling with both feet while

the wings are folded next to the body (some sea-duck species, e.g.

eiders and scoters, use both wings and feet to descend through the

water column but once at the bottom they use feet alone for

propulsion [1–3]). Foraging on small invertebrates and sessile food

does not require the diver to be particularly fast or agile

underwater, and in fact, overcoming buoyancy presents the major

mechanical challenge for ducks during shallow submergence.

Large air volumes trapped in the waterproofed plumage, air in the

air-sac system and light skeletons may be useful adaptations for

floating on the water surface but these adaptations translate into

high buoyancy that is energetically costly underwater [4–5].

Because the large air volumes in the plumage and air-sacs are

compressible, the buoyancy of a duck is decreased by the increase

in ambient pressure as the bird dives deeper. However, many

diving ducks forage at shallow depths (,5 m) where buoyancy is

still high. When descending from the surface to the bottom or

while holding a vertical position near the bottom, they paddle

continuously against their buoyancy. As soon as paddling stops

they rise passively to the surface [6].

Wilson et al. showed that diving birds have less air in the

plumage and air-sac system and higher body density than surface

feeding birds [4]. Within ducks, however, Lovvorn and Jones

found no difference between the buoyancy (relative to body mass)

of surface feeding and diving ducks [7]. This suggests that rather

than having specific adaptations for reduced buoyancy to ease

diving, diving-ducks actively work against buoyancy which elevates

energetic costs. Lovvorn et al. [8] and Stephenson [9] used similar

biomechanical models of unsteady (acceleratory) swimming to

estimate the mechanical work to reach the bottom and stay there

in diving ducks. These models were based on the mechanical work

done on the body, calculated from its motion (speed and

acceleration, but assuming no body motion at the bottom) and

suggested that diving ducks invest 36–87% of the total mechanical

work of the dive as work against buoyancy. At the time, these

studies highlighted the benefit of using biomechanical models as

tools to break down the total energetic cost of avian diving to work

done against specific forces. In this study, we continue an

exploration of mechanical energy expenditure by diving ducks

by focusing on the kinematics and mechanical work done directly

by the feet and how these relate to the propulsive forces that keep

the duck in place while feeding at the bottom.

Most, if not all, of the propulsive force is generated during a

fraction of the paddling cycle, the power phase, when the webbed

area of the foot is swept backwards through the water. Aigeldinger

and Fish, [10] described the paddling motion of surface swimming

ducklings in detail. The foot is plantarflexed and the digits

abducted during the power phase while it is dorsiflexed and the
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webbed area collapsed during the recovery phase [10]. The power

phase is typically longer than the recovery phase and occupies 66–

70% of total cycle duration [8]. Underwater paddling frequency

seems to increase with elevated power output [9,11]. Paddling

frequency of the ducks during descent to the bottom is 25% higher

than when they remain near the bottom during feeding [9]. Ducks

also decreased their paddling frequency when their buoyancy was

artificially reduced by adding mass to the peritoneal cavity to

increase body density [11].

Foot-propulsion in ducks has been considered as drag-based

swimming because the webbed feet move backwards relative to the

body in the opposite direction of forward locomotion. In contrast,

wing propelled birds (e.g. alcids and penguins) utilize lift from the

wings for forward thrust, and this is considered to be a more

energetically efficient form of propulsion [12–13]. However,

Johansson and Nordberg [14] showed that when the forward

speed of a foot propelled bird is high, the speed of the body

interacts with the motion of the foot relative to the body so that the

foot is moved through the water at more moderate angles of

attack. Thus, during forward swimming ‘‘drag-based’’ foot-

propulsion actually utilizes hydrodynamic lift as the major source

of forward thrust.

Detailed kinematic data on avian foot propulsion is extremely

sparse. Some data is available for paddling frequency and its

alteration with power requirement in ducks [8–9,11]. A few studies

on ducks also reported the amplitude (arc length) of the power

stroke during swimming [10,15–16]. Johansson and Norberg [17]

provided detailed three dimensional kinematic data on the lobate

toes of a Crested grebe while two dimensional data on the

kinematics of the foot is also available for cormorants [14,18]. The

data on foot kinematics of the grebe and cormorant however, only

refer to propulsion during horizontal swimming. The kinematics of

foot propulsion during holding position near the bottom has, to the

best of our knowledge, not been studied previously.

In this study we use detailed videography to analyze station

holding in bottom feeding ducks. We seek to answer questions

from both ecophysiological and biomechanical perspectives: 1)

From an eco-physiological prospective, ducks spend most of their

underwater-time feeding at the bottom. Hence, the energetic cost

of feeding behavior is important to energetic models aiming to find

the gain per unit effort of foraging in ducks. Thus, the

ecophysiological question that underlies this study is can we measure

directly the energy expenditure of ducks holding position near the bottom? 2)

From a comparative bio-mechanical perspective, little is known

about the hydrodynamic mechanism of avian foot propulsion. If

fast horizontal swimming gives rise to lift based swimming in

grebes and cormorants, which are specialized pursuit divers

feeding on fish, what mechanism underlies propulsion of ducks that are

specialized for vertical diving and feeding at the bottom on sessile food?

To answer these questions we extracted 3-dimensional kine-

matic data from movies showing the feet of diving Barrow’s

goldeneye ducks (Bucephala islandica, Gemelin, 1789) as they fed

inside a dive tank. We used the data to estimate the hydrodynamic

forces and work produced by the moving feet using a quasi-steady

flow model.

Materials and Methods

The ducks used in this study where kept in the Zoology Animal

Care facility of the University of British Columbia. All animals

were handled in strict accordance with good animal practice as

defined by the relevant national and/or local animal welfare

bodies, and all animal work was approved by the appropriate

committee (UBC ACC#A060292)

Modeling the propulsive force
Hydrodynamic forces were estimated from the 3-dimensional

motion of the webbed foot through water using a variant of the

‘‘blade–element’’ model. Studies of fish propulsion by pectoral fins

[19], frog swimming [20] and insect hovering [21] are only a few

examples where the blade-element model was applied previously

to study swimming and flying in animals. We describe here only

the basic principles of this modeling approach whereas a detailed

description of the model, as applied by us for the specific case of

‘hovering ducks’, appears in Appendix S1. The blade-element

approach is based on dividing the foot into smaller elements and

calculating the drag and acceleration reaction forces for each

element separately. To determine the propulsive force spent

holding vertical position near the bottom the model uses four

kinematic parameters for each foot element over the duration of

the paddling cycle. The parameters are the velocity of the foot

element relative to water (Ur), the acceleration of the foot element

relative to water (ar) and two angles a and b that represent the

orientation of the foot element relative to the flow (Fig. 1). These

parameters were obtained from video sequences showing the feet

of the ducks while feeding underwater.

Apparatus
Two male and two female Barrow’s goldeneye ducks (Bucephala

islandica, Gemelin, 1789) were housed in a 1.260.960.5 m aviary

mounted on top of a 1.9 m high, rectangular (1.260.7 m) dive tank

Figure 1. Schematic representation of the 3D geometry and
notations used. The blue triangle (HIE) represents the left foot of the
duck. The span of the foot is drawn as a thickened grey line (HM) that
connects the base of the foot (H) with the tip of the mid digit (M). Grey
area ABCD is the plane containing the span of the foot and the vector
of velocity relative to water. Angles a and b are the angles between the
velocity vector and the area of the foot (see text for further definitions).
FN is hydrodynamic force normal to the foot that results from motion of
the foot through water.
doi:10.1371/journal.pone.0012565.g001

Hydrodynamics of Feeding Ducks

PLoS ONE | www.plosone.org 2 September 2010 | Volume 5 | Issue 9 | e12565



filled with fresh water. The front wall of the tank (1.961.2 m) was

made of transparent Perspex (Fig. 2A). The ducks were allowed free

access to the dive tank and were trained to dive for grains mixed

with fine pebbles (for grit) in a feeding tray that was suspended

below the water surface. By gradually increasing the depth of the

feeding tray the ducks were trained to perform feeding dives to

1.5 m. While feeding at the tray the ducks held their vertical

position in the water column by paddling constantly. Two CCD

analog cameras simultaneously filmed the ducks. The cameras were

1.4 m apart from each other, mounted on a horizontal rod parallel

to the window of the tank. Each camera was oriented at 45u to the

rod so that the fields of view of the orthogonal cameras intersected

inside the tank. A rectangular cube with 0.4 m side dimensions was

placed in the field of view of both cameras, above the feeding tray,

where the ducks held position to feed. The cube was used to verify

the absence of image distortion in either camera view (no curving of

the sides of the cube) and for spatial calibration of the cameras. The

corners on the sides of the cube were digitized and used for

calculating direct linear transformation coefficients for reconstruc-

tion of 3-dimensional positions from both cameras [22]. Both

cameras were connected to a desktop computer with software to

control image acquisition (XCAPTM, Epix, USA). The software

allowed simultaneous triggering of both cameras to capture video

fields (60 fields s21 from each camera) for a period of 3.0 seconds.

Figure 2. Frame of reference for the cameras and the ducks in the movies. A) The dimensions of the dive tank and camera locations. B) The
coordinate system of the movies (dashed axes and upper case letters XYZ) and the transformed coordinate system that is fixed on the duck (lower
case letters, xyz).
doi:10.1371/journal.pone.0012565.g002
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While feeding the ducks were never completely stationary so in

our analysis we chose sequences from each bird where the left foot

was visible to both cameras and the position of the bird was as

stable as possible. i.e., the birds had the least horizontal motion,

had no turning (yaw or roll) and had a zero net vertical

displacement for the paddling cycle. In each sequence we analyzed

5 consecutive paddling cycles by the same duck.

The sequences were analyzed frame by frame and 7 points in

the view of each camera were digitized. Five of these points were

on the legs: the tips of digits 1 and 3 (E and I in Fig. 1), the apex

(H) of the webbed area of the left foot, the joint connecting the

metatarsus with the tibia on the left leg (JL) and the same joint on

the right leg (JR, Fig. 2B). Two additional points were on the body

(Fig. 2B): the tip of the tail (T) and the connection between the

neck and body (N)

Kinematic analysis
The process of digitizing points on two spatially calibrated

camera views resulted in a data set of 3D instantaneous positions

for the 7 points in the earth (cameras) coordinate system (denoted

by upper case letters) where Z was defined the vertical axis (with

the positive direction pointing towards the surface) and X and Y

were horizontal (Fig. 2). In the movies the ducks were oriented at

various angles in respect to the X and Y axes (Fig. 2). To extract

foot kinematics from these movies in a manner that allowed data

between the different birds to be compared, data from the (X, Y,

Z) frame of reference of the dive tank was transformed to a frame

of reference that was fixed on the duck (denoted by lower case

letters: x, y, z). We defined the origin of the xyz coordinate on the

long axis of the duck (TN), as half way between JL and JR (Fig. 2B).

The change (with time) in position of the origin of the xyz

system in XYZ coordinates was taken as the velocity of the duck

(Ub). The line connecting JL and JR defined the lateral (y) axis of

the duck with the positive side pointing to the left of the duck

(Fig. 2). The x and z axes were the long (positive towards the neck)

and dorso-ventral (positive towards the dorsal side) axes,

perpendicular to y. We used the directional cosines of these axes

to give a transformational matrix transforming the positions of the

7 points and Ub to the duck (x,y,z) coordinate system (see

Appendix S2).

Next, we replaced the time variable within each cycle with a

non-dimensional index obtained by dividing time within the cycle

by the paddling cycle duration. Thus instead of actual time we had

a fraction of the paddling cycle duration that was between 0 and 1.

We defined the start of each paddling cycle (t0) when the foot

started to move forward and down (recovery phase) and the cycle

end (t1) at the end of the propulsive stroke when the foot reached

its highest position. The data from each cycle was then

interpolated using cubic-spline to an equally spaced abscissa

ranging from 0 to 1 at intervals of 5% of paddling cycle duration.

By normalizing the cycles we were able to average data from

several paddling sequences even when the cycles differed in

duration. Data from all sequences by the same bird (5 cycles) were

averaged and we used the means of all birds. Thus in the results

section we report the mean 6 SD of a sample size of 4 birds.

Results

While holding position near the feeding tray the ducks were

pitched with their head pointing down and tail pointing up. The

mean pitch angle of the long axis of the body was 75.963.47u
(N = 4 birds) below the horizontal. In this orientation the ducks

paddled at an average frequency of 3.560.2 Hz. At the transition

from the recovery phase to the power phase the collapsed webbed

area of the foot was spread abruptly by adduction and dorsiflexion

of the digits, as described previously for ducklings swimming on

the water surface [10]. At the end of the power phase the

transition to the recovery phase was more gradual taking the last

15% of the paddling cycle. In the transition to the recovery phase,

the foot moved medially before abduction and plantarflexion of

the digits. There was little motion of the foot backwards or dorsally

during the transition. On average, the recovery phase lasted

37.363.0% of the paddling cycle while the power phase, including

the transition to the next recovery, lasted the remaining 62.7% of

the paddling cycle duration.

Figure 3 illustrates an example of the kinematics of the left foot,

in the duck coordinate system, during one paddling cycle. During

the power phase, in the xy (coronal) plane the span of the foot

(HM in Fig. 1) translated backwards relative to the duck as well as

rotating by approximately 90u. The foot also moved laterally away

from and then towards the midline of the body. The projection of

the chord (IE in Fig. 1) on the xy plane was kept in a fairly fixed

orientation. In the xz (sagittal) plane the foot moved mostly

backwards and up (dorsally) during the power phase. The chord

was practically perpendicular to the trajectory of the foot. The

stroke plane was inclined relative to the coronal plane of the body

by ,40u (Fig. 3), so given that the average pitch angle of the duck

during this cycle was 76u, the trajectory of the foot had a large

vertical component in the earth coordinates. In the yz (transverse)

plane, the most conspicuous feature was that the foot moved closer

to the body along the y (lateral) axis during the recovery when the

digits were abducted.

The body did not remain stationary during the paddling cycle,

moving up and down. In the duck’s frame of reference, curves

depicting the change in velocity of the body (Ub) along the x axis

with time (Fig. 4), showed an acceleration backwards (negative)

during the recovery phase and acceleration forward (positive)

during the power phase. However, the speed of the duck along the

x axis lagged behind the movement of the foot so that at the

beginning of the recovery phase the body was moving forward

before stopping at ,20% through the paddling cycle. Subse-

quently, the body started accelerating backwards. At 40% of the

paddling cycle, when the transition between recovery and power

phases occurred, the backwards motion of the body was at

maximum speed before starting to decelerate. The body stopped

and commenced moving forward half way into the power phase (at

about 65% of cycle duration). The body also had a positive

component of velocity along the z axis (dorsally) during the first

60% of the paddling cycle. Given the large pitch angle of the body

this velocity component resulted from the vertical motion of the

body during the recovery phase when the duck was floating up in

the feeding posture. Since we specifically selected sequences with

little yaw or lateral motion of the duck, it was not surprising that

the average lateral speed of the duck was negligible compared with

movements in the x and z axes.

Due to the phase shift between velocity of the body and velocity

of the foot along the x axis, the body and foot moved in the same

direction during the first half of the recovery and power phases

whereas the body and foot moved in the opposite direction in the

second half of each phase. As a result motion of the body increased

the speed of the foot relative to water during the start of each

phase and decreased it at the end so that, during a stroke,

variability of the speed of the foot relative to water (Ur) was

reduced. Figure 5 shows the root mean square of speed relative to

water calculated for foot element 1 (most proximal) and 6 (most

distal). Neither element reaches zero speed at the end of each

phase (0.4 and 1.0 of the cycle duration) due to the movement of

the body. The relative velocity of the distal element was almost 2-
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fold higher than the velocity of the proximal section, in some parts

of the paddling cycle.

Figure 6 shows the mean orientation angles (a and b) of the

same foot elements relative to local velocity vectors. During the

power phase the foot was oriented perpendicular to the direction

of motion in both the angle between the span and velocity (a) and

the angle between the chord and velocity (b) and thus, functioned

as a drag producing paddle, not a lift producing hydrofoil. Figure 7

uses kinematic data averaged from all birds to show the calculated

direction and magnitude of the normal force and acceleration

reaction vectors in the xyz (duck) coordinate system during the

power phase (last 65% of the paddling cycle). Acceleration

reaction is the force resulting from accelerating both the mass of

the foot and the mass of water displaced by the foot (see Appendix

S1). This force dominates the start and end of the power phase but

the force has different directions. Acceleration reaction adds to the

propulsive force at the start of the power phase but reduces it at

the end of the phase. Figure 8 shows the time distribution of the

total propulsive force produced by one foot over the paddling cycle

duration. The forces produced during the recovery were minor

due to the reduced area of the foot while the power phase provided

propulsive force both forward (Rx) and ventrally (Rz) relative to

the duck. The stroke also generated lateral force (Ry) in the second

half of the power phase. The direction of this lateral force was

away from the bird (i.e. to the left of the bird for the left foot). Most

of the propulsive force was generated between 0.35 to 0.75 of the

paddling cycle duration whereas in the transition to the next

recovery some of the propulsive force was reversed due to the

acceleration reaction of the foot (Fig. 7). At the beginning of the

power phase (between 40%–80% of the cycle), the resultant force

in the xz (saggital) plane of the bird was directed at 25.561.87u
ventral to the long axis (x) of the bird. The force created in this

Figure 3. The 3D kinematics of the foot in the duck (x,y,z) frame of reference. The data shown was extracted from two video cameras
showing the motion of the left foot of a duck during a single paddling cycle. Shown are the positions of the tip of the internal (I, see Fig. 1) and
external (E) toes as well as the calculated tip of the mid toe (M) and the base of the foot (H) every 5% of the paddling cycle duration. The blue lines
connecting E and I represent the chord of the foot, the red lines are the span (HM in Figure 1) of the foot. These lines are shown only for the last 60%
of the paddling cycle when the webbed area of the foot is spread (the power phase). Upper panel shows the motion of the foot in the xy plane, left
and right figures in the lower panel show the same motion in the xz and zy planes respectively.
doi:10.1371/journal.pone.0012565.g003
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plane by both feet during this time period was 2.760.59 N. With

the bird pitched at 76u, 98% of this force was directed vertically in

the earth coordinate system (see figure 2B), thus working directly

against buoyancy. Figure 8B shows the instantaneous mechanical

power required for moving both feet through water. The

integration of the power requirement over the entire paddling

cycle duration gave the energy (work) expended in a paddling

cycle as 1.160.17 J cycle21. Multiplying work by the paddling

frequency gave an average mechanical power to hold position near

the 1.5 m deep feeding tray of 3.760.47 W.

Discussion

While feeding at 1.5 m depth, Barrow’s goldeneye ducks

maintain their vertical position in the water column against

buoyancy by pitching the body at 76u from the horizontal and

paddling continuously. Most of the propulsive force generated

during the power phase was directed on average 25.5u below the

bird so that neglecting the lateral component of the propulsive

force, 98% of the propulsive force projected on the sagittal (xz)

plane was directed vertically to resist buoyancy. Ducks use foot

Figure 4. Velocity of the body in the duck frame of reference. The average velocity of the body shown as components along the three axes
fixed on the duck. Ux, Uy and Uz are the component of velocity along the long, lateral and dorsoventral axes of the body respectively (see Fig. 2 and
Appendix S2). The time (horizontal) axis is normalized time within a paddling cycle. The horizontal white and black rectangles at the top illustrate the
division of the paddling cycle into the power and recovery phases. Data averaged from N = 4 birds, 6 SD.
doi:10.1371/journal.pone.0012565.g004

Figure 5. Speed of the foot relative to water. Shown are the root-mean-square speed of the proximal (e1) and distal (e6) foot elements during
the paddling cycle. The horizontal axis is the same as in Fig. 4. The horizontal white and black rectangles at the top illustrate the division of the
paddling cycle into the power and recovery phases. Data averaged from N = 4 birds, 6 SD.
doi:10.1371/journal.pone.0012565.g005
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propulsion to achieve a force balance with buoyancy to hold

position near the bottom while feeding because the lateral

components of the propulsive force are cancelled out by the

synchronous paddling of the left and right foot.

During the power phase the webbed area of the foot was kept

almost perpendicular to the direction of motion of the foot relative

to the water. The major forces involved in propulsion are,

therefore, drag and acceleration reaction along the line of motion

of the foot (i.e. in the same direction or opposite to it). A growing

body of evidence suggests that some foot propelled waterbirds use

hydrodynamic lift for propulsion during horizontal swimming

where the foot is moved at small angles of attack relative to the

water and lift is produced perpendicular to the motion of the foot

[14,17–18]. In the special case of holding position near the

bottom, body speed is low contributing little to the velocity of

either foot relative to water. Furthermore, the motion of the body

is largely vertical, which is the same as the motion of the feet so a

large change in the direction of relative velocity of the foot is not

expected. In contrast, fast horizontal swimming with the body

pitched towards the bottom adds a horizontal component to the

velocity of the feet relative to the body. This reduces the angle of

attack of the webbed foot and changes the relative motion of the

foot from a horizontal to vertical trajectory allowing a shift to lift-

based swimming. Currently, there is insufficient data on the

kinematics of foot propulsion in horizontally swimming ducks to

verify whether ducks can also use lift based propulsion. In contrast

to piscivorous birds, however, many ducks feed on sessile, benthic

food and therefore dive vertically to the bottom and back. For this

type of foraging behavior specialization for maintaining position

near the bottom may be more advantageous than adaptation for

lift based swimming at fast horizontal speeds.

Drag-based swimming is often divided into rowing or paddling

based on the plane of motion of the paddle. It is customary to use

the term rowing for paddle motion in the horizontal plane and

paddling for motion in the vertical plane [23]. When swimming at

the surface ducks paddle in the water, while figure 3 shows that

when station holding underwater, the stroke is mostly confined to a

plane that is inclined by 30–40u to the coronal (xy) plane and

involves both lateral and dorsal motion. Thus the motion of the

feet is intermediate between paddling and rowing. Qualitative

Figure 6. Orientation of the foot during paddling. The angles a (A) and b (B) between the span and chord of the foot respectively and the local
relative velocity vector of the foot sections (See Figure 1 for identification of the angles and their notation). Only the angles for foot sections 1 (grey)
and 6 (black) are shown. The horizontal axis is the same as in Fig. 4. The horizontal white and black rectangles at the top illustrate the division of the
paddling cycle into the power and recovery phases. Data averaged from N = 4 birds, 6 SD.
doi:10.1371/journal.pone.0012565.g006
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observations showed that the tibia of ducks has freedom to rotate

the axis of the tibiotarsal-metatarsal joint so that the arc formed by

the feet can be changed from a vertical to a horizontal plane. As a

result the feet can be moved on both sides of the body rather than

directly below it. Rotating the arc of the foot from a sagittal to a

more coronal plane is probably useful for stability and control of

orientation while holding position. By rotating and spreading the

legs laterally ducks minimize the large pitching moments that

would arise from paddling ventrally to the body [24]. Paddling

ventrally results in a strong head-up pitching moment during the

power phase making it harder for the ducks to move their feet

vertically. The lateral position of the foot replaces some of the

pitching moment with a lateral moment that is cancelled by both

the left and right feet stroking at the same time. Furthermore, the

lateral moments are useful since voluntary asymmetries between

the motion of the left and right feet can be used to rotate the body

(yaw) during feeding, without changing the vertical component of

thrust used against buoyancy.

The vertical force (in the earth coordinate system) of the average

power phase produced by both feet at 40–80% of the paddling

cycle was found to be 2.7 N. This force is used to counter

buoyancy. The body mass of the 4 ducks used in the study was

0.67060.125 kg. The buoyancy of Barrow’s goldeneye ducks is

4.25 N kg21 according to a previous study [7] yielding an average

buoyancy for our ducks of 2.85 N. Reduction of buoyancy with

dive depth in the similarly sized (and similarly buoyant) Lesser

scaup is estimated as 15% at 1.2 m depth and 25.5% at 2 m depth

[25]. Thus buoyancy of our ducks at 1.5 m depth should be ,19%

lower, or 2.31 N. Therefore, birds move down during the power

phase but during the remainder of the paddling cycle the forces

generated are too low and the body moves up due to buoyancy.

Our model estimates the propulsive force by assuming that the

hydrodynamic function of the foot resembles that of a low aspect

ratio plate in a quasi-steady flow. The model appears to predict

both the direction and magnitude of the propulsive force during

the first 80% of the paddling cycle in agreement with the observed

motion of the body. Unfortunately, the model does not adequately

predict forces associated with the transition from the power to the

next recovery phase. At the transition the model predicts that the

forces in the xz plane are reversed, working with buoyancy instead

of against it. This is due to the large effect of foot inertia at the end

of the stroke. As the foot is brought to a stop, inertia will be in the

same direction as the motion of the foot (i.e. up). However it is

almost certain that steady flow phenomena will not predominate

during this transition. The disparity between the calculated forces

and observed kinematics may be the result of unsteady flow effects

associated with vortex shedding at the transition that are not

adequately represented by the model.

According to our model the average mechanical power exerted

by the two feet during station holding was 3.760.47 W, or mass

Figure 7. Contribution of drag and acceleration-reaction to the propulsive force. Shown is a 3D representation of the kinematics (in the
duck’s frame of reference) of the left foot during the power phase of an average paddling cycle (averaged from all birds, N = 4). Each triangle
illustrates the position and orientation of the foot separated at 5% time intervals of the total paddling cycle duration. Added to each foot position are
scaled vectors showing the mean normal force (red) and mean acceleration reaction (green) generated by the entire foot for that time step (averaged
from the 4 birds). The magnitude of the vectors in the graph are reduced by a factor of 10 to fit on the same scale grid as that of the foot kinematics
(i.e., in the figure the grid for foot kinematics is in meters and for forces it is in Newton x1021).
doi:10.1371/journal.pone.0012565.g007
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specifically 5.5 W kg21. Two previous studies on mechanical

power in diving ducks reported power output for staying at the

bottom about half of our value (2.51, 2.54, 1.69 W kg21 for

Canvasback, Redhead and Lesser scaup respectively [8], and

2.55 W kg21 for Lesser scaup [9]). The large difference for power

reported in the present analysis compared with previous studies

stems from the fact that we report total mechanical power exerted

in paddling whereas the earlier values refer only to the power

output (i.e. the power needed to move the body). Power output will

be the same as total power only when the feet are 100% efficient in

converting all the momentum from the water moved into thrust

that is directed in the direction of swimming. Since some of the

energy spent on producing the propulsive force is always lost

during swimming, power output is always lower than total power

and the ratio between the two is the propulsive efficiency. For

drag-based swimming, estimates of propulsive efficiency vary from

16% to 33% [26–27].

In eco-physiological modeling of diving energetics it is often

useful to convert mechanical energy spent during a dive to a more

biological currency of energy such as metabolic rate (often

measured as the amount of oxygen consumed by the duck). The

total mechanical power spent holding position near the bottom

should be considerably lower than the metabolic power to account

for the energy lost converting chemical energy to mechanical

energy (i.e. ‘aerobic efficiency’, see [28] and below). To verify this

we estimated the metabolic rate of diving in our ducks based on

data from the literature. The allometry of resting metabolic rate

(RMR) on body mass in diving ducks (RMR = 446 m0.98 where

m = mass is in kg and the RMR is in kJ day21) [29] predicts a

metabolic rate at rest of 3.49 W for ducks of the mean body mass

of our ducks. This value is for ducks resting in air at their

thermoneutral zone. Ducks resting on water have a metabolic rate

which is at least 1.4 fold higher even when water temperature is

the same as the air [30]. The metabolic rate of similarly sized

tufted ducks (0.6 kg) diving to 1.5 m was 3.5 times their metabolic

rate resting on water [31]. According to these values the metabolic

cost of diving for our ducks should be 17.1 W (RMR from the

allometric equation x 1.4 for resting on water x 3.5 for diving to

1.5 m). This value is for a dive to 1.5 m that includes not only the

energy spent feeding at the bottom but also during a short

commute from the surface to the bottom and back. Mechanical

energy expenditure is highest when descending to the bottom

against buoyancy and lowest (zero) during the passive ascent to the

surface which is driven by buoyancy. Nevertheless, we note that

the 3.7 W found by our model for mechanical power required to

stay near the bottom, at 1.5 m depth, is roughly 21% of the

Figure 8. Hydrodynamic force and power of paddling. A) The mean x, y, z components (see Fig. 2) of the resultant propulsive force (R) for the
entire left foot as estimated by the model from the foot kinematics (N = 46 SD). Positive values refer to forward (x), left (y) and dorsal (z) in the bird’s
frame of reference. B) The instantaneous mechanical power exerted for moving both feet through water during the paddling cycle (twice the power
calculated for only the left foot) (N = 46 SD). The horizontal axis is the same as in Fig. 4. The horizontal white and black rectangles at the top illustrate
the division of the paddling cycle into the power and recovery phases.
doi:10.1371/journal.pone.0012565.g008
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predicted metabolic rate during a dive to that depth. In other

words, although our value for mechanical power for staying at the

bottom is considerably higher than previous estimates, it is still low

enough to account for less than a quarter of the metabolic rate of

the dive, leaving ample room for the extra energy spent

descending through the water column and losses associated with

the conversion of metabolic energy into mechanical energy.

These losses are reflected in the exercise physiology literature as

‘aerobic efficiency’ and can be calculated from the ratio of

mechanical work performed to measured oxygen consumed (a

measure of metabolic rate) [28]. When aerobic efficiency is known

it can be used for converting the estimate of mechanical work done

during the dive to the more ecologically relevant currency of

energetic needs, i.e. metabolic rate. Both power output (used in the

previous models) and propulsion power (estimated here) can be

converted to metabolic energy. However, the values of aerobic

efficiency used for the conversion in the two cases would be

different. For the same dive, the 2 fold difference between the

power spent on propulsion for staying near the bottom (reported

here), and the power output (reported previously [8–9]) would

result in a calculated aerobic efficiency (specific for bottom feeding)

that is 2 fold larger in our case. This is because the aerobic

efficiency calculated from power output subsumes the propulsive

efficiency making the conversion from metabolic to mechanical

work seem less efficient. Hence, for swimming, power output and

power spent on propulsion are different currencies of the

mechanical work of swimming. Both can be used for estimating

metabolic energy for ecological modeling, using different values of

aerobic efficiency.

However, the major advantage in our modeling approach

becomes clear in the special case of holding position. When the

body is stationary the work done on it is zero since by definition

work is the product of the force applied and distance moved. To

overcome this problem, previous studies used indirect estimates of

work for station holding based on an estimated distance that the

body would have moved had the duck stopped paddling. The

advantage of the analysis presented here is that we can estimate

the work of holding position regardless of whether the body is

moving or not, by using the kinematics of the feet. Furthermore, in

addition to energy expenditure, our approach provides informa-

tion on the source of the propulsive force, its magnitude and

direction, and the various mechanical factors that drive energetic

costs.

The advantages of the current approach are not limited to the

special case of holding position near the bottom. Although the

values reported here for propulsive force and power are specific to

ducks holding position at a depth of 1.5 m, the same blade-

element model described here can be applied when birds are

swimming horizontally, vertically (resulting in a decrease in

buoyancy with depth), holding position near the bottom or

engaging in complex maneuvers. Thus the model described here

can prove a powerful tool for estimating energy expenditure for

complex, real-life foraging behaviors of diving birds; enhancing

our understanding of the eco-physiology of these remarkable

divers.
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