
A Multi-Objective Linear Program for Nutrition

From CU Denver Optimization Student Wiki

A Multi-Objective Linear Programs is a linear program with more than one objective function. This linear program solves how to minimize cost (based on the dollar value of

meals) and maximize profit (based on the grams of protein) while meeting specific requirements for both the consumer and supplier. This multi-objective linear program will

ultimately be developed by combining the separate objectives.
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Dictionary of Variables

xj

βj

μj

cj

aij

ζi

ηi

pj

γ

∈ (0, 1]λ1

∈ (0, 1]λ2

number of  meal type j purchased in a week

minimum number of  meal type j purchased in a week

maximum number of  meal type j purchased in a week

cost of  meal type j

amount of  nutrient type i in meal j

minimum number of  nutrient type i needed in a week

maximum number of  nutrient type i needed in a week

amount of  protein in meal j

the maximum number of  meals made in a week

scalar weight of  minimize cost objective

scalar weight of  maximize profit objective
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Meal Codes

Objective Function 1: Minimize Cost

The nutritional data to minimize the cost of a weeks worth of meals was designed for a 45 year old, 6ft male, with a starting weight of 175 pounds. With a Basal Metabolic

Rage of 1765 calories per day and expected expenditure of 1500 calorie from exercise, it is prescribed that the consumer has a minimum weekly nutritional intake ( ) of the

following: 12355 calories, 1239 grams of protein, 1393 grams of carbohydrates, and 203 grams of fat. To promote variety in the diet, each meal must be consumed at least

once and may not be consumed more than 5 times (i.e. ). Based on the cost and nutritional information of each of the meals, the objective

function can be written as:

SP

SDN

TC

PAS

OEB

SCS

TMC

OAT

BP

BSC

CT

TML

Shrimp Paella

Spicy Dan Noodles

Turkey Chili with Beans

Supreme Pasta

Over Easy Burger

Sweet Chili Glazed Salmon

Tex Mex Chicken Bowl

ABJ  Oatmeal Bowl

B.  Platter

Buffalo Style Chicken Bowl

Chicken Teriyaki with Rice

Turkey Meat Loaf

ζi

1 = ≤  ≤  = 5βj xj μj
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Interpretation of Results

The optimal solution is $354, which can be interpreted as the minimum cost to buy a weeks worth of food while meeting all nutritional requirements and sufficiently varying

the meals. The meals that were least expensive but had lots of nutritional benefit were purchased were purchased in higher quantities. The following diet is optimal number of

each meal that should be purchased:

It is important to note that B. Platter (BP), Over-Easy Burger (OEB), Shrimp Paella (SP), and Tex-Mex Chicken Bowl (TMC) have the least nutritional benefits for this diet per

dollar.
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s. t.
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Objective Function 2: Maximize Profit

The definition of profit in this model is to sell as much protein as possible. Each meal may only be made 5 (i.e. ) times to promote variety, and

only 50 meals may be made in a given week (i.e. ) . The objective function for this model can be written as:

Interpretation of Results

The optimal solution is 1325 grams of protein. The results of this objective function are intuitive -- make 5 of the meal with the most protein and then move on the to the meal

with the next most protein. The following is the optimal number of each meal that should be purchased:

It is important to note that Spicy Dan Noodles (SDN) and Chicken Teriyaki (CT) have the least amount of protein, so neither were made. It is preferred to make 5 of each of

the other 10 meals.
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Multi-Objective Function: The Difference of Minimizing Cost and Maximizing Profit

Combining the two previous objective functions to create the multi-objective linear program entails using the same data as from the single objective functions and writing one

minimization objective function. Since previously the objective was to maximize profit, I can achieve this by subtracting the maximization of the profit from the minimization

of cost. Utilizing  and  to weight each of the objective functions, the multi-objective function can therefore be written as:

Interpretation of Results

The interpretation of the multi-objective optimal solution is difficult since units of the minimization of cost objective function (dollars) is different than units of the

maximization of profits objective function (grams of protein). The value of the objective function is of little significance. It is more important to examine how many of each

meal satisfies the multi-objective function. Below are 3 cases where each separate objective function is weighted:

Case 1 ( )

The optimal solution is -868.06. When each part of the mutli-objective function receives equal weight, maximizing grams of protein is greater than minimizing dollars, which

results in a negative optimal solution. The following is the optimal number of each meal that should be purchased:

λ1 λ2

min
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Case 2 ( )

The optimal solution is 344.68. When significantly more weight is given to the minimization of cost objective function, the resulting optimal solution becomes positive. Again,

it is important to examine how many of each meal should be purchased to achieve the optimal solution:

Case 3 ( )

The optimal solution is 167.72. Even though less weight was given to the minimization of cost objective function compared to Case 2, the optimal solution decreased but
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remained positive. It is interesting to note that although the optimal solution was lower in Case 3 than Case 2, the number of each meal that should be purchase to achieve the

optimal solution is the same as in Case 2:
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A Wheelie Good Time: Safe Biking in Denver

From CU Denver Optimization Student Wiki

Hello and welcome to Angela Morrison and Weston Grewe's project page for A Wheelie Good Time: Safe Biking in Denver. Please read about our project below. You can find relevant code, slides, and

more graphics in our GitHub repository (https://github.com/DillWithIt77/D2P_Spring_2022). Also, you can click on our names to find out more about us and other projects we have worked on.
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Abstract

Denver has always been a car-centric city, but with the rise of global warming more environmentally-friendly forms of transportation are required. However, Denver streets are not safe enough for most

to feel comfortable biking; 60% of Denver residents report being “interested, but concerned” about commuting by bike, only 4% feel “highly confident.” Thus, there is ample room for growth if streets

were safer. In 2016, The Department of Transportation and Infrastructure (DOTI) of Denver introduced the Denver Moves: Bicycles Program, which is dedicated to building 125 miles of bike lanes by

2024. With 74 miles already completed, a natural question is “Will this be enough to move Denver towards eco-friendly transportation?” The COVID-19 pandemic has reshaped some parts of the city to

accommodate outdoor dining and activities, proving that Denver is ready and willing to take back some roads from motor vehicles.

It is not sufficient to just build more lanes; Denver should prioritize building lanes that can benefit the most people and extend or connect existing routes. We analyze the shortest paths bikers may safely

take (restricting the distance allowed on shared roads and unprotected bike lanes) to key points in Denver (Auraria Campus, City Park, DU, Five Points, 16th St Mall) to understand where (protected)

bike lanes can significantly improve a rider’s commute. After accessing these results, we then suggest several locations that the DOTI should either build lanes or upgrade current lanes to protected bike

lanes to incentivize eco-friendly commuting while also decreasing travel times between key locations. This is done to ensure the DOTI are getting the most bikes for their lanes from the Denver Moves

project.

Project

The Department of Transportation and Infrastructure (DOTI) for the City of Denver is invested in encouraging more eco-friendly modes of transportation, i.e. bikes, e-bikes, scooters, busses, and light

rail. In 2016, the DOTI [1] found that 60% of Denver residents are interested but concerned in commuting by bike, compared to the only 4% who feel highly confident. It is not just residents'

presumption that biking is dangerous. The data bears it out and in particular, 45% of bicycle crashes in Denver [2] occurred from a car veering into a rider in a lane. More protected bike lanes would save
lives. Thus, the Denver Moves: Bicycle Program was born. This initiative is dedicated to building 125 miles of bike lanes in Denver by 2024. Roughly 74 miles have already been completed.Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Angela_Morrison
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Weston_Grewe
https://github.com/DillWithIt77/D2P_Spring_2022


Distance is not the only factor when it comes to commuting. Road and path type are also important. Most would prefer a 5 mile commute primarily on the Cherry Creek Trail to a 2 mile commute

through busy roads. There is a hierarchy of roads that cyclists prefer to ride on, and it is not surprising the least to most preferred types are: shared roads, unprotected bike lanes, protected bike lanes,

neighborhood bikeways, and paved shared use paths. As a clarification, shared roads are roads that cyclists share with cars, shared use paths are paths that cyclists share with pedestrians, and

neighborhood bikeways are paths shared with pedestrians that occasionally cross neighborhood streets.

One way to encourage more residents to commute to work is to develop a bike infrastructure that allows commuters to stay primarily on road types they are comfortable with (protected bike lanes and

shared use paths). We analyze shortest paths and compare them to paths that restrict the amount of time that is allowed to be spent on less preferred road types (unprotected bike lanes and shared

roadways). For this project, we look at 5 destinations in Denver: Auraria Campus (specifically Student Commons Building), Union Station, Five Points (specifically Denver Central Market), City Park,

and University of Denver. These locations were chosen since many people work in these areas and all five have limited parking, making they are ideal places to bike to instead of drive.

Simply building more bike lanes is not the only way to encourage people to ride. This year (2022) Colorado has introduced two major policies to encourage bicycle commuting. The first is making the

Idaho Stop (Safety Stop) legal for cyclists [3]. That is, cyclists may treat stop signs as yield signs and red lights as stop signs. This is a counterintuitive policy, first introduced in Idaho (hence the name),

that greatly reduces bicycle accidents, especially those caused from drivers turning into cyclists at a light. The second policy is $400 grant ($1200 for low-income) for residents to purchase an e-bike [4].

The e-bike has been a major development in making cycling accessible, their ability to hold speed can make a 5 mile ride along a path essentially painless. With these developments, Denver is entering a

critical period when it comes to bicycle commuting. The city needs to be sure it has adequate infrastructure.

Data Cleaning

We began with a collection of LineStrings and MultiLineStrings representing bikeable roads in Denver. Each record also contained the type of road and its name. In order to transform this file to make it

compatible for the work that needed to be done in R, the MultiLineStrings needed to be broken up into individual LineStrings. This was done in python using the explosion function for GeoPandas Data

Frames [5]. With this done, we could move onto the cleaning that needed to be done in R.

To transform this into a network that we can perform our analysis on, we used R and the sfNetworks package [6]. The package sfNetworks has functions that easily clean up a network. The first thing we

did was round the lat/long coordinates of our data to five decimal points. This resolved an issue of our network being very disconnected. For example, we had edges that look like  and 

where points  and  are across the street from each other.  and  should really be the same point, otherwise our network is disconnected at that point, rounding the lat/long solves this problem.

Our network also lacked intersections of paths, using sfNetworks subdivision tool we were able to account for this. After this, we took the largest connected component as nodes in the other connected

components cannot reach the points in our network. The subdivision feature is not perfect and introduced some redundant nodes. The last bit of cleaning removed these nodes. With our network cleaned

up a bit, we could calculate the information needed to ready out data for the algorithms.

With R having cleaned up the network, the last bit of information needed was the distance of each edge in the network. This was done by importing the network back into Python and computing the

distance in meters for each edge. Finally, we exported the edges with their distances and the nodes as a CSV file and performed our analysis in Python. Check out our data cleaning here

(https://github.com/DillWithIt77/D2P_Spring_2022/tree/main/Data%20Cleaning%20and%20Plotting)!.

Algorithms

We analyzed our network using two algorithms and compared the results. The first algorithm we used was the shortest path algorithm. We computed shortest paths from all nodes in our network to our 5

desired locations detailed above. For the implementation, we used label-correcting to find the shortest paths. More detail can be found in our GitHub repository

(https://github.com/DillWithIt77/D2P_Spring_2022).

The second algorithm we used is a cost-constrained shortest path algorithm, a detailed explanation can be found in Chapter 3 of Network Flows by Ahuja, Magnanti, and Orlin [7]. Essentially, given a

cost  we compute the shortest path from a source node to the target node that does not exceed . For this project, we interpret  as a safety factor and find paths that do not exceed this safety factor. To

initialize safety factors on each edge , we multiply the length of the edge (in miles) to a predetermined number [8] indicating risk and assign that value as  for that edge. The algorithm is

essentially a dynamic program that computes runs in . Since our chosen values of  are small (10 and 20), the program still runs quickly, about 5 seconds. Again, more detail can be found in

our GitHub repository (https://github.com/DillWithIt77/D2P_Spring_2022).
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B B′ B B′

τ τ τ
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Heatmap of Denver Bike Routes. Dark blue is least used, red is most

used.

Map of Denver Bike Routes. Blue-Shared Path, Green-Neighborhood

Byway, Light Orange-Shared Roadway, Dark Orange-Unprotected

Bike Lane, Pink-Protected Bike Lane

Results

Our results can be broken down into 3 categories: frequency (how often paths are used), feasibility (where can we ride in Denver), and burden (how much harder is it to ride safely).

Frequency

Using only the results from the shortest paths, we can discover which roads are most frequently used. Doing so, we found that 8 of the 20 most used edges in the network are shared roads or unprotected

bike lanes. By frequency alone, these 8 edges should be upgraded (if possible) to a protected bike lane. The graphics below are a heat map (left) of the most used roads and a graphic of the type of path

(right) for each edge in the network. In the heat map, the brighter the color (the more red it is) the more frequently that edge is used in the shortest paths computed for each desired location. For the type

of path, blue are for shared use paths, green for neighborhood byways, yellow for shared roadways, orange for unprotected bike lanes, and finally pink for protected bike lanes.

While there are 8 edges of the top 20 that are shared roadways or unprotected bike lanes, these do not necessarily correspond to 8 individual roads. Due to the cleaning methods in the network, there are

some streets that were subdivided, cause some repeats in the street names. This means that there are only about 4 actual roads that could be upgraded. they are listed in the table below.
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Street From To

Emerson 1st Ave Louisiana

Louisiana Logan Franklin

Franklin Buchtel Dartmouth

Iliff University Humboldt

Feasibility

The following figures are visualizations of points that can actually reach one of our desired locations. The cautious rider (left) will only spend as much as 2 miles on a shared road or 3 miles on an

unprotected bike lane. The more adventurous cyclist (right) doubles these values. We see that the cautious cyclist cannot access much of Denver. Even the adventurous cyclist cannot access all of

Denver. In the graphic for the adventurous cyclist, we see a "dead zone" in northeast Denver, this represents the Park Hill and Central Park neighborhoods. We recommend building more paths in these

neighborhoods to boost accessibility.
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In both maps, we can see that feasible nodes are clustered around Denver's Cherry Creek Trail, Highline Canal Trail, and Platte River Trail. These trails are major infrastructure that make biking in

Denver a joy. However, those who live far away from one of these trails cannot safely ride in most of Denver. We recommend building more protected lanes that can connect cyclists to these trails. More

so, there is an inequity here. Many of Denver's richest neighborhoods (Washington Park, LoHi, RiNo, LoDo, Cherry Creek, etc) are adjacent to one of these paths. Building more protected bike lanes

would make biking safer for marginalized and less-privileged communities.

Burden

Lack of safe biking infrastructure can cause cyclists to take longer routes than might be necessary. A casual cyclist riding to work may only ride at a 7mph pace as they are likely not riding a road bike

and not trying to work up a sweat. With this in mind, adding an extra 1 or 2 miles to a commute can add 10 to 20 minutes of riding, a significant burden on the rider. The plots below give a visualization

of a path an adventurous cyclist would take within their level of safety (the blue route), the red lines indicate where the shortest path would divert them. In the most extreme example, we see that when

riding from Sloan's Lake to University of Denver, both the safe route and shortest route take the rider along the Cherry Creek Trail until Washington Park. The shortest route then takes the rider off the

Cherry Creek Trail following Emerson to Buchtel to DU for an extra 3.5 miles of riding. The safe route on the other hand brings the rider another 6 miles along the Cherry Creek trail to the Highline

Canal Trail. The rider then rides the Highline Canal trail for more than 6 miles to arrive at DU. All in all, maintaining safety adds around 10 miles to the ride. At least the rider is safe.

Plots of Safest Shortest Path (Blue) compared to Shortest Path (Red).

5 Points City Park University of Denver

Another area of concern is downtown Denver. In the plot for 5 Points we see that riders are diverted around downtown instead of through downtown. If downtown had safer roads, riders could easily

ride through downtown. Thus, we recommend building a 2 protected bike lanes through downtown, one north/south, one east/west. We do not have a recommendation on the particular street, our heat

map indicates some good choices, but it may be in the best interest of the city to choose a street that will have a minimal impact on traffic.

Policy Recommendation

We found that bike infrastructure in Denver is insufficient. Many neighborhoods in the city lack access to safe routes to key points in the city. However, Denver does have an outstanding network of

routes consisting of shared paths and neighborhood trails. It should not be understated how important these routes are for bicycle commuting. Residents who live near these paths will find commuting

along these paths safe and enjoyable. We recommend building more routes that connect to these paths to expand a safe network of riding for more residents. Our analysis illustrated that a protected bike

lane connecting Washington Park to Buchtel Blvd would be beneficial. From an understanding of the geography of the University of Denver, it may be best to have this route extend to Evans Ave. This

route could be built on Downing or Franklin, but Franklin is the better candidate. South High School is on Franklin; a protected bike line would provide these high school students with a safer route.

Finally, we saw that City Park/Park Hill/Central Park all need better access. City Park itself is safe for riders, however, we recommend building a protected bike lane from City Park to downtown to

make cycling downtown safer in its own regard. Additionally, we recommend having a safe route from City Park to 5 Points. The route from City Park to 5 Points does more than just make biking safer.

Many young people live in City Park and drink in 5 Points. The addition of this route may cut down on drunk driving if more people who are drinking are biking instead of driving. (We recognize that
Typesetting math: 100%
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drinking and biking is still illegal, but we cannot deny that intoxicated bikers pose much less risk to residents than intoxicated drivers). As for particular routes to build, Michael Schmidt's, Evan

Shapiro's, and Em Gibbs's project: Finding Optimal Shared Streets in Denver from this year's D2P has some suggestions.

A Note on Southwest and Northeast Denver

We did not have strong recommendations on what to do in Southwest and Northeast Denver. This is an artifact of the desired locations we chose. As Auraria, Union Station, and 5 Points are all clustered

around North Central Denver many of our routes are biased in showing that routes in these areas are more important. However, in both Southwest and Northeast Denver, we can see that we likely need

more protected bike lanes are there are not many of them. More analysis would be needed to determine if this is actually the case.
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About me

Hi! My name is Abigail Nix and I am a second year PhD student at CU Denver. I am interested in discrete mathematics (and in particular

graph theory) and optimization.

Education

I received my Bachelor's in Mathematics at Middlebury College in May 2023.

Projects

In the spring of 2024, I worked on the project In-N-Out Of Kilter as part of the course on Combinatorial Optimization.

For the Applied Graph Theory course in Spring 2025, I worked with Ari Holcombe Pomerance on a project on Graph Coloring Variants.

GitHub

Github (https://github.com/abigail-nix)
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Acadia Larsen
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Acadia Larsen is currently a non-degree student at University of Colorado: Denver. Prior to this, he worked as a Denver Math Fellows at the Denver Institute for International

Studies at Montebello where he taught and tutored 9th grade math in small groups. Acadia earned his BA in mathematics at Whittier College in California where he was

awarded several fellowships for his work in math. When not working or in class, you can find him running, hiking, or bouldering.

Contributions: Convex Hull Finding Algorithms

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Acadia_Larsen&oldid=400"

Category: Contributors

This page was last modified on 25 April 2017, at 18:34.
This page has been accessed 2,281 times.

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Convex_Hull_Finding_Algorithms
https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Acadia_Larsen&oldid=400
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Special:Categories
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Category:Contributors


Alana Saragosa

From CU Denver Optimization Student Wiki

About Me

Hello there! My name is Alana Saragosa, and I am a first-year master's student at CU Denver. A few of my favorite things include watching all the new movies, eating at new

restaurants, and hanging out with my family.

Education

Metropolitan State University of Denver: B.S. in Mathematics

Projects

Fall 2023: I worked with Paul Guidas and Colin Furey on Emissions and Equality: Colorado Car Share Optimization a facility locations optimization project. Where the goal

was to bring cheap car access, via federally funded Colorado CarShare Non-profit, to targeted groups in Denver.
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About Me

Hello, my name is Alex Semyonov and I am currently pursuing a PhD in applied mathematics here at CU Denver. I received my B.S. in mathematics (with a minor in

neuroscience) from CU Denver in 2021. Currently, I am interested in probabilistic/statistical modeling as well as graph theory. Outside of mathematics, I enjoy freerunning

(this is similar to parkour but focuses on self-expression through movement as opposed to the efficiency of movement), mountaineering, and gaming.

Project

Clustering Neighborhoods in Order to Analyze Policy Needs

(http://math.ucdenver.edu/~sborgwardt/wiki/index.php/Clustering_Neighborhoods_in_Order_to_Analyze_Policy_Needs)

I am currently working on a project (alongside Jacob Dunham and Orlando Gonzalez) to try and identify the best neighborhood in Denver subject to various personal

constraints (finances, crime tolerance, etc.).

Graph Theory Project: [1] (https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Counting_Eulerian_Cycles_in_Graphs)

Contact Info

Please contact me by email: alexander.semyonov@ucdenver.edu
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I am currently an applied math master's student at CU Denver. I got my bachelor's degree in math at Penn State University before moving to Colorado in 2016. I hope to use

my education to work in industry. In addition to being a student, I also work at Stack Subs and teach after school coding classes at a few elementary schools. I love to apply

math to my every day life, so for my final project I applied column generation to cutting loaves of bread at work.

Follow this link (http://math.ucdenver.edu/~sborgwardt/wiki/index.php/Applications_of_Column_Generation) to my application.
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Alfred P. Wahabby is a graduate student at the University of Colorado, Department of Mathematical and Statistical Sciences. My background is physics, engineering,

philosophy and English literature. My passion for mathematics was triggered when I was undergraduate in physics; the main topic in physics that intensified my desire to

commit to the math program was a general relativity summer course. I am a math teacher and I love my job. Ultimately I want to put to use the math I learn in the field of

physics although I may continue to be a teacher for life.

Brief History Of Linear Programming
The amazing Fourier, progenitor of linear systems
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About Me

I am a Ph.D. student at CU Denver, I have a bachelor's degree in mathematics from William Smith College in Geneva

New York and a Master's Degree from CU Denver. When not doing math I enjoy anything artistic, my apartment is

decorated with original pieces! My more recent artsy endeavors are mostly based around my niece. I have made fun

and nerdy onesies in the past and am trying to crochet things for her, but there is quite the learning curve. I have a

very spoiled cat who is frequently featured in my video feed during zoom classes or meetings (her name is Chloe, she

is not helping). My favorite TV show is and forever will be Futurama.

Projects

My current project is Circut Analysis of the Maximum Clique Problem. This project is for the topics in optimization course.I have previously

worked on the project What are multicommodity flows? working with Zane Showalter-Castorena, that project was for the network flows

course, Optimizing Highschool Graduation Rates working with Collin Powell and Zane Showalter-Castorena for the linear programming

course, and Return To School Success In Times of COVID, for the integer programming course.
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About Me

My name is Amanda Ward and I'm a second-year Master's student at CU Denver.

Projects

MATH 6404 Final Project (Spring 2025): van der Waerden's Theorem
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Hello! My name is Amber Rosacker. I am currently working on my Master's in Mathematics Education from CU Denver. I received my
Bachelor of Science in Mathematics Education from the University of Northern Colorado in 2014. I am a high school mathematics
teacher in a suburb of Denver. I love being a teacher, and I could not imagine doing anything else with my life.

Follow this link to view my project on Class Scheduling
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Amit Sengupta
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I am a second year PhD student in statistics at University of Colorado at Denver. I have obtained MS in statistics from Washington State University and have MS in computer

science as well. I have worked for Oracle Corp. at San Francisco Bay Area as a database software developer and have successfully taught computer science at colleges and

universities in the Bay Area. My publications in the area of efficient group communication algorithms in distributed systems have appeared in the leading international journal

and conference proceedings. My research interest lies at the intersection of statistics and algorithms.

Shortest Path Routing Algorithms Amortized Analysis

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Amit_Sengupta&oldid=2546"

Category: Contributors

This page was last modified on 22 April 2020, at 22:48.
This page has been accessed 1,271 times.

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Shortest_Path_Routing_Algorithms
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Amortized_Analysis
https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Amit_Sengupta&oldid=2546
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Special:Categories
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Category:Contributors
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My project involves amortized analysis using the aggregate method and potential method for the stack operations and incrementing a binary counter.

Abstract

Amortized analysis is used when most operations are fast but an occasional operation is slow. Time needed to do a sequence of operations is averaged over all operations. This

analysis involves no probability distribution and is not sensitive to a rare instance. The aggregate method and potential method for stack operations and incrementing a binary

counter are discussed here and improvement of the amortized cost of n operations over the worst case cost of  operations is demonstrated. Another application is operations

in hash table where most insert/or find operations require  time but an occasional insert or find can take  time due to collision.

Introduction

The goal of the analysis of an algorithm is to check how the running time of the algorithm scales with the size of the put. The analysis is classified into four categories: (a)

empirical analysis; (b) average case analysis; (c) worst case analysis, and (d) amortized analysis. The empirical analysis consists of writing a program for the algorithm and test

the performance of the algorithm on some problem instances. Its drawbacks are the following: (a) it is expensive and time consuming; (b) it depends on the computing

resources and programmer skills, and (c) it is often inconclusive. The idea of the average case analysis is to estimate the expected number of steps of the algorithm based on a

probability distribution. The average case analysis suffers from the following drawbacks: (a) analysis depends on the choice of the probability distribution; (b) analysis is

difficult, and (c) performance prediction depends on situations where you solved many problem instances. The worst case analysis gives an upper bound on the number of

steps the algorithm takes on an instance. The analysis offers the following benefits: (a) it is independent of the computing environment; (b) analysis is easier, and (c) it is

conclusive about comparing algorithms. But its limitation is that a rare instance can determine the performance of the algorithm. Amortized analysis is used when most

operations are fast but an occasional operation is slow. Time needed to do a sequence of operations is averaged over all operations. This analysis involves no probability

distribution and is not sensitive to a rare instance.

Aggregate Method

Consider a stack S (of size n) and these operations: (a) Push (S,x) pushes object  into stack S; (b) Pop (S) pops the top of the stack S and returns the object, and (c) Multipop

(S,k) pops  top objects of the stack S. Suppose we have a sequence of  Push, Pop, and Multipop operations. The worst case cost of a Multipop operation is  implying

that the worst case cost of any operation is  So the cost of a sequence of  operations is . We can obtain a better bound using the aggregate method. Each object

can be popped at most once for each time it is pushed. So the number of times Pop is called including calls in Multipop is at most the number of Push which is at most n.

Hence a sequence of n Push, Pop, and Multipop operations require  time implying that the amortized cost of one operation is , an improvement over . Let

us see how the aggregate method is useful in the case of incrementing a binary counter.

Increment algorithm is described in this way. Increment (A) {

   i=0;

   While ( i < length (A) and A[i]=1) {

                   A[i]=0;

n
O(1) O(n)

x
k n O(n)

O(n). n O( )n2

O(n) O(1) O(n)
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                     i=i+1;

      }

      If ( i < length(A) )

             A[i]=1;

} Notice that all increment operations in the worst case take  time if all  bits are 1. So  increment operations take  time in the worst case. But we can get a

better bound with the aggregate method. A[0] flips each time increment is called. A[1] flips every second time increment is called. A[2] flips every fourth time increment is

called.So the amortized cost of n increments  up to log n terms) . Consequently, the amortized cost of one operation is

, an improvement over 

Potential Method

The potential method is defined as follows. Let  be the actual cost of the  operation and  is the data structure after the i-th operation. Let ∅ be the potential

function that maps  to a real number . Then the amortized cost of the i-th operation is given by  Consider the example of stack.

Define ∅ as the number of elements in the stack. Then the amortized cost of Push is  The amortized cost of Pop is 

Similarly, the amortized cost of Multipop  It follows that the amortized cost of n operations is O(n) and the amortized cost of one operation is  , an

improvement over O(n).

Consider the example of incrementing a binary counter. Define the potential as the number of 1s after the i-th operation, say . Let the i-th operation resets  bits. So the cost

of the i-th operation is  (1 for setting one bit). The number of 1s after the i-th operation is  So

 Therefore  The amortized cost of n

operations is  or equivalently, the amortized cost of one operation is , an improvement over 

Summary

Amortized analysis is used when most operations are fast but an occasional operation is slow. The aggregate method and potential method for stack operations and

incrementing a binary counter are discussed here and improvement of the amortized cost of n operations over the worst case cost of n operations is demonstrated. Another

application is operations in hash table where most insert/or find operations require  time but an occasional insert or find can take  time due to collision.

Reference

Thomas Cormen, Charles Leiserson, and Ronald Rivest, Introduction to Algorithms, MIT Press (1990).

Ravindra Ahuja, Thomas Magnenti, and James Orlin, Network Flows, MIT Press (1993)

Github link

https://github.com/amitsengupta1/amortized-analysis Amit Sengupta
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Amortized Time
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Amortized analysis is a technique for finding the time complexity of algorithms which gives a much tighter upper bound on the actual run time than worst-case analysis.

Contents

1 Motivation
2 Techniques
3 Examples

3.1 Dynamic Array
3.2 Fibonacci Heap

4 Applications

Motivation

Worst-case analysis can give horrible upper bounds on the running time of an algorithm. An iteration may, in the worst case, take a long time. For worst-case analysis, we

would assume every iteration takes a long time. However, this worst case does not happen very often (for instance, only once every  iterations). Amortized analysis is a

precise way to ``average out these worst-case scenarios to produce a more realistic upper bound on the running time of the algorithm. It is most applicable when there is a

data structure whose state is made ``better by the worst case step, so the worst case will not happen again for a long while after.

Techniques

Aggregate analysis calculates an upper bound, $T(n)$, on the running time of $n$ iterations, and returns $T(n)/n$ as the amortized running time.

The accounting method assigns an amortized cost to each step of the algorithm, which is different from the actual running time of that step. The idea is that steps which run

faster than their amortized cost will build up "credit" which can be spent on slower running steps later in the algorithm.

The potential method is a version of the accounting method where the accumulated credit is tracked by a function of the data structure called the potential function. The

amortized cost is the actual cost plus the change in the potential function.

2k
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Examples

Dynamic Array

An array is ordered data stored all in one block of memory. The array is dynamic when we expand the block of memory depending on how much data is being stored.

Consider a dynamic array with an initial block of memory of size 1 set aside for the array. As data is added to it, the size of the array will double if it is full. This requires a

new block of memory and the copying of all the data from the old block of memory to the new one.

Consider inserting  pieces of data into the dynamic array. In the worst case, an insert will require copying all of the data to a new block of memory, which will take 

time, where  is the number of elements currently in the array. Since there can be up to  elements in the array, this means each insert takes  time in the worst case.

Since there are  inserts, this takes  time according to worst-case analysis.

Notice that most insertions only require  time. The insertions which require  time occur relatively infrequently. In particular, after an insertion which requires

, the next  insertions will require only  time. These facts suggest that amortized analysis may be beneficial.

Let  be the potential function, where  is the number of elements currently in the array and  is the size of current block of memory set aside for the array.

Since, after the first insertion, the array is never less than half full, the potential is always nonnegative.

An insert into a non-full array takes 1 unit of actual time. The potential function will increase by 2, since  increases by 1 and  does not change. Therefore, the amortized

time for such an insert is 3 units. This is constant time.

An insert into a full array takes  units of actual time. Before the insert, , meaning the potential is . After copying (but before the insert), the new block of memory

has size , and there are still  pieces of data in it, so the potential is 0. After inserting, the number of elements currently in the array is , and so the potential is 2.

Therefore, the total change in potential is . This means that the amortized time for inserts of this type is  units. This is also constant

time.

From the above analysis, we see that any insert takes constant amortized time. Therefore,  inserts will take  amortized time. Looking at the actual run times of 

insertions to a dynamic array show that this is closer to the reality.

Fibonacci Heap

As part of Dijkstra's algorithm, a data structure known as a priority queue (https://en.wikipedia.org/wiki/Priority_queue) is needed. The most efficient implementation of a

priority queue known so far is a Fibonacci heap (https://en.wikipedia.org/wiki/Fibonacci_heap). This stores the data with key in a series of trees. Each tree maintains the heap

property (https://en.wikipedia.org/wiki/Heap_(data_structure)), which is that the key of the parent is less than or equal to the keys of the children. This ensures that the

minimum key occurs in the root of one of the trees. The heap also maintains the property that each non-root node can have at most one child cut from it. This is ensured by

marking non-root nodes when a child is cut from them. A pointer is maintained to the tree root with minimum key.

The basic operations in a Fibonacci heap are cut_child and combine_trees.

cut_child removes a node from its parent, making it the root of a new tree. If the parent is unmarked, it is marked. If the parent is marked, cut_child is performed on
it.

n O(k)
k n O(n)

n O( )n2
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An example of a Fibonacci

heap. The blue nodes are

marked.

combine_trees roots of the same degree are combined into one tree by making the root with larger key the child of the other root. This is
continued until all trees have different degrees.

These basic operations are combined to create the priority queue operations:

Insert: Add the new node as its own tree.
Find-min: Return the node which the minimum pointer is pointing to.
Decrease-key: Decrease the key of the appropriate node. If its key is now smaller than the key of its parent, perform a cut_child operation
on it. (This may cause a cascade of cut_childs.)
Delete-min: Perform a cut_child on the children of the root with minimum key, then delete that root. Perform a combine_trees operation to
reduce the number of trees. Then search through the roots for the new minimum and update the minimum pointer.

Let the potential function be , where  is the number of trees in the heap, and  is the number of marked nodes. Using this, the

amortized time of the above operations can be determined.

Insert: Adding a new node as its own tree takes constant time, and increases the potential by one. Therefore, the amortized time for this operation is constant ( ).

Find-min: Returning the node pointed to takes constant time, and has no effect on the potential. Therefore, the amortized time for this operation is constant ( ).

Decrease-key: A single cut_child operation can, if there are several marked nodes, cause an arbitrarily long cascade of cut_child operations, and so take a long time.
Let  be the number of cut_child operations done during a certain decrease-key operation. Each cut_child creates a new tree, and so  such operations will increase

the potential by . However, all but the first node to which cut_child was applied were marked, decreasing the number of marked nodes by . The parent of the
last node cut_child was applied to was not marked, and now will be, increasing the number of marked nodes by one. In total, the number of marked nodes has
decreased by . This means the potential has decreased by . In total, the potential has changed by . Since  cut_child

operations take , as each individually takes constant time, the amortized time for this operation is .

Delete-min: Let  be the degree of the root with minimum key. It can be shown that . The first phase of this operation involves  cut_child

operations, which take  time and increase the potential by . Therefore, the amortized time for the first phase is . The second phase of this

operation involves a single combine_trees operation, which takes time proportional to the number of trees. It can be shown that the number of trees at the beginning of

the delete-min operation is , and so at the beginning of the second phase, the number of trees is . Therefore, the

combine_trees operation takes  time. At the end of the combine_trees operation, there are again  trees, and so the potential decreases by

. Therefore, the amortized time for the second phase is . The third phase invloves searching through the

 trees for the new minimum, and so takes  time and has no effect on the potential. This shows that the total amortized time for the delete-min

operation is .

Using a Fibonacci heap as the priority queue in Dijkstra's algorithm gives the best known strongly polynomial running time of , where  is the number of

nodes in the network, and  is the number of arcs.

Applications

Priority Queues/Heaps

ϕ = t + 2m t m

O(1)

O(1)

k k
k k − 1

k − 2 2k − 4 k − 2k + 4 = −k + 4 k
O(k) O(k − k + 4) = O(1)

m m = O(log n) m
O(m) m O(m) = O(log n)

O(log n) O(m + log n) = O(m)
O(m) O(log n)
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Heaps (https://en.wikipedia.org/wiki/Heap_(data_structure)) are the preferred way to implement priority queues (https://en.wikipedia.org/wiki/Priority_queue)

because of their good amortized running times. For comparison, the naive implementation of a priority queue has  worst-case time for insert and decrease-

key, but  for find-min, and delete-min.

Binary Heaps (https://en.wikipedia.org/wiki/Binary_heap) have  amortized time for find-min, and  amortized time for all other operations (insert,

delete-min, decrease-key). They are sometimes preferred over Fibonacci heaps because of their simplicity.

Fibonacci Heaps (https://en.wikipedia.org/wiki/Fibonacci_heap) have  amortized time for all operations except delete which takes  amortized

time. This is the best so far with exact heaps.

Soft Heaps (https://en.wikipedia.org/wiki/Soft_heap) have  amortized time for all operations, but "corrupt" a fraction of the priorities inserted. Specifically,

for a choosen  between 0 and , the soft heap corrupts  priorities, where  is the number of elements inserted so far.

Binary Search Trees (https://en.wikipedia.org/wiki/Binary_search_tree) have many different implementations, most of which have  amortized time for search,

insertions, and deletions. These are another possible way to implement priority queues.

Disjoint Sets (https://en.wikipedia.org/wiki/Disjoint-set_data_structure) (also known as Union Find), when implemented efficiently, has  amortized time for

union and find operations, where  is the inverse of the Ackermann function (https://en.wikipedia.org/wiki/Ackermann_function).
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Abstract

A coloring of the vertices of a graph  is called a proper vertex coloring of  if no two adjacent vertices get the same color. The chromatic number of , denoted , is

the fewest number of colors that give a proper vertex coloring of . Finding  is an NP-hard problem. We consider two different integer linear programs to find .

The assignment linear program approach assigns colors to the vertices of  under the constraints of a proper coloring and then counts the number of colors used in total. The

set covering linear program instead minimizes the number of independent sets (that is, subsets of the vertices such that none of the vertices are adjacent to each other) that

cover the vertices of . We can then color each independent set a different color to form the proper coloring. This gives us the chromatic number of . We discuss the

benefits and downfalls of each program. In addition, we discuss the applications of these programs to solving a Sudoku puzzle, providing an alternative approach to methods

done in class previously.

Introduction to Graph Coloring

A graph is a set of vertices connected by edges. We can color the vertices of a graph  to form a vertex coloring of . A vertex coloring is considered a proper vertex

coloring when no two adjacent vertices are colored the same color. Here, we refer to a proper vertex coloring just as a proper coloring. The chromatic number of a graph ,

denoted  is the smallest number of colors needed to have a proper coloring.

G G G χ(G)
G χ(G) χ(G)

G

G G

G G
G

χ(G)
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The number of colors used greatly depends on the

labeling of the vertices in a greedy coloring.

There are several known bounds on the chromatic number. There is the trivial bound , where  is the number

of vertices in . We can lower this bound with a bound based off the independence number, , which is the size of

the largest independent set in . An independent set is a set of vertices such that none of the vertices in the set are

adjacent to each other. Using the independence number, . Brooks' theorem is another upper bound on the

chromatic number. In this case, we can bound the chromatic number by the maximum degree :  unless

 is a complete graph or an odd cycle, in which case .

The greedy coloring algorithm is an approach to try to find a proper coloring of a graph. Then, from the proper coloring,

we can get the number of colors used for that coloring. For a graph , label the vertices  and for each

vertex in order, color it with the lowest color available. Greedy coloring can be done in linear time, but unfortunately does

not often use the lowest number of colors possible. There is always an ordering of the vertices that will produce an optimal

coloring, but there are  different orderings of the vertices. Consider a complete bipartite graph with the perfect matching

edges removed. Since this is a bipartite graph, only two colors are needed to properly color it. However, there is a labeling

that produces a coloring with  colors. Thus, greedy coloring isn't the best method to try to find the chromatic number. In

fact, finding  is NP-hard. We compare two linear programs that find the chromatic number of a graph -- an assignment linear program and a set covering linear program.

Applications of Graph Coloring

Having programs that find the chromatic number is useful due to the applications of graph coloring. For example, consider the situation of assigning radio frequencies. We

cannot assign the same frequency to radio stations that are too close together, otherwise there would be interference. If we create a vertex for each radio station, and connect

two vertices if the corresponding radio stations are two close together. Then, a proper coloring of the graph would give an assignment of radio frequencies to the stations. The

chromatic number would be the smallest number of frequencies needed.

We can also consider a scenario when zookeepers are trying to put different animals into enclosures. Perhaps they are trying to minimize the number of enclosures needed due

to cost. A vertex is created for each animal, and two vertices are adjacent if the corresponding animals can not be in the same enclosure. A proper coloring is an assignment of

the animals to enclosures, and the chromatic number gives the smallest number of enclosures needed.

Resource allocation is also an application of graph coloring. We can create a vertex for each task that needs to be done and draw an edge between the two vertices if the two

tasks share a resource (and thus cannot be done simultaneously). A proper coloring of the task graph ensures that no two tasks that share a resource are done at the same time.

The chromatic number would give the most efficient way to perform the tasks simultaneously.

Graph coloring can also be used to create Sudoku puzzle solvers, which will be done later.

Assignment Linear Program

The assignment linear program assigns a color to every vertex and ensures that adjacent vertices are not assigned the same color. In minimizing the number of colors used, this

linear program finds the chromatic number for a graph.

χ(G) ≤ n n
G α(G)

G
χ(G) ≤ n

α(G)

Δ χ(G) ≤ Δ(G)
G χ(G) = Δ(G) + 1

G , , … ,v1 v2 vn

n!

n

2

χ(G)
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With , if vertex v is assigned color i and  otherwise, and  is

color i is used and  otherwise. The number H is the largest number of colors

possibly needed which would be the number of vertices for a particular graph.

The downfalls of this program is the exponentially many equivalent solutions as well as

there being no continuous relaxation to this program. Thus it remains an NP-hard problem.

Running this program on a selection of different graphs provides the following results:

Peterson Graph -- Run Time: 0.102745 s
70 Vertices Path Graph--Run Time: 0.606761 s
140 Vertices Path Graph--Run Time: 2.16679 s
200 Vertices Path Graph--Run Time: 7.1204 s
60 Vertices Crown Graph -- Run Time: 19.8884 s
Mycielski Graph of Order 6 -- Run Time: 338.305 s

As one can see, increasing the number of vertices and edges does increase the run time for graph, in comparison to similar structured graphs with less vertices, but having a lot

of vertices and edges does not inherently make the program run longer. The longest running graph has less vertices and edges than the 60 vertices crown graph but due to more

complicated structures of the graph itself it caused the program to take over 5 minutes to find the chromatic number versus 19s for the 60 vertices semi-complete bipartite

graph.

Set Covering Linear Program

The set covering linear program assigns a minimal independent set vertex covering of a graph. An independent set is a set of vertices that are not pairwise adjacent. Thus

searching for a minimal independent set vertex covering results in the chromatic number of the graph. By assigning each independent set a color, this results in a proper vertex

coloring since all vertices in the set are not adjacent and therefore no two adjacent vertices would be assigned the same color. Looking for the least amount of independent sets

to cover all the vertices thus results in the smallest number of colors needed.

The downfalls of this program are the exponential number of variables. For example, the Peterson graph

with 10 vertices and 15 edges has more than 50 independent sets. Finding all of the independent sets is also

not straightforward and could be room for error since the user has to come up with all the independent sets

of the graph and is not simply given them like they are with vertices and edges. Our original hope was to

compare the run times of the two programs but even in our simplest example (the Peterson graph) finding

all the independent sets proved challenging. Thus the set covering linear program offers another alternative

for finding the chromatic number of the graph but in actuality is not very practical.

Extension to a Sudoku Model

The first step in extending the assignment linear program to solving a Sudoku puzzle is to translate the Sudoku grid into a graph. We construct a vertex for every square in the

grid. We connect two vertices if and only if the corresponding squares on the Sudoku grid are in the same row, column, or subgrid. Here, for an easier calculation, we use a 4x4

Sudoku board. The graphs become large quite quickly as the size of the Sudoku grid increases. A 4x4 grid contains 16 vertices and 56 edges. A proper coloring with 4 colors of

= 1xv,i = 0xv,i = 1wi

= 0wi
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The labeling of the 4x4 Sudoku

grid.

The corresponding graph to the 4x4 Sudoku grid.

this graph would be a solution to the Sudoku puzzle. The next step in extending the

assignment linear program to solving this Sudoku puzzle is to be able to account for

the squares that are already filled in. These pre-filled squares correspond to pre-colored

vertices. In our program, we will need to account for these vertices. Then, having the

linear program find the coloring will be analogous to a solution to the puzzle.

Consider the 4x4 Sudoku puzzle. We label each square in the Sudoku grid as in the

image on the left. With each vertex being labelled as such, we can input the set of

edges into the assignment linear program as before. We also need to input the pre-filled

squares. We simply create a set that we fill with the pre-assignment of colors. Then, a

constraint is added to set  if vertex  gets color  in the pre-coloring. The

assignment linear program will then extend the pre-coloring to a full 4-coloring, which

corresponds to a solution.

Links to Code

The AMPL code for the assignment integer linear program and the Peterson, Path, Crown Graph and Mycielski Graph of Order 6 is located at:

https://github.com/duffme/graphcoloringLP/

The AMPL code for the extension of the assignment integer linear program to a Sudoku solver is located at:

https://github.com/rebrobin/sudokugraphcoloring/

Presentation

Our presentation slides can be found at:

https://github.com/rebrobin/presentation/blob/master/An%20Integer%20Linear%20Programming%20Approach%20to%20Graph%20Coloring.pdf
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Minimum Spanning Trees

A spanning tree of a graph  is defined to be a subgraph  that is a tree which spans every vertex in . Further, the edge set of a minimum spanning tree includes the edges
of minimal weight such that the definition of a spanning tree is satisfied.

The goal of Dijkstra's algorithm is to return a minimum spanning tree for any graph .

Outlining Dijkstra's Algorithm

Let  be a graph such that each , has some weight , and each  has weight . Setting the weight to infinity ensures that we
will not select a non-existing edge to be in our minimum spanning tree.

Input: A weighted, connected, undirected graph  whose edge weights are non-negative; a source vertex .

Output: A spanning tree  (also known as the "Dijkstra Tree") of , rooted at vertex  such that

G T G

G

G = (V , E) uv ∈ E w(uv) uv ∉ E w(uv) = ∞

G u ∈ V (G)

T G u
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1. The unique path from  to each vertex  in  is a shortest path from  to  in , and
2. The vertex labeling gives the distance from  to each vertex.

Dijkstra( , )[1]:

initialize the Dijkstra tree  as the given source vertex 
initialize the set of vertices  in  as 

write label 0 on vertex : 

while 
for each vertex 

let 

add  to 
for each edge , 

let 

if 
return Dijkstra tree  and its vertex labels

return Dijkstra tree  and its vertex labels

Interesting applications

Finding a Shortest Path Route for People with Mobility Impairments

Lack of ramps impose a restriction on these routes. Streets with particularly bumpy sidewalks, stairs, etc. are known to have higher weights than those with smoother

sidewalks and ramps, for example. Arellano, et. al.[2] takes the node of the tree to be the starting point of the person, and look for the shortest path to the destination such that
edge weights are minimized. They implement Dijkstra's algorithm to reduce the time and effort for mobility-impaired people in the city of Quito. In the results, we see a
comparison the average travel time generated by the algorithm to the actual average travel time to reach the destination using this generated path. This second average was
found by having 45 participants who fit the population of interest execute the routes given by the algorithm.

Route Times -- Application and Test Comparative[2]

Route Average Time (Algorithm) Average Time (Experimental)

Plaza Grande 08:47:00 09:15:00

Circulo Militar 04:26:00 04:23:00

San Francisco 04:21:00 03:51:00

For the Plaza Grande neighborhood, the algorithm underestimated how long it took to actually travel the given paths, however for the other two neighborhoods, we saw a
decrease in the actual average time it takes to travel the paths, with San Franciso's paths seeing the greatest difference.

u z ∈ V (G) T u z G

u

G u

T u

S T {u}
u t(u) = 0

S ≠ V (G)
v ∉ S

t(v) = t(z)minz∉S

v S

vz z ∉ S

t(z) = min{t(z), t(v) + w(vz)}
t(z) = ∞

T

T
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Vehicle Routing Using Oil Consumption Based Weights

By implementing an appropriate route-planning algorithm, drivers save time in their journey, reduce oil consumption, and avoid congestion. This will in turn improve overall

energy efficiency in a world that is becoming increasingly more energy consumptive. The algorithm as presented by Zhang, et. al.[3] bases its oil consumption weights (OCW)
on distance, speed, driving time, idling time, driving oil consumption, and idling oil consumption. Zhang, et. al. performs a simulation-based experiment on both a Dijkstra's
algorithm with distance-based weights, and on one with OCWs. Their results show that compared to the algorithm that only considers distance, accounting for oil consumption
reduces ones' travel time significantly compared to using just distance. Furthermore, the actual travel time using OCW much better aligns with the theoretical time to reach a
destination.

Simulation Results and Comparison[3]

Simulation*
Theoretical

time, s
Actual time, s (Distance-based

Dijkstra Algorithm)
Oil consumption (Distance-based

Dijkstra Algorithm)
Actual time, s (OCW-
Dijkstra Algorithm)

Oil consumption (OCW-
Dijkstra Algorithm)

1 16.80 2044.80 750.34 42.17 57.53

2 29.93 405.93 178.53 46.37 63.70

3 17.39 99.39 55.07 19.19 28.19

4 35.99 435.99 196.86 55.17 58.41

5 118.00 118.00 115.23 118.00 115.23

6 184.43 409.41 184.43 74.99 101.32

*Details on which source and destination nodes are used is given in detail in paper.

For simulation 5, we see that the theoretical and both actual times are equal. This is due to the idling time being zero seconds in this particular simulation. Otherwise, there is a
strict improvement from one algorithm to the other.

Github

In the GitHub repository, one can find the slide deck used to present this information.
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Email (mailto:angela.morrison@ucdenver.edu)
Twitter (https://twitter.com/AngieM2630)
LinkedIn (https://www.linkedin.com/in/angela-morrison-9a80006a/)

Little Bit About Me

Hello all! My name is Angela Morrison, and I am a fourth-year in the Ph.D. program at CU Denver. My hobbies include video games, rollerblading, bowling, and doodling.

My office is 4216 in the Student Commons building if you ever want to stop by and chat.

Education

1. Albion College, B.A. in Mathematics with minors in Computer Science and Economics
2. Michigan State University, M.S. in Industrial Mathematics

Programming Languages/Experience

COBOL
CICS
FORTRAN
Java
Matlab
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Python
R
SPSS
SQL

Fun Facts

My favorite Pokemon is Jolteon
I am the oldest of 3 siblings (which makes me the coolest)
I'm left-handed, but do some activities like batting and throwing right-handed
Back when I was in shape, I was a national qualifier for Division 3 Indoor and Outdoor Track Field (in the pentathlon and heptathlon respectively)
Teaching is one of my biggest passions
My go-to song for karaoke is "Without Me" by Eminem (I mean it sort of has to be since I'm from Michigan.)
I hate coffee

Professional Things

Projects

In the fall of 2020 for Linear Programming, I worked with Weston Grewe on Creating Fair Voting Districts. In this project, we use a clustering algorithm to design voting

districts that are easy to understand and minimize the distance a voter has to travel to a polling location.

In the spring of 2021 for Integer Programming, I worked with Weston Grewe on Using Trees to Get Into College. For this project, we used data from Massachusetts public

schools to develop a decision tree to understand the most important features that lead to a student enrolling in college directly out of high school.

In the summer of 2021 as part of a readings course, I started the process of exploring a possible relationship between the simplex method and network simplex method in

Exploring the Network Simplex Method.

In the fall of 2021 as part of the Topics in Optimization, I worked with Weston Grewe (I know, what a shocker!) on The Circuit Less Travelled: A Path of Gentrification

Through Denver Neighborhoods. In this project we looked at the circuit walks that get us from one clustering of Denver neighborhoods to another. The neighborhood clusters

were determined based on a k-means clustering of attributes that one can associate with gentrification.

For the spring of 2022, Weston Grewe and I (take that Connor and Zach!), as part of the Network Flows course, worked on the project A Wheelie Good Time: Safe Biking in

Denver.
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Anne Kreeck

From CU Denver Optimization Student Wiki

About Me

My name is Anne Kreeck and I am a first-year master's student at University of Colorado - Denver. I moved to Denver in August of 2024 following 7 years in Montana and

have found it to be quite the adventure living in such a big city!

Education

Montana State University: B.S. in Mathematics - Applied Mathematics Option

Projects

Spring 2025: Exploring the Blossom Algorithm, a look at the blossom algorithm for my final project in MATH 6404 - Graph Theory.
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Overview

Column generation is a useful method for solving linear programs with a large number of variables. Consider the cutting stock problem: Given rolls of a certain length and

demand for rolls of shorter lengths, in what way can we cut the larger roles to satisfy the demand while minimizing waste? As the number of desired shorter lengths increases,

the number of possible patterns exponentially increases. This makes the cutting stock problem a perfect candidate for column generation.

Instead of considering each possible pattern explicitly, we can ignore variables with a non-negative reduced cost. In this way, we can narrow our search to variables that have a

negative reduced cost, i.e. the variables that decrease the total waste. This is done by splitting the problem into two problems. The master problem is the original problem but

with a reduced number of variables. The subproblem (also known as the knapsack problem) finds the variables with a negative reduced cost for the master problem to consider.

Application

Problem Description

As mentioned in my personal page (http://math.ucdenver.edu/~sborgwardt/wiki/index.php/Alexa_desautels), I work at a sandwich shop called Stack Subs. The wheat bread

that we buy comes in loaves approximately 28" long and the possible sandwich sizes are 4", 6", and 8". We sell around 1200 sandwiches a week, of which 75 are 4" long, 625

are 6",long and 500 are 8" long. If we create a set of patterns to cut the whole loaves, what set will minimize the number of whole loaves cut?

First, let's write this problem in canonical form:

min∑
i=1

n

xi
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Here,  is the number of loaves cut in the  pattern,  is the number of  length sandwiches cut in pattern , and  is the number of each size of sandwich demanded by

the customers. This problem can be solved using AMPL.

AMPL Code

The following is the code for the master problem:

[1]

 set WIDTHS;                   # set of widths to be cut

param orders {WIDTHS} > 0;    # number of each width to be cut

param nPAT integer >= 0;      # number of patterns

set PATTERNS = 1..nPAT;       # set of patterns

param roll_width >= 0;   # size of uncut rolls

param nbr {WIDTHS,PATTERNS} integer >= 0;

   check {j in PATTERNS}: 

      sum {i in WIDTHS} i * nbr[i,j] <= roll_width;

                            # defn of patterns: nbr[i,j] = number

                            # of rolls of width i in pattern j

var Cut {PATTERNS} integer >= 0;   # rolls cut using each pattern

minimize Number:                   # minimize total raw rolls cut

   sum {j in PATTERNS} Cut[j];   

subject to Fill {i in WIDTHS}:

   sum {j in PATTERNS} nbr[i,j] * Cut[j] >= orders[i]; 

In this portion of the model, we are minimizing the number of loaves cut. This is done by first checking that the length cut away from the loaf for each pattern does not exceed

the loaf size. Then our objective is to minimize the number of loaves cut while making sure to keep up with the number of orders for each sandwich size.

Now we will look at the code for the subproblem:

[1]

 param price {WIDTHS} default 0.0;

var Use {WIDTHS} integer >= 0;

s.t. ≥ , ∀j = 1, … ,m∑
i=1

n

aijxi dj

≥ 0xi

xi ith aij j i dj
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minimize Reduced_Cost:  

   1 - sum {i in WIDTHS} price[i] * Use[i];

subject to Width_Limit:  

   sum {i in WIDTHS} i * Use[i] <= roll_width; 

Here we are finding patterns that have a negative reduced cost and eliminating those that don't.

The main code in the run file is:

[1]

 let nPAT := 0;

for {i in WIDTHS} {

   let nPAT := nPAT + 1;

   let nbr[i,nPAT] := floor (roll_width/i);

   let {i2 in WIDTHS: i2 <> i} nbr[i2,nPAT] := 0;

}

repeat {

   solve Cutting_Opt;

   let {i in WIDTHS} price[i] := Fill[i].dual;

   solve Pattern_Gen;

   if Reduced_Cost < -0.00001 then {

      let nPAT := nPAT + 1;

      let {i in WIDTHS} nbr[i,nPAT] := Use[i];

   }

   else break;

}

display nbr, Cut; 

The first loop initializes the first patterns to use. It does this by dividing the length of a full loaf by each sandwich size and creating a pattern with that number for that size and

0 for every other size.

In the next loop, we alternate solving the master problem and the subproblem. When no patterns have a reduced cost of less than -0.00001, the loop breaks and the results are

displayed.

Results

The patterns that waste the least amount of bread are shown in the following table, along with how many times they are used to satisfy the demand:
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Pattern Number Used

7 4" cuts 6

4 6" cuts 0

3 8" cuts 2

2 6" cuts, 2 8" cuts 247

1 4" cut, 4 6" cuts 33

As shown, there are 5 patterns but the vast majority of the patterns we need to cut is 2 4" sandwiches and 2 6" sandwiches.

I experimented using this cut at work and discovered that the loaves are not made of a uniform size. Some loaves were a bit longer and resulted in more waste and others were

just short enough to only be able to make 3 sandwiches. I wanted to know if I would get different results if I varied the length of the loaves by 1". When I ran the code for 29",

I had the same results. However, I recieved different results for 27". The following table displays my results for the 27" loaves:

Pattern Number Used

6 4" cuts 0

4 6" cuts 0

3 8" cuts 55

5 4" cuts, 1 6" cuts 0

3 6" cut, 1 8" cuts 183

1 4" cut, 1 6" cut, 2 8" cuts 76

Many of these patterns have changed because of the shorter length and we now have 6 patterns instead of 5.

Looking Forward

I began to wonder if it would be possible to include a range of sizes in one model. There are several ways:

First, you can change the length of the loaves to a random variable between 27 and 29. You would need to generate a new variable for every iteration once you have initialized

the patterns in the run code. Another way of including a range of sizes would be to create a set of sizes (27, 28, and 29) and introduce a supply limit. This way we must use

loaves of all three sizes, not just 28" which would be optimal.

References
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Education Macalester College (B.A.)

Birth date 2001

Birth place Boston, United States

Ari Holcombe Pomerance

From CU Denver Optimization Student Wiki

Hello! My name is Ari, and I'm a PhD student in the math department at University of Colorado Denver. My research interests include

graph theory, optimization, and linear programming.

Projects

For the Applied Graph Theory course in Spring 2025, I worked with Abigail Nix on a project on Graph Coloring Variants.

External links

Github (https://github.com/aripom)

LinkedIn (https://www.linkedin.com/in/ari-holcombe-pomerance-4b146217a/)

NYT Mini Crossword Leaderboard (https://www.nytimes.com/puzzles/leaderboards/invite/9560a017-4c64-4a2e-9e3c-6cf69200b5c3)
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Abstract

The problem of matching disjoint sets of reservoirs for use in a Pumped Hydro Energy Storage system can be modeled as a network flow problem. Specifically; a bipartite

network assignment problem.

Context

Energy storage is a key requirement for the transition to wind and solar-based energy economy and still in the early stages of integration. Pumped Hydro Storage (PHS) is the

world's most widely adopted and economical form of utility-scale energy storage so finding ways to expand and improve this technology is a worthwhile endeavor.
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Figure 4: Pumped Hydro

Storage

While old hydropower paradigms made use of existing river systems to generate power, a new paradigm of "closed-system" hydropower hopes to search for more

environmentally-friendly reservoir sites away from existing rivers. A closed-system PHS site requires (at least) two reservoirs with enough vertical elevation difference to

generate sufficient power, but as little horizontal distance as possible to minimize construction costs. Comprehensive searches for appropriate PHS sites can span thousands of

square kilometers and are computationally expensive, so efficient search methods are of great interest.

A notable previous attempt of this comprehensive search by Bin Lu et. al.[1] has split the process into two parts; First, they performed a search

for applicable reservoirs, and second, found PHS units from the reservoirs. The first part of their process has been open-sourced and made

available for public use, while the second part has been left private. This project hopes to give a method for replicating the second part of this

process, making use of the previous researchers’ reservoir model outputs.

Potential Formulations

In attempting this, an algorithmic formulation must be decided on that offers the best possible discovery of suitable PHS sites given the

outputs of the reservoir model. Several considerations can help us arrive at this best option:

Matchings vs. Other Subgraphs

It is possible that an economic configuration of more than two reservoirs in a single PHS system exists and should be studied further. However, for this method it is assumed

that any individual PHS system must consist of exactly one upper and one lower reservoir for several reasons: First, the formulation behind a search for arbitrarily large

connections of reservoirs would be very complex and possibly computationally intractable. Additionally, the popular mode of existing PHS systems is by and large that of

exactly one upper and one lower reservoir. Lastly, providing this assumption allows us to model the comprehensive search for PHS sites as a search for matchings in a graph,

or a certain set of arcs that are node-disjoint. Because matching problems are more well-known and offer standard algorithmic approaches for solving, they help narrow down

our search for a robust algorithmic approach.

Optimal vs. all Matchings

One possible goal of PHS siting could be to discover all potential matchings between reservoirs and let individual developers choose from them based on their own cost

metrics and construction planning. From an algorithmic standpoint, this is essentially just generating a fully connected graph where each node is a reservoir and each arc

represents a potential PHS system.

However, optimization of these matches would allow for a more useful and succinct summary of the potential for hydropower, saving developer time and money. No matter

which cost metrics are applied and by whom, optimization will undoubtedly be used to increase the chances of successful deployment at some point, so a flexible framework

using an optimization approach could be useful. Considering the large optimization task that is still left for stakeholders, taking care of this problem early, and with prudence

could increase the chances for successful project completion.

Bipartite vs. General Matching

A maximum horizontal distance threshold between areas of suitable elevation difference was one of the criteria used in the reservoir model to delineate areas for upper and

lower reservoirs. It is not obvious that this distance threshold should be used to limit reservoirs matches, though; a match between very distant reservoirs could be viable if the

system's energy output was high enough to cover the construction costs. However, the assumption being used in this project will be that construction costs for a PHS systemTypesetting math: 100%
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grow in a complex way as distance between reservoirs exceeds the distance threshold, disqualifying it from consideration (ie. a maximum distance threshold will be used to

limit reservoir matches).

An interesting consequence of applying a maximum distance threshold on the reservoirs from the reservoir model is that it justifies the use of a bipartite network as the main

structure for the formulation. A reservoir can be an "upper" reservoir for a PHS match within the maximum distance threshold if and only if it lies within the scouted "upper"

reservoir area. The same is true for "lower" reservoirs and "lower" scouted areas. Thus, matches between any reservoirs that are within the maximum distance threshold must

consist of reservoirs that belong to both sets. A simple transformation shows that a matching of two “upper” reservoirs can be relabeled as a match of an “upper” and “lower”

reservoir (and the same is true for a match of two "lower" reservoirs).

Modeling the problem with a bipartite network has the added benefit of accessing various straightforward network flow algorithms meant for such a structure, narrowing our

problem yet again. Non-bipartite matching, while a tempting method for discovering optimal, arbitrarily distant PHS sites, is not as easily solved by network flows (or any

method) due to complications arising from negative cycles[2].

Weighted Bipartite Matching vs. Maximum Bipartite Matching

One major decision to make in the formulation is whether it is most important to discover as many PHS sites as possible (for further filtering and decision-making), or as

productive (in terms of energy storage) of PHS sites as possible. Due to the high construction and environmental costs of even a single hydropower plant, this project makes

the assumption that a set of optimally productive sites is best.

The choice of quality over quantity corresponds to the choice between maximum-weight matching formulation (classically, the Assignment problem) and a maximum

matching formulation. Maximum-weight matchings are generally considered harder problems to solve because they cannot be reduced to max-flow algorithms like their

counterpart, and must take arc costs into consideration[3]. Choosing this more difficult option follows the application goals more closely.

Choosing the weight metric to use in this maximum weight matching problem comes down to choosing the single metric that best captures the productiveness of a PHS

system. The maximizing qualities of PHS systems are their energy storage/generation capacity and their minimizing qualities are construction costs. A generalized notion of

PHS site productiveness can be expressed as  where  is the volume of the upper reservoir,  is the head height of the upper reservoir,  is the total water-rock ratio

(a common measure of construction cost for dams) of the reservoir match, and  is the horizontal distance between reservoirs in the match. Each of these items has the

potential to vary with each reservoir match.

Balanced vs. Unbalanced Assignment

So far, the problem of finding PHS sites can be formulated as a weighted bipartite, or Assignment problem, for which several efficient algorithms exist to solve. For example,

the successive shortest paths algorithm and the Hungarian algorithm are both designed to solve this problem. However, these algorithms work off of the assumption that the

bipartite graph is balanced (both sets of nodes are equal in size), which will often not be the case for sets of upper and lower reservoirs.

One option for taking advantage of the bipartite assignment methods is to transform the output of the reservoir model into a balanced bipartite graph by adding a number of

artificial nodes needed to make the two sets of equal size. Then, for each of these artificial nodes, create an arc to every node in the other set with  weight (the  weight

ensuring the optimal solution will not consider their connections[4]). This transformation increases the input size of the problem, so methods specifically designed for solving

unbalanced assignement problems may be more desirable.
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Assignment Representation

The result of all our assumptions on PHS system finding leaves us with a formulation of the most general class of network flow problems, Minimum-Cost Flows. Luckily,

many methods are known for tackling Minimum-Cost Flows. Minimum-Cost Flows come with several additional assumptions not covered above, however, such as the need

for integral arc costs, directed arcs, all nodes supply/demands sum to , an uncapacitated path between every pair of nodes, and that costs are non-negative. None of these

assumptions come with major implications for our PHS search when accounted for; PHS weights can easily be rounded and rescaled to be integral while keeping their ranking.

PHS weights are non-negative and reservoir demands are  by default. Transforming a PHS matching into a directed arc does not change its interpretation. And finally, arcs

are uncapacitated by default.

Network Representation

To represent the outputs from the reservoir model as a fitting bipartite network, a separate algorithm must be designed to calculate accurate horizontal and vertical distances

between the closest points of all upper and lower reservoirs (this being a computationally expensive task in its own right). Reservoir volume and water-rock ratio are attributed

to the reservoirs by the reservoir model. From there, the cost metric stated above will be calculated and placed as weights on arcs.

An intermediate network will be a bipartite network with all upper reservoirs on one layer and all lower reservoirs on the other. It will implement the transformation from an

unbalanced to a balanced network if necessary.

For implementation with most common min-cost flow algorithms, artificial source node and sink nodes will be added to the network where arcs emanate from the source node

to all nodes in  and from all nodes in  to the sink node.

Solution methods

Not only do network flow algorithms provide efficient ways to solve the Maximum-Weight Bipartite Assignment problem, but they offer time complexity speedups due to

their specialized structure.

“Simple” algorithms give straightforward approaches to the problem:

1. Successive Shortest Paths runs in  time.

2. Hungarian algorithm runs in  time.

More complex algorithms can give actual polynomial time bounds on the algorithm, being useful for worst-case algorithmic planning:

3. Network Simplex Algorithm  time.

4. Cost Scaling runs in  time.

The implementation of any of these methods could provide researchers with the final leg of a comprehensive search for PHS systems. A thorough comparison of these

methods' benefits and pitfalls including their experimental complexities should be performed.
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Conclusion

It is shown here that an automated framework for finding PHS sites given the actual outputs of a previous researcher's model is possible. Once each of the two parts of the

process (reservoir finding & reservoir matching) are analyzed for their theoretical and empirical complexities, researchers will have a powerful tool for assessing this

technology's potential for utility-scale power.

Link to GitHub page

Assignment of Pumped Hydro Storage Reservoirs Presentation (https://github.com/qjoel6398/Assignment-of-Pumped-Hydro-Storage-

Reservoirs/blob/master/ProjectPresentation.pdf)
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Burnside's Lemma

From CU Denver Optimization Student Wiki

Welcome to Grace Truong's project page on Burnside's Lemma!

Abstract/Brief Summary

How would one count the number of colorings a graph would have? Some would consider just saying that there are  ways to color a graph where  is the number of colors

and  is the number of objects being colored (whether they are edges or vertices). While this may be true, how do we factor in the fact that some of these graph colorings

could be equivalent to each other? How would we count the number of colorings a graph has when considering equivalent classes?

To clearly answer this problem, we would first need to define a few things. Firstly, a group is a set  together with a compositions law satisfying the four properties: identity,

inverse, closure, and associativity. We are going to have all permutations of the graph be a group. Next, we will define that two colorings are equivalent to each other when

there exists a permutation, , from our group  such that  turns one coloring into another. In other words, one coloring assigns to  the same color that the other

coloring assigns to . This means that to count the number of colorings a graph has when considering permutations would mean we would have to count the equivalence

classes.

A good way to do that is to introduce another concept, orbits. Considering  as a group of permutations on a set  now, the orbit of an object  is . This

implies that the orbits partition  and therefore any coloring that is in the same orbit is an equivalence relation. So all we need to do now is count the number of orbits to get

the number of distinct colorings.

We can count the orbits by summing the number taking  to each element of its orbit but this would count the orbits  times so we would need to divide by  to count it

once. This can be tedious so we introduce a lemma to make the computation simpler.

Lemma: If  is a group of permutations of , and  are in the same orbit, then 

Using this lemma we can get Burnside's lemma Under the action of a group  of permutations of , the number of orbits of  is , where  is the number of

elements of  left fixed by the action of  on .

GitHub Link

[1] (https://github.com/Grace-Truong/Burnside-s-Lemma) Can find my presentation slides in the GitHub.

Bibliography

Combinatorial Mathematics. 1st ed., Cambridge University Press, 2020. (Section 4.2, pages 179-180)
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Contributions

The Catalan Numbers are Rachel Snyder's final project for the spring 2025 Graph Theory class. I, Rachel, am the only one who worked on this project.

Introduction

The Catalan Numbers are a sequence of numbers defined by the formula . This means that the first 10 Catalan Numbers are= ( )Cn
1

n+1
2n
n
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As can be seen, these numbers grow increasingly quickly. The Catalan numbers can also be represented through the recursion

Applications

The major reason why we like to use the Catalan Numbers is because they are able to count the objects of over 200 different patterns. This allows us to create bijections

between these patterns and apply properties that belong to one to the other. The following are a few of my favorite applications

Sequences

One group of objects that the Catalan numbers count is the number of sequences of length  containing only 1s and -1s in which for all  the sum of the first 

entries is nonnegative and the sum of all  elements is 0. Many people often define the Catalan Numbers using this specific example.

This sequence is also sometimes represented using parentheses instead of numbers. In this case, a 1 is equivalent to an open parenthesis, and a -1 is equivalent to a closed

parenthesis. Since we are exploring parentheses rather than numbers, instead of requiring nonnegative sums of the first elements, in this version of the sequence, when

examining the elements from the beginning, we always must have at least as many open parentheses as we have closed parentheses. By the end of the sequence, there must be

the same number of open parentheses as closed ones. We can see that these are equivalent as the sum of our sequence of numbers is equal to 0 if and only if we have the same

number of 1s and -1s in our sequence. Further, for the sum of the first elements to be nonnegative, we must always have at least as many 1s as we had -1s.

Dyck Paths

Counting Dyck Paths is another application of the Catalan Numbers. Dyck paths are the set of paths that travel between integer Cartesian coordinates from point  to

point , that do not cross under the line . Once again, a simple bijection can be made between Dyck paths and the previously discussed sequences. Every time

there is a 1 in the sequence of -1s and 1s, have the path travel from point  to point  and every time there is a -1 in the sequence of -1s and 1s, have the path

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

= 1
= 1
= 2
= 5
= 14
= 42
= 132
= 429
= 1430
= 4862

= + +. . . + =Cn+1 C0Cn C1Cn−1 CnC0 ∑
i=0

n

CkCn−k

2n p ≤ 2n p
2n

(0, 0)
(n, n) y = x

(i, j) (i, j + 1)
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travel from point  to point . We know that our sequence of 1s and -1s is of length  and sums to zero, hence the path travels from  to .

Further, since for all , the sum of the first  elements is non-negative, our path never goes further right than it has gone up, therefore never crossing under the line

.

Catalan Number Proof

Using this interpretation, we will show that these three representations are truly counted by the Catalan number formula, using the proof from the thesis Enumerations of -

Permutations Avoiding a Given -Permutation by Rachel Snyder. Given a non-Dyck path, , construct a new path  such that  and  are identical until the first time

that  crosses the line . Once  crosses under the line  for first time, every decision made for the path  is the opposite of the decision made for the path .

To specify, if the line for  goes to the right, the line for  goes up, and if the line for  goes up, the line for  goes to the right. This would therefore be a flip of the

second part of  over the line .  would therefore be a path that goes from  to .

It is clear by construction that every path from  to , must cross over the line . By reversing the way we constructed our  graph from , we

can create a non-Dyck path transversing from  to  given any path from  to . Thus, there is a bijection between paths along a graph from

 to  and non-Dyck paths from  to .

We can see that there are  such paths since each path has  steps,  of which must be to the right. Thus, there are

 Dyck paths, proving that the Catalan numbers are .

Rooted Binary Trees

The Catalan Numbers also count the number rooted binary trees with  internal nodes. An internal node is a non-leaf node. This example is particularly interesting in

comparison with the others as we can prove this relation using the recurrence form of the Catalan Numbers. As our base cases, the only tree with 0 internal nodes is a single

vertex, and the tree with 1 internal node would look like an upside-down v. In building a tree with  internal nodes, the root node would be internal and for all , we can

create unique subtrees with  internal nodes on the left side and  internal nodes on the right. Putting these three subtrees together, since we have already determined our

root node and the sides of our other two subtrees, we have

options for rooted binary trees with  internal nodes where  is the number of rooted binary trees with  internal nodes.

Triangulating Polygons

Our final example is much more geometric than the others. In this example,  counts the number of ways you can turn an -gon into  triangles by adding 

straight lines between the vertices of the -gon without crossing them. For , the shape is already a triangle, so there is one way to triangulate it. There are 2

ways to triangulate a quadrilateral, as you simply have to choose one of the pairs of nonadjacent vertices. For larger polygons, you can start by drawing a single line between

(i, j) (i + 1, j) 2n (0, 0) (n, n)
p ≤ 2n p

y = x

n
k D D′ D D′

D x = y D y = x D′ D
D D′ D D′

D y = x − 1 D′ (0, 0) (n + 1, n − 1)

(0, 0) (n + 1, n − 1) y = x D′ D
(0, 0) (n, n) (0, 0) (n + 1, n − 1)

(0, 0) (n + 1, n − 1) (0, 0) (n, n)

( ) = = ( )2n
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n
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two of the vertices. If these vertices have  vertices between them, this splits the polyogon into a -gon and an -gon. Thus, there are

ways to triangulate an -gon.

Github

The link for the github for this project is https://github.com/snyrache/Catalan-Numbers. It has my slides.
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I am currently a second-year graduate student at the University of Colorado Denver. My mathematical interests include Graph Theory, Combinatorics, and Optimization.

Denver is my hometown; I lived here my entire childhood and graduated from Denver Christian High School in 2011. I then attended Dordt College in Sioux Center, IA,

where I started out as an Engineering Major but quickly discovered that my primary interest was Mathematics. Critical thinking and problem solving are two of my strongest

passions. While studying Mathematics, I also developed an interest in programming and Computer Science. I aim to continue learning about the many ways computers can be

used to advance our mathematical abilities.

In 2015, I moved back to Denver to join Applied Mathematics graduate program at the University of Colorado Denver. I have learned a great amount as a member of this

program and hope to continue learning much more. Currently, I am taking an Integer Programming course in which my final project is to research various algorithms that can

be used to solve or approximate a classic combinatorial optimization problem known as the Knapsack Problem. More information about this project can be found on the

Knapsack Problem Algorithms page.
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Christina Ebben
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I’m working on my master's degree at the University of Colorado Denver. Studying math is a passion of mine, not purely for math’s
sake but also as a chance to help people, a chance to bring together the community and, yes, because math is awesome. My ongoing
studies in Optimization incorporate a diversity of disciplines and is an enterprise I am most excited for.

During the weekends I manage a large liquor store and it’s here that I get to explore another passion of mine: beer! Craft beer to be
exact. I relish the opportunity of being a semi-professional beer geek in a culture as rich and extensive in craft beer as Colorado’s.
When I’m not working or in class, I’m volunteering at my local library for a program called the Homework Center where I tutor kids in
grades 3-12. I also enjoy reading and writing fiction, as well as studying the beautiful language of Portuguese.

Here are my contributions to the Optimization Wiki:
Lagrangian Duality
Lagrange Multipliers
Linear Programming Methods for Radiation Therapy Treatment Planning
Coordinating Response to Fatal Accidents
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Abstract

Circuit Walks and Stable Sets

This project considered the Maximum Stable Set Problem (maximum size of a set of vertices in a graph such that no two are adjacent) and the improvement upon the Greedy

Algorithm that Ballard made in 2019. This algorithm finds all of the maximal stable sets, then selects a largest one.

The goal of the project is to prove whether or not the algorithm performs a circuit walk within the polyhedron. The feasible space is a clearly defined polyhedron and considers

a sequence of feasible solutions. These conditions would suggest such a project can be completed successfully.

The maximal stable sets are found by considering all permutations of vertices, then greedily creating a maximal stable set by adding vertices, in order, when they are not

adjacent to any other vertex in the current set. For a graph with n vertices, the feasible space is  which contains the incidence vectors corresponding to the power set

of the vertex set. It is clear that this algorithm considers a sequence of feasible solutions.

The Project

We have chosen the Maximum Stable Set Problem. Currently, no known efficient algorithm exists to find the optimal solution. This algorithm is a complete enumeration of the

feasible space.

{0, 1}n
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The maximal sets constructed by the algorithm are done using circuit walks. More specifically, they are sign-compatible edge walks. A complete description of all circuits is

only speculated at this time.

The Problem - Maximum Stable Set

Input: A graph G(V,E)

Output: The number of vertices in a maximum stable set. A stable set of vertices is a set of vertices where no two are adjacent.

The Greedy Algorithm - Ballard 2019

Select a vertex  and add it to a set . Take the induced subgraph , where  is the set of  and all vertices adjacent to 

Select a vertex  and add it to . Take the induced subgraph , where  is the set of  and all vertices adjacent to 

Select a vertex  and add it to . Take the induced subgraph , where  is the set of  and all vertices adjacent to 

Continue until the induced subgraph is the null graph. Then  is a maximal stable set.

Return to beginning and repeat for  until all permutations of vertices have been exhausted. Then  contains all maximal stable sets.

It follows that the Maximum Stable Set of  has size max 

The Polytope - The Convex Hull of the Feasible Space

 (binary variables)

s.t.  for every 

The Result - Circuit Walks are Used

We can see that circuit walks are used by this algorithm to construct the maximal sets. More specifically, we can show that they are edge walks using sign-compatible circuits.

First, since a single vertex is always a stable set, the 's are always circuits for any arbitrary graph.

Next, since the maximal sets are constructed by adding single vertices at a time to a given stable set, the only steps used are these circuits.

v1 S1 G − N1 N1 v1 v1

v2 S1 G − −N1 N2 N2 v2 v2

v3 S1 G − − −N1 N2 N3 N3 v3 v3

S1

, , . . . ,S2 S3 Sk { , , . . . , }S1 S2 Sk

G ( , , . . . , )S1 S2 Sk

max∑
v∈V

xv

+ ≤ 1xi xj {i, j} ∈ E

xi
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Now, we can see that an empty graph on  vertices will correspond to a polytope that is an -dimensional hypercube. Such a structure has the property that all the edges

correspond to the addition or removal of a single vertex from a given stable set. A graph that has edges will correspond to a subset of the empty graph's feasible space, and thus

it's corresponding polytope is a subset of the -dimensional hypercube. But, it still retains the property that the removal or addition of a single vertex (assuming both sets are

feasible) will be an edge of the polytope. This is how we can see that not only circuit walks are used, but they are, more specifically, edge walks.

Next, since each of these steps consists of a vector with a single non-zero entry which is one, it is clear that all the steps consist of sign-compatible circuits.

Thus, we can see that the algorithm constructs these maximal stable sets by completing sign-compatible edge walks.

The Speculation - A Complete Characterization of Circuits

At this time, we speculate that for any natural number , there exists a graph that contains the non-zero circuit  where . The slides on the

github repository show all circuits for graphs on three vertices.

Project Author

Michael Burgher

Github Repository

https://github.com/MichaelBurgher/Circuit_Walks_and_Stable_Sets.git
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Abstract

The matching problem is one of the most fundamental graph theory problems, whose application reach out of its discipline. Typically, the goal for a matching problem is to

connect as many vertices as possible while ensuring that no vertex is incident to more than one edge. The minimum weight maximal matching is a matching that contains the

maximal number of possible edges in any matching for a graph, while having the least total weight for the matching.

The purpose of this project is to study whether a classical algorithm can be interpreted as a circuit walk. We will be examining Bloom’s algorithm, and the polytope of the

minimum weight maximal matching problem and use these findings to determine if Bloom’s algorithm performs a circuit walk over the polyhedron. The algorithm involves

looking for vertices in your matching that start odd cycles in your graph. By contracting our odd cycles we will study different M-augmenting paths formed in our smaller

graph.

Introduction

In order to determine if Bloom's Algorithm performs a circuit walk, it is important to first understand what a circuit is, and what a circuit walk is. The formal definition for a

circuit is:

Definition: The set of circuits  of a polyhedron  consists of all  normalized to coprime integer

components for which  is support-minimal over 

C(A,B) P = {x ∈ : Ax = b,Bx ≤ d}R
n g ∈ ker(A)∖{0}

Bg {Bx : x ∈ ker(A)∖{0}}.
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An algorithm can complete a circuit walk by traveling from one vertex of the polyhedron to another along a path which is parallel to an edge of the polyhedron in each step.

One of the goals for this project is to determine whether or not Bloom's algorithm forms such a walk. The definition of this algorithm can be found in the Overview of the

Algorithm section.

Problem Formulation

Let  be a complete graph. Let  be an edge that connects vertex  to vertex  and let  be the cost of including the edge in our matching. Finally, let  be a maximal

matching in . Then, the problem formulation for the minimum weight maximal matching is:

The goal for this problem is to return the matching that is both maximal, but whose total edge weights or minimal. The objective function for this problem returns the total cost

of a maximal matching. The first set of constraints ensures that each vertex is incident to at most one edge in the matching. The second set of constraints ensures that there are

enough edges in the matching so that it will be maximal. The last set of constraints ensures that each edge will be binary, or, each edge is either entirely included in the

matching, or it is not included at all. These constraints prevent fractional amounts of edges from being included in the matching.

Constraint Matrices

The matrix  is the constraint matrix that is associated with the set of equality constraints in the problem formulation. For our minimum weight maximal matching problem,

 is a node-arc incidence matrix. The generalization for this matrix  on a complete graph of any size  can be seen in Figure 1. The other matrix in our polyhedron, , is

associated with the inequality constraints of the problem formulation. These constraints are the first set of constraints, which is the node-arc incidence matrix, and the last set

of constraints, which is the identity matrix. For a given , the matrix  can be seen in Figure 2.

We now show that our recursive definition of  is correct by using induction.

Base Case: . The node-arc incidence matrix for  is  which can be seen in Figure 3. The node-arc incidence matrix for  is . By inspection this

case is true.

G xi,j i j wi,j M
G

minimize: ⋅∑
i,j

xi,j wi,j

such that  ≤ 1   ∀i ∈ G∑
j

xi,j

= 2|M |   ∀i, j ∈ G∑
i,j

xi,j

     ∈ {0, 1}  ∀i, j ∈ Gxi,j

A
A A k B

k Bk

Ak

n = 3 K3 A3 K2 = [11A2 ]T
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Figure 1: Constr. Matrix A

Figure 2: Constraint Matrix B

Figure 3: Constraint Matrix B

Induction step: Assume this is true for . We show this is true for  by first proving a different claim.

Claim 1:  is an induced subgraph of .

Proof of Claim: Let  be a complete graph with  vertices. Let  be any induced subgraph. Let  be vertices of . Since  is a

complete graph, there exist an edge between  and  in . Thus there exist that same edge in the induced subgraph . Since  are

arbitrary this works for any pair of vertices. Thus, there is an edge between any pair of vertices in , which implies that  is a complete

graph.

This claim also gives us the corollary that every incidence matrix of  will have the incidence matrix of  as a submatrix. This result

can be found in the lower right block of our matrix. The 1 block and the 0 block of our matrix is produced by taking our  graph and

adding a vertex  . In order to make the new graph  we add edges from all other vertices to  . We then relabel the edges in such a way

that all edges connected to  are . This creates the upper row of our matrix.

The lower left identity block is exists since each new edge that is added to  for  has to be attached to  and some other vector . If we

label our vertices in a way such that  is connected to both  and , then we will get the identity matrix for our lower left block. Thus,

we have showed this formulation is true for  which completes the proof.

For any vector to be circuit, they must also for them to be support minimal over . Fortunately, the  matrix for our constraints has an

identity on the bottom  rows. Therefore, if we have a set of circuits that are linearly independent, they will be support minimal over . In

order to fully characterize the integral circuits, we only need to find a basis of the kernel of .

We now show that the number of integral circuits, up to scalar multiplicity, is . This argument is based on the rank nullity theorem. Since the circuits exist in the

kernel of , and we can show that the rank of our matrix is  then we know the number of vectors in our kernel and therefore the number of circuits. Since A is a non

square matrix the . the number of vertices, k will always be our minimum value. So we know our rank will be at most k, and what we will argue

is that it will be k exactly. The first k-1 column vectors are linearly independent because that is just a 1 vector on top of the identity matrix. The kth column will also be

linearly independent. This is because it will always be of the form , but the only way to may the first coordinate a 0 and the second and third coordinate both be

nonzero would be to subtract  and . But that would make the second component a 1 and the third component a -1 which will not be of the form of . Thus

that kth vector will be linearly independent. So our rank is exactly k which makes our nullspace have dimension . Thus there are  circuits since for our

formulation every vector in the kernel is a circuit.

Characterization of Circuits

Since the constraint matrices for our problem have been established, we will use them to find the circuits for our problem. As previously mentioned, in order for a vector to be

a circuit, the vector  must exist in the kernel of  and be support minimal over . Due to the structure of , if we find a basis for the kernel of , we will find the

circuits for our problem. For any complete graph of size , there will be a basis with  vectors of the form  that exist in the kernel of .

3 ≤ k ≤ n − 1 k = n
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Figure 4: Constraint Matrix B

The remaining vectors in this basis follow a similar pattern. These remaining vectors can be seen in Figure 4.

What remains to be shown is that the characterization of circuits given in Figure 4 actually exists in the kernel of . For the sake of brevity,

we only show that the first  vectors in this characterization exist in the kernel of . The first  entries for each of the 

vectors will contain exactly 2 non-zero entries, one that is +1, and a one that is -1. Thus, for these  vectors, the product of each of these

vectors and the first row of  will be zero. For the next row of the matrix , the only non-zero entries that exist are in the next 

entries, and in the first entry of the row. The next  entries for each of the first  vectors  in our characterization will contain two

non-zero values, one that is +1, and one that is -1. Additionally, the first entry of each of these vectors is zero, so, for these rows of , the

product of  and  will be zero. In the remaining rows of , for any of the vectors  in the first  vectors in our characterization,

 where  is associated with the  vector in our characterization. The reason that

the entries  and  are the only non-zero values in  for these rows of  is that these are the only non-zero values that

occur in the same index for both of these rows of  and . In these cases,  and . Thus, for the remaining rows, the sum of the entries for  will be

zero. Therefore, each of the first  vectors in our characterization exist in the kernel of , and hence, are circuits of our problem.

Overview of Algorithm

We will be looking at two main algorithms. One is the Maximal Weight Matching Algorithm by Lovasz and Plummer. This will be the overarching algorithm that will find us

feasible solutions to our problem. The other algorithm will be the Blossom Algorithm by Jack Edmonds. This algorithm is going to be a subroutine of our Maximal Weight

Matching Algorithm. We will be focusing on determining if the Blossom Algorithm performs a circuit walk.

For Lovasz’s and Plummer’s algorithm we are going to start with a general graph with weighted edges. If that graph has an odd number of vertices we are going to add an

isolated vertex so that our graph will have an even number of vertices. This will help us in making a perfect matching. The next step in our algorithm is to connect all non-

adjacent vertices with an edge of weight zero. During this process it is important to not add any additional weight to our graph otherwise we would end up changing our initial

problem. We then extend all of our matchings to perfect matchings. This is possible because we have an even number of vertices. We then replace all of our positive weights

with there negative weight. This turns the problem into a minimum weight perfect matching problem. We then run our Blossom algorithm as a subroutine.

The Blossom Algorithm is an algorithm that involves contracting down cycles to find a M-augmenting path in our graph. We call a vertex exposed if no edge in our matching

is adjacent to that vertex. The algorithm starts at an exposed vertex and then traverses along the graph. Let's label our exposed vertex as an outer vertex “o”. The algorithm will

then alternate between labeling each vertex as an outer vertex or an inner vertex. The algorithm continues along our graph until two vertices are adjacent and both labeled with

as an outer vertex as can be seen in the figure below. If this happens, we have an odd cycle. Let's call this odd cycle a blossom. The algorithm will the contract our blossom and

then repeat the above process. Once all blossoms have been contract, the algorithm check to see if there exist an M-augmenting path in the new contracted graph. If there exist

no M-augmenting path in the new graph, then the algorithm has found a maximum matching.

Ak

k − 3 Ak k − 1 k − 3
k − 3

Ak Ak k − 2
k − 2 k − 3 v

Ak

Ak v Ak v k − 3
v = [0 ⋯ 0, 1 ⋅ , 0 ⋯ 0, 1 ⋅ , 0 ⋯ 0]Ak vk+i vi i i − 1
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Figure 5: Matching after

applying Circuit

Figure 6: Matching after

applying Circuit

Circuit Walks

Now that we have established what the circuits for our formulation are, and how the algorithm which we are using on our problem actually works, we move into determining

whether our algorithm performs a circuit walk on our polyhedra. Let's analyze what we know step by step. The vertices of our polyhedra are maximal matchings by our

formulation of the matching polytope. Our algorithm takes a matching and preforms M-alternating paths to get rid of any M-augmenting path. Once we have no M-augmenting

path in our graph, we have found a maximal matching. Since we are working on a complete graph our algorithm will take us from a maximal matching of size M to another

maximal matching of size M. If we apply our circuit to a specific vertex we will go from one maximal matching (vertex) to another maximal matching (vertex). Thus, our

algorithm will have completed a circuit walk.

Let's look at a specific example. If we take , then our matrix  can be seen in Figure 5. The circuits are of our matrix are seen in Figure

6. Let's analyze . We start with a matching corresponded to the -1's in our circuits. We then remove those edges from our maximal

matching and add the edges corresponding to a 1. This gives us a new maximal matching. (Figures 7 and 8) Notice that in our circuits the

number of 1's and -1's are exactly the same. This is because for every edge we remove in our matching we must add in the same number of

edges back if we are to move from a maximal matching of size M to another maximal matching of size M. So, we have moved in a circuit

direction from one maximal matching (vertex) to another maximal matching (vertex). This is the definition of a circuit walk. It if important to

note that the -1's in our circuit won't necessarily be a maximal matching, but they equivalent to the edges that are removed during any step in

a circuit walk.

References And Powerpoint

You can access the powerpoint of our presentation here:

https://github.com/toadtoad44/Matching-Powerpoint/blob/main/The%20Circuits%20of%20Matchings%20(2).pptx

Steffen Borgwardt, Chase Viss. A polyhedral model for enumeration and optimization over the set of circuits. 2019, arXiv:1811.00444.
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Figure 7: Original Matching

Figure 8: Matching after

applying Circuit

Lovász, László, and Michael D. Plummer. Matching Theory, North-Holland, Amsterdam, 1986, pp. 357–382.

West, Douglas B. Graph Theory: Introduction to, Second Edition. Prentice Hall, 2001.
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Abstract

Circut Analysis of the Maximum Clique Problem. I am analyzing the greedy algorithm on the polytope of the maximum clique problem. The maximum clique problem is the

problem of trying to find the maximum clique, or complete subgraph, of any given graph. In the greedy algorithm, we move from a set of vertices of the graph that form a

clique and add any other vertex that maintains the set forming a clique. It is well known that the polytope for the maximal clique problem is defined by it's vertices which are

the incidence vectors of all cliques that appear in the graph. Combining what we know about the greedy algorithm and the V representation of the polytope it is clear that the

greedy algorithm walks between vertices in the polytope, what this project aims to answer is if this walk amongst vertices is a circuit walk of the polytope.

Background

Maximum Cliques

In graph theory, a clique for a graph  is a subset of vertices of the graph that are all connected, or otherwise that that collection of vertices form a complete graph. It is

standard to assume that a singleton point is a clique. For example, the graph below has many cliques including the set of vertices:  and more. For a graph 

a clique can be represented as an incidence or  vector that indicates if each vector is in the clique. For example the clique  will be represented as the incidence vector

G
456, 12, 345, 7 G
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. A maximum clique is the largest possible clique that is in any given graph, the size of the maximum clique of a graph  is often represented as .

For the graph above the maximum clique can be seen to be  or the incidence vector , so the graph has . The maximum clique

problem is the process of finding the maximum clique in a graph. However this problem is know to be NP-complete. Just the process of checking is a graph has a clique larger

than some given size is NP-complete.

A sample graph G

Polytope of the maximum clique problem

The problem of finding the maximum clique is a linear optimization problem and therefore the feasible set forms a polytope. The LP representation of the maximum clique

problem is

subject to

Which gives the H representation. The set of incidence vectors for all cliques will form the V representation of the polytope of the maximum clique problem.

An iterative algorithm for the maximum clique problem

This project looks at the greedy algorithm on the graph. This algorithm does not guarantee the maximum clique but it will find a maximal clique. The greedy algorithm starts

with any vertex of the graph. And then adds the first vertex it can while maintaining the set forming a clique. This is repeated until no new vertices can be added. Using the

same graph as above we can start the greedy algorithm with vertex  or at the incidence vector . We then look at vertex  which is connected to

everything currently collected so it is added. We now have the set  or the incidence vector . We then look at vertex  which is connected to

everything currently collected so it is added. We now have the set  or the incidence vector . However now when we look at the rest of the vertices

of the graph none of them are connected to all of the collected vertices and the algorithm then ends. In this example, the algorithm finds a maximal clique of  but recall

this is not the maximum clique of the graph.

[0, 0, 0, 1, 1, 1, 0] G ω(G)
4, 5, 6, 7 [0, 0, 0, 1, 1, 1, 1] ω(G) = 4

max∑v∈V vi

+ ≤ 1, ∀(i, j) ∉ Evi vj

∈ {0, 1}∀ivi

1 [1, 0, 0, 0, 0, 0, 0] 2
1, 2 [1, 1, 0, 0, 0, 0, 0] 3
1, 2, 3 [1, 1, 1, 0, 0, 0, 0]

1, 2, 3
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The greedy algorithm over the polyhedron

We have established that at the general th step in the greedy algorithm results in a clique in the graph, and that the vertices of the polyhedron are the cliques in the graph and

thus at the th step in the greedy algorithm we are at a vertex of the polyhedron. We now want to show that these vertices of the polyhedron are adjacent in the polyhedron.

Before we show this we establish the following notation. Assume we have a graph  with  vertices. Assume the greedy algorithm returns a maximal clique of size , label

this first  vertices in the order they were chosen and the remainder randomly to get the vertices . We will be calling an incidence vector 

where it has the first  components being a 1 and the rest of the components being a 0. In general the th step of the greedy algorithm moves from the collection

 which has incidence vector  to  which has incidence vector .

To show that  and  are adjacent in the polytope we will use the fact that two vertices are adjacent if and only if their midpoint can be uniquely represented as a convex

combination of vertices in the polytope. Note that the midpoint of  and  is  which will give the incidence vector with the first  components being 1,

the  component being  and the rest being 0. This can be represented at the convex combination of the vertices as

. Assume for the sake of contradiction that there is some other convex combination

. Since this is a convex combination we know that  and . We also know that ’s are incidence vectors

and therefore all of their components are all 0 or 1. Since we know that  must be equal to 1 for all of its first i components and that means for each  such that

 the  component of  must be equal to 1. Similarly we know that the  components of the sum must come out to be 0 thus for each  such that

 the  component of  must be equal to 0. Thus of all vertices with non-zero coefficients only the ¬ component can change. Therefore the only

two possible vertices with non-zero coefficients are  and  therefore the combination is the same. 

This now gives us the conclusion that  and  are adjacent vertices in the polytope and therefore  is a circuit direction in the polytope. Since this was done

for an arbitrary step in the greedy algorithm this conclusion holds for each step in the greedy algorithm. Therefore the greedy algorithm a circuit walk in the polytope, and

more specifically an edge walk. Note that the circuit directions for each of these steps will have the form  where the 1 is in the  component.

Therefore the circuits directions walked are sign compatible.

Other circuits of the polytope

While this does give us many circuits in the polytope for the maximal clique problem this is not enough to characterize all circuits in the polytope. To do this we will be using

the LP formulation of the maximal clique problem which is listed below.

subject to

before finding other support minimal circuit directs we first note that there is no  matrix and therefore  and therefore we only need circuit directions to be

support minimal with respect to 

i

i
G n m

m , … , , , … ,v1 vm vm+1 vn wk

k i
{ , … , }v1 vi wi { , … , , }v1 vi vi+1 wi+1

wi wi+1
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2

w1 wi+1 i
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2
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1
2
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2
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2
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The graph of a small example to

justify other circuits existing

The polytope of the example

graph

Justification of other circuits existing

Before attempting to find and other circuit directions we want to confirm that there are definitively

other circuit directions. Take for example the graph on three vertices  with an edge

between  and  and no other edges as drawn to the left. The 3 dimensional image of the polytope

can be seen in the image to the right. Then the  matrix is

And the circuit directions are

. This clearly has other circuit directions that would not be

traversed by the greedy algorithm.

Proposal of an additional circuit characterization

For an underlying graph  with vertices  with corresponding incidence vectors  where the  component is 1 and the rest are 0. Note  is a

vertex in the polytope since all singleton sets are cliques. Further  is a circuit direction that can be traversed through the greedy algorithm. We propose that there is also a

circuit .

To justify this claim we first look at the support of  with respect to . For any arbitrary row of  we will look at four cases. For each of these cases this arbitrary row

of  will be called .

Case 1: The  and  indices of  are both 1. In this case we would have that  will come out to be

 where the 1 is in the  sum and the -1 is in the  sum.

Case 2: The  and  indices of  are both 0. In this case we would have that  will come out to be

.

Case 3: The  index is 1 and the  index is 0. In this case we would have that  will come out to be

 where the 1 is in the  sum.

Case 4: The  index is 0 and the  index is 1. In this case we would have that  will come out to be

 where the -1 is in the  sum.

Therefor the support of  is all rows of  that are the  or  row of the identity submatrix or that indicate a non-edge  or 

To show that the support is inclusion minimal we will try and remove a support and find that this would mean adding a separate support. If we try to remove a support that

comes from a non-edge . The first was we could remove this support is by removing , if we do that then when we would be looking at the support of  we

now have to add the row of  corresponding to the non-edge  which was not previously a support. The other way we could remove this support is by adding  and

then we would be looking at the support of  however this would add the  row of the identity submatrix of  to the support. The other support we
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could try and remove would be the support from the  row of the identity submatrix of . To would have to again remove , if we do that then when we would be looking

at the support of  we now have to add the row of  corresponding to the non-edge  which was not previously a support.

From this, it looks seems as though this is in fact support minimal and thus it would be a circuit direction.

Further work

The next step in this project would be to further characterize more circuits and work on verifying our next proposal that  where  is a clique in  and  is

disjoint from that clique. Which is a generalization of the previous proposal. It is further hypothesized that there is a further generalization of what is subtracted to give a full

characterization of the circuits but what that generalization might be has not yet been determined.

Github Repository

https://github.com/ANewman94/Circut-Analysis-of-the-Maximum-Clique-Problem

references

Korte, Bernhard, and Jens Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, 2018.

De Simone, Caterina, and Mosca, Raffaele. Stable set and clique polytopes of (P5,gem)-free graphs. Discrete Mathematics, Volume 307, Issue 22,2007,Pages 2661-2670,ISSN

0012-365X, https://doi.org/10.1016/j.disc.2007.01.010.
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Class Scheduling through Linear Programming

by Amber Rosacker

I worked on trying to create a very basic model for class scheduling using linear programming for teachers as my final project for Linear Programming, Fall 2019. The final

presentation slides can be found in the GitHub repository below.

Abstract

Class scheduling is a process that every school goes through every year. They have to determine which teacher, teaches what classes, and at what time with multiple

constraints to take into account. This is a huge undertaking for one individual, and it would be beneficial to have a linear program that could quickly do this process. Currently,

in my school, one administrator sends out a form that asks us to rank our top 5 classes we would like to teach from 1 to 5, 1 being the highest. It also asks us to state which

plan-periods we would like to have, and any other additional things we would like her to take into account when building the schedule. She then takes all this information and

determines the number of sections needed for each class based upon students’ schedules. She then builds a huge board using magnets that assign a teacher to all of their classes

and the corresponding time periods. This process takes her about a semester and is very time-consuming. The goal of my project is to create a very simple teacher scheduling

model that assigns 5 teachers to their 5 classes that must be taught during different times periods. A future goal, with a lot more work and knowledge, would be to make this

project something that could actually be utilized in the schedule-making process in schools.

AMPL Code for Model

Please see my code and data for this problem in the following GitHub repository.

https://github.com/ARosacker/Class-Scheduling-

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Amber_Rosacker
https://github.com/ARosacker/Class-Scheduling-


This repository includes the original code where a binary decision variable was used, the data file, and another code where linear programming is used for the decision variable

instead of binary. This second code was created to see if the program would still give a solution if the decision variable was no longer binary, and it did.

Solution

Below is the solution when the original program is run with the data file. You will see that each teacher is assigned to 5 classes during different time periods throughout the

day. It also made sure that every class was assigned, so each teacher is teaching a different class at different times.
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I then ran this program as a linear program and not a binary program, and this still assigned the same teacher to the same classes to teach but assigned them to different times

throughout the day. These results can be seen in my presentation slides below.

Extensions

A future goal of this project is to make it an integer program that can actually be utilized in the class scheduling process in schools. In order to make this happen there are

many more constraints that would need to be added to this model. Things to be added:

Create a number of sections for each course (not list out Algebra1a, Algebra1b, etc.)
Extend this to 15 teachers so one department can get a full schedule with the program
Only 3 different types of classes per teacher maximum
Only 4 maximum teachers per type of class (keeps PLCs small)
There needs to be one of each section for each course during different time periods (all Algebra 1’s can’t be 1st period)
Need to have one plan-period (no class) on an even class period, and the second plan-period on an odd class period.
And so many more...
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The author of this project is Drew Horton

Claws and Effect: Finding Strategies to Increase Pet Adoption

From CU Denver Optimization Student Wiki

Abstract

According to the American Society for the Prevention of Cruelty to Animals (ASPCA)

around 6.3 million animals enter shelters each year in the United States, and of those around

920,000 are euthanized. This number has decreased drastically from 2.6 million per year in

2011, and this decline in euthanization can be partially explained by an increase in the

percentage of animals adopted.

At the beginning of the ongoing covid-19 pandemic, shelters were seeing an immense

increase in pet adoption, so much so that some shelters and rescues were empty. While the

pandemic has been disastrous for numerous reasons, it has revealed valuable information on

adoption rates, such as which areas have the most demand for pets. We utilize this

information to help us distribute pets between facilities in such a way to better satisfy this

demand and ensure we are maximizing the amount of pets being placed in permanent

homes. We recommend policy makers consider incorporating this strategy for increasing

adoption through redistribution of pets into the The Pet Animal Care Facilities Act (PACFA)

Program, which is dedicated to protecting the well-being of pet animals in facilities

throughout Colorado.

Links to Code and Slides

The python code, data files, and final slide deck, can be accessed through GitHub here: https://github.com/drewhort/claws_and_effect
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Cleaning Parks for a Safer Future
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The Traveling Salesman Problem (TSP) is one of the most famous integer programming algorithm. The concept is simple, find the quickest/cheapest/shortest path to visit a

certain amount of locations. The solutions become far from simple, especially when the amount of locations increases to larger numbers. We plan to find that solution for a

very specific case. The city of Denver has a large amount of parks in which we could apply TSP algorithms to. Our goal is to set up routes for anyone who wants to, or has to,

clean the parks of Denver.
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Abstract

Parks are a place for communities to come together. In fact, several studies [1] have shown that a clean park can help to reduce the crime of the area in and around the park.

Our goal is to develop routes to clean parks in Denver. We will create these routes by solving a famous integer program called “The Traveling Salesmen Problem.” We plan to

implement Christofides’ algorithm to find a route for city workers and volunteers to visit and clean our parks in a quick, efficient manner. Cleaner parks will lead to safer

neighborhoods around the parks. Park locations and size are pulled from data sets provided on the Data to Policy website. Distances are calculated by using the driving

distances between individual parks.

Data

One of the challenges that our project faced was how to properly gather data. Our entire process revolved around that fact that the distance between parks had to be gathered.

The simple strategy of “as the crow flies” measured the geographical distance between two locations. Although there are several pieces of software that can find these values,

in reality, people use roads to travel from one location to another.
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Distances between two locations as it pertains to traveling by car is called the “taxi cab metric’. Since this is more applicable than the previous strategy of “as the crow flies”

this is the method that we built around our algorithm. The issue with choosing this method is that expensive software is required to find the distance between multiple

locations. Instead, we decided to use a brute force method to find these distances. We decided to use distances rather than driving time because of the variability of Denver

traffic.

There is data available on the Data to Policy website that has the locations of various parks in Colorado. The data was sorted to focus on the 50 largest parks in Denver. Then,

google maps was used iteratively to find the distance between each park in relation to the other 49 parks. This data was then entered into Python in order to solve the Traveling

Salesman Problem. A copy of said data can be found here: https://github.com/toadhkjl/CleanParks/blob/master/Park%20Distance%20IP.xlsm

The Integer Program and its Implementation

We are solving the travelling salesman problem to most efficiently travel between the parks. The integer program of this is shown below:

In this formulation,  represents the driving distance between the two parks in the edge,  represents whether or not we pick the edge, and  are all edges going out of

. This first constraint guarantees that we enter and exit every park. The second constraint guarantees that we don't have any subtours, that is multiple disjoint cycles

rather than a single cycle hitting every vertex. The third constraint is what makes this a binary program, we must either pick an edge between two parks or not.

For exact solutions we used a program called Sagemath. This allowed us to create a complete graph on a specified number of nodes, where the edge weight between two nodes

was the distance between the corresponding parks. Sagemath then has a specific command to solve travelling salesman problems

(G.traveling_salesman_problem(use_edge_labels = True)_. This uses Sagemath's built in mixed integer linear programming solver CPLEX to find the solution. We give an

example of the code below for 5 parks, and include the code for more parks at https://cocalc.com/share/7364b121-f9f1-4d5d-b82b-f837523a8171/finalCode.sagews?

viewer=share in Sagemath's online compiler or at https://github.com/toadhkjl/CleanParks/blob/master/finalCode(1).sagews as a file on Github.

G = graphs.CompleteGraph(5)

   G.set_edge_label(0,1,5.7)

   G.set_edge_label(0,2,4)

   G.set_edge_label(0,3,7.5)

   G.set_edge_label(0,4,8)

min  s.t. ∑
e∈E

cexe

= 2, ∀j ∈ V∑
i∈δ(j)

xi,j

≥ 2, ∀∅ ⊂ S ⊂ V∑
e∈δ(S)

xe

∈ {0, 1}, ∀e ∈ Exe

ce xe δ(S)
S ⊆ V
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   G.set_edge_label(1,2,7)

   G.set_edge_label(1,3,3.2)

   G.set_edge_label(1,4,6.4)

   G.set_edge_label(2,3,9.5)

   G.set_edge_label(2,5,3.1)

   G.set_edge_label(3,4,8.8)

TSP = G.traveling_salesman_problem(use_edge_labels = True)

TSP.show() 

We also did approximations using Christofides' algorithm. This C++ code was taken from Github https://github.com/sth144/christofides-algorithm-cpp. The code only ran for

integer coordinates, so we used these rather than driving times for the approximations. In particular we used the latitudes and longitudes multiplied by the appropriate power of

10. This however caused overflow when calculating distances, so the code had to be changed to take long integers, rather than regular integers. We include our slightly

modified code on Github at https://github.com/toadhkjl/CleanParks/blob/master/christofides-algorithm-cpp-master(1).zip which also includes the data files needed to run the

code with the coordinates of each park. We give an overview of how Christofides' algorithm works in the following section.

Christofides' Algorithm

Christofides' algorithm is a way of find a good tour of a graph when we are in a metric space. In particular it guarantees that the tour it generates is within 1.5 of the best tour

created by the travelling salesman problem. Note that our formulation, with driving distances, having a metric is an good assumption. There's a non-zero driving distance as

long as two parks aren't the same, driving distances are symmetric, and the triangle inequality should hold, that is if we wish to get from park a to c this is just as long as going

from a to park b and b to c. Now, assume that we have a complete graph G with weighted edges. The algorithm then takes the following steps

1.) Calculate a minimum spanning tree, T, of G.

2.) Find a minimum perfect matching on the odd degree vertices in T.

3.) Find an Eulerian tour of the resulting (possibly non-simple) graph with the edges of T and the perfect matching.

4.) If we repeat a vertex, say the tour goes from u to v to w, but v has already been reached in the Eulerian tour, simply skip v and go from u to w.

We know that there are an even number of odd degree vertices in T as a degree sum of any graph is even (two times the number of edges), which means that a perfect matching

actually exists. After this perfect matching has been found and combined with T, we have added one to the degree of each odd degree vertex, and changed no degrees of even

vertices. This means that every vertex in the graph no has even degree so an Eulerian tour can be found. Step 4 is where the fact that we have a metric comes into play. In

particular, the fact that the the triangle inequality holds makes sure that this skipping of vertices can only decrease the total weight.

This algorithm can run in polynomial times. Assume that we have n vertices. Step 1 can run in , using Prim's algorithm [2] . Step 2 can run in  using an

algorithm by Micali and Vazirani [3]. Step 3 can be done in  using Hierholzer's algorithm [4]. Finally step 4 can be done in  as there are at most a linear number

of repetitions. Thus the entire algorithm can be done in  time.

O( log n)n2
O( )n

5

2

O( )n2 O(n)

O( )n
5

2
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Figure 1: Shortest Path 9

Parks

Figure 2: Shortest Path 19

Parks

We now provide a proof that this algorithm produces a tour within 3/2 the length of the best tour, call this best value c. To do this, note that each iteration of step 4 does not

increase the total weight because of the triangle inequality. Therefore we prove that all Eulerian circuits created have weight at most 3/2 c. Now, if we remove a single edge

from the best tour, we get a tree, say T'. Now as T is minimum we know that the cost of T' is at least the cost of T. Say that the vertices of the shortest path are (in the order

they appear in the path) . Now assume that we wish to find some perfect matching on the vertices  where . Then

consider two matchings,  and ,  and , and so on, as well as  and ,  and  and so on. Then by the triangle inequality we know that if we sum these two

matchings it is less than or equal to c. Therefore we know that one matching is at most size c/2. Therefore we have an upper bound of the Eulerian circuit of 3c/2 and therefore

on the tour created.

Results

We ran the exact algorithm up to 30 parks. Due to the exponential nature of the problem, and how long the program took to run on 30 parks,

we used this as our cut off for the number of parks for the exact algorithm. We were using a relatively slow server for Sagemath, so this could

in theory be expanded to possibly to even 50 parks if we were to run the code on a better computer. We did however run Christofides'

algorithm for all 50 parks. This is a relatively fast algorithm, so the 50 parks ran almost instantly. It seems like any reasonable number of

parks could be run through this algorithm to get an approximation for the travelling salesman problem, due to short running time for 50 parks.

Christofides' algorithm could also be automated significantly more easily than actually solving the travelling salesman problem. This is

because our implementation uses the latitudes and longitudes which are included in the data set. This way we don't even have to find the

driving times for the parks, which was time consuming and would require expensive software. If the software was purchased to automatically

find the distances, this could still be used in Christofides' algorithm, and could provide an even better estimation of the best solution.

We summarize our results in the following table for multiples of 5 parks using both Christofides' algorithm and Sagemath for the true

solution, as well as the result from Christofides' algorithm for 50 parks.

Number of Parks True Solution (Miles) Christofides' Approximation (Miles) Ratio

5 24.3 24.3 1.00

10 38.3 43.4 1.13

15 60.9 69.3 1.14

20 65.1 76.7 1.18

25 71.8 72.8 1.01

30 77.4 86.7 1.12

50 N/A 103.4 N/A

We were at most 1.14 of the best tour, far below the theoretical limit of 1.5. Interestingly many of these tours were off from the best tour by a simple switch in the tour of some

parks, or a permutation of a few sets of a small number of parks. It would be interesting to use a heuristic on the tours created by Christofides' algorithm to test some

permutations of the parks to see if that could improve our bound. This would, in theory, improve our results, getting us closer to the exact value.

, , … ,v1 v2 vn , , … ,vi1
vi2

vin < < ⋯ <i1 i2 i2k

i1 i2 i3 i4 i2k i1 i2 i3

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:9_Parks.jpg
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:9_Parks.jpg
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:19_Parks.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:19_Parks.png


Figure 3: Shortest Path 24

Parks

Poster and Powerpoint Presentation

The poster that was presented at the Data 2 Policy symposium can be found here:

https://github.com/toadhkjl/CleanParks/blob/master/Park%20Poster%20Rev(1).pdf. A copy of the powerpoint used for our final presentation

can be found here: https://github.com/toadhkjl/CleanParks/blob/master/Final%20Integer%20Program%20PPTN.pptx

Possible Future Improvements

One possible improvement would be to allow subtours within the program. With the length of the tours for even 10 parks, it does not make

sense for a singular crew to visit all of these parks. With subtours we could break up the parks into different sections so that different crews,

or the same crew over multiple days, could visit a reasonable number of park, to give them a proper cleaning. This could particularly come into play with volunteer groups. It

would allow us to split up the groups to most efficiently clean the parks.
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This project is a collaborative effort between Alexander Semyonov, Orlando Gonzalez and Jacob Dunham. The project was to be completed as an assignment for Steffen Borgwardt's

Linear Programming class at the University of Colorado Denver. Our project was presented at The University of Colorado Denver's Fall 2023 Data to Policy symposium, winning best in

data. Each contributor's page is linked above.

Abstract

In this project we will attempt to find an optimal clustering of the neighborhoods of Denver into a given number of groups based on various features of the neighborhoods. Specific

features of interest include: average rent, average income, acres of park per 100 residents, percentage of population that spend more than 30% on rent, total jobs, and total housing units.

Each neighborhood will be represented as a vector of these neighborhood features and we will utilize the K-Means algorithm to find an approximate optimal clustering. Additionally, we

will formulate a linear program to solve this clustering problem and compare the clusterings generated by each method. Once we have identified a satisfactory clustering of

neighborhoods, we will analyze the characteristics and policies of neighborhoods in the same clusters in order to find commonalities. We can then determine the needs of certain groups of

neighborhoods relative to other groups. If there are large discrepancies between groups in certain categories we can make policy recommendations targeted to those specific

neighborhoods which are disproportionately in need of resources. We will also do an analysis of policies in place for clusters of neighborhoods which are considered to have fair access to

many desirable resources, and determine if similar policies may work for clusters of neighborhoods which have less access to these resources. With this clustering method, we can more

easily compare and contrast policies that do and do not work for groups of neighborhoods, and in turn make more targeted policy suggestions.

GitHub

Link to project GitHub: https://github.com/asems99/Clustering-Neighborhoods-to-Identify-Policy-Needs-Policy-Needs/tree/main
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The GitHub contains the full Python code for the constrained K Means mode (this file is called LP Neighborhood Project Code), there is also a PDF of this file which displays all of the

code and plots. Additionally, the GitHub contains the AMPL model formulation code (the file is named Model Formulation. mod) as well as all of the data used in the model, the

presentation slides for the linear programming course, and the results of the model. If anyone should have any questions about the project, please contact any one of the collaborators,

whose contact information can be found on their personal wiki pages.

A Brief Discussion of the Constrained K Means Algorithm

The algorithm we developed to try and find an optimal constrained clustering functions very similarly to the standard K Means algorithm (sometimes called Lloyd's algorithm) in the

sense that it alternates between an assignment step and a cluster center update step. In order to use our algorithm, the specific number of clusters must be known beforehand and the cluster

centers are initialized via the standard K Means algorithm (the hope is that this would help prevent particularly problematic initializations). During the assignment step of the algorithm,

we use our current cluster centers (or our initialized clusters for first iteration) to assign the neighborhoods to the cluster whose center it is closest to by solving the following Linear

Program (note: c_ij is given by the 2-Norm distance between neighborhood i and cluster center j):



The LP that is solved during the "Assignment" step of our algorithm
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geographic results

Upon solving this LP, we find our clustering of neighborhoods and now want to update these centers, we do this by computing the centroid of each cluster which is simply the arithmetic

mean of all points in the clusters. These centroids become our new cluster centers and we now recompute our costs (2-Norm distance between neighborhoods and new cluster centers) and

return back to the assignment step. We alternate between these two steps until our objective function in the LP formulation above stops decreasing (which typically occurs after 3 or 4

iterations for this specific data).

This algorithm was created using Jupyter and AMPLPy and the .ipynb code (alongside a PDF preview of this code )file can be found using the GitHub link provided above.

Results

After running our constrained Kmeans algorithm we were able to develop clusters of alike neighborhoods within Denver. We then mapped the neighborhoods on GIS software in order to

develop a geographic representation of our final results. From these results we can determine geographically targeted policies to improve neighborhood clusters.
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Code for Knapsack Problem Algorithms

From CU Denver Optimization Student Wiki

This page contains a Java implementation of the dynamic programming algorithm used to solve an instance of the Knapsack Problem, an implementation of the Fully

Polynomial Time Approximation Scheme for the Knapsack Problem, and programs to generate or read in instances of the Knapsack Problem. To learn more, see Knapsack

Problem Algorithms.

Contents

1 KnapsackProblem.java
2 DynamicKnapsack.java
3 KnapsackApproximation.java
4 KnapsackGenerator.java
5 ParseKnapsackCSV.java
6 KnapsackTest.java

KnapsackProblem.java

The following class is used to represent an instance of the Knapsack Problem.

1. import java.io.BufferedWriter;

2. import java.io.File;

3. import java.io.FileWriter;

4. import java.io.PrintWriter;

5.  

6. public class KnapsackProblem {

7.  

8. private int n; //number of objects

9. private int[] p; //array of profits

10. private int[] s; //array of sizes

11. private int B; //capacity of knapsack

12.  

13. private boolean[] solution;  //optimal solution given by boolean array

14. private int Z;    //optimal objective value

15.  

16.  

17. //accessor methods

18. public int getN(){

19. return this.n;

20. }
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21. public int[] getProfits(){

22. return this.p;

23. }

24. public int[] getSizes(){

25. return this.s;

26. }

27. public int getCapacity(){

28. return this.B;

29. }

30. public int getZ(){

31. return this.Z;

32. }

33. public boolean[] getSolution(){

34. return this.solution;

35. }

36.  

37. //mutator methods

38. public void setZ(int Z){

39. this.Z = Z;

40. }

41. public void setSolution(boolean[] solution){

42. this.solution = solution;

43. }

44.  

45. //constructor override; assumes p and s have length n

46. public KnapsackProblem(int n, int p[], int s[], int B){

47. this.n = n;

48. this.p = p;

49. this.s = s;

50. this.B = B;

51. }

52.  

53. //solve problem using Dynamic Programming for Knapsack

54. public void solve(){

55. DynamicKnapsack.solve(this);

56. }

57.  

58. //write an lp file of the associated IP for CPLEX to solve

59. public void writeLP(){

60. PrintWriter out = null;

61. try{

62. File lp = new File("knapsack" + n + ".lp");

63.  

64. out = new PrintWriter(new BufferedWriter(new FileWriter(lp, false)));

65. } catch(Exception e){

66. e.getMessage();

67. System.exit(0);

68. }

69. out.println("Maximize");

70.  

71. //print objective

72. out.print(" obj: ");

73. out.print(p[0] + " x0");

74. for(int i=1; i<n; i++)

75. out.print(" + " + p[i] + " x" + i );

76. out.println();

77.  



78. //print constraint

79. out.println("Subject To");

80. out.print(" c1: " + s[0] + " x0");

81. for(int i=1; i<n; i++)

82. out.print(" + " + s[i] + " x" + i);

83. out.println(" <= " + B);

84.  

85. //domain restriction

86. out.println("Binaries");

87. for(int i=0; i<n; i++)

88. out.println(" x" + i);

89.  

90. out.println("End");

91. out.close();

92. System.out.println("LP file written. \n");

93. }//end method writeLP()

94.  

95. }//end class KnapsackProblem

DynamicKnapsack.java

Contains a static method used to solve an instance of KnapsackProblem using the dynamic programming algorithm.

1. //algorithm for solving KnapsackProblem in pseudo-polynomial time using Dynamic Programming for Knapsack

2. public class DynamicKnapsack {

3.  

4. public static void solve(KnapsackProblem kp){

5.  

6. //obtain problem information

7. int n = kp.getN();

8. int[] p = kp.getProfits();

9. int[] s = kp.getSizes();

10. int B = kp.getCapacity();

11.  

12. //calculate maximum possible profit nP

13. int P = 0;

14. for (int i = 0; i < n; i++){

15. if(p[i] >= P){

16. P = p[i];

17. }

18. }

19. int nP = n * P;

20.  

21. //initialize profit array (use only two arrays instead of n)

22. int[][] A = new int[2][nP + 1];

23.  

24. //initialize solution array

25. boolean[][][] S = new boolean[2][nP+1][n];

26.  

27. //empty solution

28. boolean[] zeros = new boolean[n];

29. for(int i=0; i<n; i++) zeros[i] = false;



30.  

31. //initialize first columns of A and S

32. A[0][0] = 0;

33. S[0][0] = zeros.clone();

34. for (int j = 1; j <= nP; j++){

35. if(j == p[0]){

36. A[0][j] = s[0];

37. S[0][j] = zeros.clone();

38. S[0][j][0] = true;

39. } else{

40. A[0][j] = 1000000000; //assumes sizes are not too large

41. S[0][j] = null;

42. }

43. }

44.  

45. A[1][0] = 0;

46. S[1][0] = zeros.clone();

47.  

48. //recursively generate A[1] and S[1] for subsequent subproblems

49. for(int i = 1; i < n; i++){

50. for (int j = 1; j <= nP; j++){

51. if( p[i] <= j){

52. if(s[i] + A[0][j - p[i]] < A[0][j]){

53. A[1][j] = s[i] + A[0][j - p[i]];

54. S[1][j] = S[0][j - p[i]].clone();

55. S[1][j][i] = true;

56. } else{

57. A[1][j] = A[0][j];

58. if(S[0][j]==null) S[1][j] = null;

59. else S[1][j] = S[0][j].clone();

60. }

61. } else{

62. A[1][j] = A[0][j];

63. if(S[0][j]==null) S[1][j] = null;

64. else S[1][j] = S[0][j].clone();

65. }

66. }//end for

67.  

68. //save A[1] and S[1] in A[0] and S[0]

69. A[0] = A[1].clone();

70. S[0] = S[1].clone();

71. }

72.  

73. //find optimal solution using final stage solutions

74. int Z = 0;

75. boolean[] solution = null;

76. for(int j=1; j <= nP; j++){

77. if(A[0][j] <= B){

78. Z = j;

79. solution = S[0][j];

80. }

81. }//end for

82.  

83. //record solution

84. kp.setZ(Z);

85. kp.setSolution(solution);

86.  



87. }//end method solve

88.  

89. }//end class DynamicKnapsack

KnapsackApproximation.java

Approximates an instance of the Knapsack Problem using FPTAS for Knapsack.

1. public class KnapsackApproximation {

2.  

3. private int n; //number of objects

4. private int[] p; //array of profits

5. private int[] s; //array of sizes

6. private int B; //capacity of knapsack

7. private double eps; //accuracy parameter

8.  

9. private boolean[] solution = null;  //optimal solution given by boolean array

10. private int Z = 0;        //optimal objective value

11.  

12.  

13. //accessor methods

14. public int getN(){

15. return this.n;

16. }

17. public int[] getProfits(){

18. return this.p;

19. }

20. public int[] getSizes(){

21. return this.s;

22. }

23. public int getCapacity(){

24. return this.B;

25. }

26. public int getZ(){

27. return this.Z;

28. }

29. public boolean[] getSolution(){

30. return this.solution;

31. }

32. public double getEps(){

33. return this.eps;

34. }

35.  

36.  

37. //constructor override; assumes p and s have length n

38. public KnapsackApproximation(int n, int p[], int s[], int B, double eps){

39. this.n = n;

40. this.p = p;

41. this.s = s;

42. this.B = B;

43. this.eps = eps;

44. }



45. //otherwise, construct object from existing KnapasckProblem

46. public KnapsackApproximation(KnapsackProblem kp, double eps){

47. this.n = kp.getN();

48. this.p = kp.getProfits().clone();

49. this.s = kp.getSizes().clone();

50. this.B = kp.getCapacity();

51. this.eps = eps;

52. }

53.  

54. //approximate solution using dynamic programming with scaled profits

55. public void solve(){

56. //calculate maximum profit P

57. int P = 0;

58. for (int i = 0; i < n; i++)

59. if(p[i] >= P) P = p[i];

60.  

61. //calculate scaling factor K

62. double K = (eps * P) / n;

63. if(K < 1){

64. System.out.println("Scaling factor K is too small: K=" + K + ". Need K > 1.");

65. return;

66. }else{

67. System.out.println("Scaling factor: K=" + K );

68.  

69. }

70.  

71. //scale down profits

72. int[] p_scaled = new int[n];

73. for(int i=0; i<n; i++)

74. p_scaled[i] = (int) (p[i] / K);

75.  

76. //solve scaled problem

77. KnapsackProblem kp_scaled = new KnapsackProblem(n, p_scaled, s, B);

78. kp_scaled.solve();

79.  

80. //obtain (1-eps)-approximate solution

81. solution = kp_scaled.getSolution();

82. Z = 0;

83. for(int i=0; i<n; i++)

84. if(solution[i]) Z = Z + p[i];

85.  

86. }//end method solve()

87.  

88. }//end class KnapsackApproximation

KnapsackGenerator.java

Randomly generates an instance of KnapsackProblem for a given problem size and maximum profit.

1. public class KnapsackGenerator {

2.  

3. //generate a knapsack problem with size n and max profit at most P



4. public static KnapsackProblem generateProblem(int n, int P){

5.  

6. //knapsack capacity is a function of n

7. int B = 80*n;

8.  

9. //sizes distributed between 20 and 400

10. int[] s = new int[n];

11. for(int i=0; i<n; i++)

12. s[i] = (int) ((Math.random()*380) + 20);

13.  

14. //profits will be somewhat correlated with sizes

15. int[] p = new int[n];

16. for(int i=0; i<n; i++)

17. p[i] = (int) (10 + ((Math.random()*P*s[i])/400));

18.  

19. return (new KnapsackProblem(n,p,s,B));

20. }//end method

21.  

22. }//end class KnapsackGenerator

ParseKnapsackCSV.java

Read in an instance of the Knapsack Problem from files found on http://www.diku.dk/~pisinger/codes.html.

1. import java.io.File;

2. import java.util.LinkedList;

3. import java.util.Scanner;

4.  

5. public class ParseKnapsackCSV{

6.  

7. //construct a KnapsackProblem object given a csv file from http://www.diku.dk/~pisinger/codes.html

8. public static KnapsackProblem buildKapnsack(String filename){

9.  

10. System.out.println("Loading knapsack...");

11.  

12. //temporarily store data from file in linked lists

13. LinkedList<Integer> profits = new LinkedList<Integer>();

14. LinkedList<Integer> sizes = new LinkedList<Integer>();

15.  

16. //problem parameters

17. int n=0;

18. int B=0;

19.  

20. //line counter

21. int i = 0;

22.  

23. //initialize scanner object for file

24. Scanner in = null;

25.         try {

26.             in = new Scanner(new File(filename));

27.         } catch (java.io.FileNotFoundException e) {

28.         System.out.println(e.getMessage());

http://www.diku.dk/~pisinger/codes.html


29.         System.exit(0);

30.         }

31.  

32.         //parse each line until first problem is finished (will encounter "-----")

33.         while (in.hasNext()){

34.         i++;

35.         String line = in.nextLine();

36.         if(i==1 || i==5) continue;

37.         if(line.equals("-----")) break;

38.  

39.         if(i==2){

40.         String[] values = line.split("\\s+");

41.         n = Integer.parseInt(values[1]);

42.         }else if(i==3){

43.         String[] values = line.split("\\s+");

44.         B = Integer.parseInt(values[1]);

45.         }else if(i==4){

46.         String[] values = line.split("\\s+");

47.         System.out.println("Optimal objective: " + values[1]);

48.         }else{

49.         String[] values = line.split(",");

50.         profits.add(Integer.parseInt(values[1]));

51.         sizes.add(Integer.parseInt(values[2]));

52.         }//end else

53.         }//end while

54.         in.close();

55.  

56.        //create profit and size arrays

57.        int[] p = new int[n];

58.        int[] s = new int[n];

59.        int j = 0;

60.  

61.        for(Integer l : profits){

62.        p[j] = l;

63.        j++;

64.        }      

65.        j=0;

66.        for(Integer l : sizes){

67.        s[j] = l;

68.        j++;

69.        }

70.  

71.        //create knapsack problem

72.        KnapsackProblem kp = new KnapsackProblem(n,p,s,B);

73.  

74.         System.out.println("Knapsack problem " + filename + " has been successfully uploaded.\n");

75. return kp;

76. }//end method buildNetwork

77.  

78. }//end class ParseKnapsackCSV

KnapsackTest.java

Test randomly generated KnapsackProblem or one generated from .csv file.



1. public class KnapsackTest {

2.  

3. public static void main(String[] args){

4.  

5. //use knapsack problem from csv file found on http://www.diku.dk/~pisinger/codes.html

6. // KnapsackProblem kp = ParseKnapsackCSV.buildKapnsack("knapPI_11_20_1000.csv");

7. // KnapsackProblem kp = ParseKnapsackCSV.buildKapnsack("knapPI_13_100_1000.csv");

8. // KnapsackProblem kp = ParseKnapsackCSV.buildKapnsack("knapPI_16_50_1000.csv");

9. // KnapsackProblem kp = ParseKnapsackCSV.buildKapnsack("knapPI_16_500_1000.csv");

10. // kp.writeLP();

11.  

12. // or randomly generate a problem of size n and max profit P using generateProblem(n, P);

13. KnapsackProblem kp = KnapsackGenerator.generateProblem(20, 10000);

14.  

15. int n = kp.getN();

16. // kp.writeLP();   //if desired, write lp file for CPLEX to solve associated integer program

17.  

18. //print problem details

19. System.out.println("Number of objects: " + n);

20. System.out.print("Profits: ");

21. for (int i=0; i<n; i++)

22. System.out.print(kp.getProfits()[i] + " ");

23. System.out.println();

24. System.out.print("Sizes: ");

25. for (int i=0; i<n; i++)

26. System.out.print(kp.getSizes()[i] + " ");

27. System.out.println("\n");

28.  

29. //dynamic knapsack algorithm 

30. System.out.println("Dynamic knapsack:");

31. kp.solve();

32. System.out.println("Optimal objective: " + kp.getZ());

33. System.out.println("Optimal solution: ");

34. for(int i=0; i<n; i++)

35. if( kp.getSolution()[i] )System.out.print(i + " ");

36. System.out.println("\n ");

37.  

38. //polynomial approximation algorithm

39. System.out.println("Approximation algorithm with epsilon=" + eps);

40. KnapsackApproximation ka = new KnapsackApproximation(kp, eps);

41. ka.solve();

42. System.out.println("Objective: " + ka.getZ());

43. System.out.println("Solution:");

44. for(int i=0; i<n; i++)

45. if(ka.getSolution() != null)  if( ka.getSolution()[i] ) System.out.print(i + " ");

46. System.out.println("\n ");

47.  

48. }//end main

49.  

50. }//end class KnapsackTest
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About me

Hello, my name is Colin Furey. I'm a student at CU Denver interested in mathematics and the application of linear programming to real world problems.

Education

I have a Bachelor of Arts in mathematics and history from CU Denver.

Projects

Fall 2023 - Optimizing car availability in the Denver metro area with Alana Saragosa and Paul Guidas. Our project is called Emissions and Equality: Colorado Car Share

Optimization

Spring 2024 - Investigating different implementations of Dijkstra's shortest path algorithm DijkstraHeapImplementation

Github

Github Containing Code Used for Dijkstra Heap Implementation Project (https://github.com/fureyc/Dijkstra-Project)
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Collin Powell

From CU Denver Optimization Student Wiki

I a Graduate student at CU Denver, I have a Bachelor's Degree in Mathematics and Physics from Oberlin College, and a Masters Degree in

Applied Mathematics from CU Boulder.

When not working on Mathematics, I enjoy spending time with my wife and two daughters as well as gaming.

Current Project: Vaccine Distribution to optimize herd immunity with Sandra Robles and Michael Burgher (Spring 2021).

Previous Project: Optimizing Highschool Graduation Rates with Zane Showalter-Castorena and Alyssa Newman
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Column Generation

From CU Denver Optimization Student Wiki

Column generation involves solving linear programs which contain too many variables to consider all possible combinations of solutions. The master problem is therefore

broken into subproblems solving for the reduced cost. The dual of the subproblem is then solved. As long as the reduced cost is negative, the pattern continues to iterate adding

new columns to our constraint matrix. Once our reduced cost is no longer negative, we have our optimal solution.

Contents

1 Deriving Reduced Cost
2 Cutting Stock Example

2.1 Dictionary of Variables
2.2 Problem
2.3 Solution

3 References

Deriving Reduced Cost

Primal

Dual

min xcT

s. t.  Ax = b

x ≥ 0

max ybT

s. t.  y ≤ cAT
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Decompose

Then 

Thus, we wish to 

 is our reduced cost.

Cutting Stock Example

Example by Kedric Daly, Northwestern University[1]

Dictionary of Variables

A = (B|N)

x = (   xB xN )T

c = (   cTB cTN )T

Ax = (B|N)(   xB xN )T

     = B + N = bxB xN

= b − NxB B−1 B−1 xN

min x = ( + )cT cT xB xN

     = +cTBxB cTNxN

     = ( b − N ) +cTB B−1 B−1 xN cT
N
xN

     = b + ( − N)cTBB
−1 cT

N
cTBB

−1 xN

− NcTN cTBB
−1

li

bi

P

aip

xp

r

length of  demand

demand for each piece of  length li

set of  all cutting patterns

number of  pieces of  length  cut in pattern pli

number of  times pattern p is cut

reduced cost
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Problem

We are given rolls of length  that are to be cut into lengths  with demand  We wish to

The dual is

Solution

Let 

So 

 rolls needed.

Solving the dual yields 

Our reduced cost is now 

L = 16m l = (3  6  7)T b = (25  20  18 .)T

min z

s. t.  

= ∑p xp

∑Ax ≥ b

≥ 0xi

max y

s. t.  

= ∑ πbT

π ≤ (1 . . .  1AT )T

≥ 0πi

          5 0 0

A =  0 2 0

          0 0 2

x = (5  10  9)T

z = ∑ = 5 + 10 + 9 = 24xi

π = (1/5   1/2   1/2)T

r = min(1 − )∑πiaip

s. t.  ≤ LlTaip

r = 1 − max((1/5) + (1/2) + (1/2) )a1p a2p a3p

s. t.  3 + 6 + 3p ≤ 16a1p a2p 7a
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Solving the linear program, we find 

So 

The reduced cost is negative. This column is therefore added to .

Now 

and 

 rolls needed.

Solving the dual yields 

Solving the linear program, we find 

So 

Our reduced cost is still negative, so this column is added to .

Now 

 or  rolls needed.

Solving the dual yields 

= (1  2  0ap )T

r = 1 − ((1/5)(1) + (1/2)(2) + (1/2)(0)) = −1/5 < 0

A

          5 0 0 1

A =  0 2 0 2

          0 0 2 0

x = (4  0  9  10)T

z = ∑ = 4 + 9 + 10 = 23xi

π = (1/5   2/5   1/2)T

r = 1 − max((1/5) + (2/5) + (1/2) )a1p a2p a3p

s. t.  3 + 6 + 3p ≤ 16a1p a2p 7a

= (1  1  1ap )T

r = 1 − ((1/5)(1) + (2/5)(1) + (1/2)(1)) = −1/10 < 0

A

          5 0 0 1 1

A =  0 2 0 2 1

          0 0 2 0 1

x = (6/5  0  0  1  18)T

z = ∑ = 6/5 + 1 + 18 = 20 + 1/5xi 21

π = (1/5   2/5   2/5)T
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Thus 

So 

Our reduced cost is no longer negative, so our iterations stop. This column is not added to .

Our optimal solution is  rolls!

References

1. ↑ "Column Generation Algorithms", Kedric Daly. https://optimization.mccormick.northwestern.edu/index.php/Column_generation_algorithms. Accessed 7 Dec. 2017.
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= (5  0  0ap )T

r = 1 − ((1/5)(5) + (2/5)(0) + (2/5)(0)) = 0

A

21
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Complementary slackness

From CU Denver Optimization Student Wiki

It is possible to find a solution to the dual problem when only the optimal solution to the primal is known. This is the theorem of complementary slackness. Formally it states:

Suppose that x = (x1, x2, ... , xn) is primal feasible and that y = (y1, y2, ... , ym) is dual feasible. Let (w1, w2, ..., wm) denote the corresponding primal slack variables, and let

(z1, z2, ... , zn) denote the corresponding dual slack variables. Then x and y are optimal for their respective problems if and only if

xj zj = 0, for j = 1, 2, ... , n, and

wi yi = 0, for i = 1, 2, ... , m.

This means that whenever the primal variable is active at a constraint, the dual variable is equal to 0 and vice versa.

For an in depth look into the theory behind complementary slackness, please see the Linear Programming section included in the overview of Lagrangian Duality.
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Computing Using Mathematical Programs

From CU Denver Optimization Student Wiki

Many mathematical programs are far too large and complex to solve by hand, therefore computers are used to do the calculations. However, it is necessary to know how to tell

the computer what to do. There are some common standard solvers and file types that provide a template for optimizing. Python will be the standard language discussed, as

most mathematicians have worked with it. The solver for Python, lpsolve55, was written for C++ and modified to work for python, which makes some of the implementation

difficult in Python. However, because Python is a higher level language and therefore further away from machine code, it is easier for humans to read and consequently

understand.

Contents

1 File Types
1.1 .lp Files
1.2 .mps Files
1.3 Dualizing a File

2 IDLEs
3 Solver Issues
4 References

File Types

The most common programming file types are .lp and .mps files. These are both file types that can be read by a wide variety of solvers. Many languages have solvers for these

built in. For example, Python has lpsolve55 as its default solver for .lp and .mps files.

.lp Files

A .lp (linear program) file is the most intuitive linear program file, as it is written much like a linear program in standard form. It has an objective function, constraints,

inequalities and equalities, and non-negaivity constraints where necessary. In .lp files, non-negativity constraints are considered variable bounds, and that section of the file

will contain all constraints on single variables. Consider the following linear program is the same program found in the shadow price section of the wiki:

max

s. t

40x1

x1

x1

x1

+

+

,

50x2

x2

2x2

x2

≤

≤

≤

≥

1, 000

700

1, 100
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The program is written as a .lp file in source code:

max: 40 x1 50 x2 ;

*/ Constraints */

x1 x2 <= 1000; 

x1 <= 700;

2 x2 <= 1100;

x1 >= 300;

x2 >= 300;

/* Variable Bounds */

x1, x2 >= 0

This is how the file will look when opened in a simple text editor. Notice that there are no addition signs. This is because an .lp format can only handle linear programs.

However, if the variables were multiplied together the program would become non-linear. The solver that Python uses has a variety of algorithms that can be called to use for

solving any .lp file. These range from the simplex algorithm, which is the standard algorithm for lpsolve, to primal-dual algorithms and dual solve methods. The .lp file can

also be generated in Python, by writing a program in this form and then commanding "return = lpsolve('write_lp', lp, filename)" instead of "return = lpsolve('solve_lp', lp)". [1]

The interesting aprt of using lpsolve is that when a program is entered in this form, as soon ans the information in the file is stored to a variable, the variable takes the most

simplified for of the program the computer can conceive. For example, after running the code:

lp = lpsolve('read_LP','My_Lp.lp')

lpsolve('solve',lp)

lp = lpsolve('solve',lp)

lpsolve('write_lp',lp,'My_Lp2.lp')

The following program will be written:

max: 40 x1 50 x2

/* Constraints */

x1 x2 <=1000

/* Variable Bounds */

300 <= x1 <= 700

300 <= x2 <= 550

This is the same program, but with some of the constraints being read as variable bounds. This type makes the primal problem easier to solve, but may confuse the machine

when generating a new dual program.

While Python is a very easy language to do this in, there are some IDLEs that have interfaces that are tuned more for linear program writing, such as Lp_Solve. This program

can be used to write .lp files and solve them, and can be imported as a package into Python, Matlab, and many other languages to be solved in whatever language the user

prefers to code in. Writing these programs in an IDLE such as this is is usually simpler, as often times the IDLE will ask for inputs that are then directly written to a text editor.

For comparison, writing this in Python requires specification on each line that the solver is writing that line into the program and then ensuring that constraints are aligned

properly, which can be difficult and more time consuming for large programs.
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.mps Files

.mps (mathematical programming system) files contain the same information that .lp files contain, but are written differently. While a .lp file is written vary similar to the

conventional way a linear program is written, a .mps file is written in column format. For comparison, the previous program written in .mps form looks like:

name            friction

   n    cost

   l    lim1

   l    lim2

   l    lim3

   g    dem1

   g    dem2

columns

        xone    cost        40    lim1    1

        xone    lim2        1     dem1    1

        xtwo    cost        50    lim1    1

        xtwo    lim3        2     dem2    1

rhs

        rhs1    lim1        1000  lim2    700

        rhs1    lim3        1100  dem1    300

        rhs1    dem2        300

enddata

Notice how the program individually lists all of variables and their coefficients with the particular constraint. It is more difficult for a human to read and write, but .mps files

are able to solve mixed integer programs, where .lp files can only work with linear programs.

Dualizing a File

In Python, generating the dual program is rather simple. Instead of creating a whole new program, one can take the known .lp file, import is after importing the lpsolve

package, and run the following code:

[obj, x, duals, return] = lpsolve('get_solution', lp)

This code will then print the objective function value, the dual objective function value, and the duals.

In order to get a file of the dual program, access the directory in in which the .lp or ,mps file is contained, then import the the lpsolve library and run the following code.

from lpsolve55 import *

lp = lpsolve('read_LP','My_Lp.lp')

lpsolve('solve',lp)

dlp = lpsolve('copy_lp',lp)

lpsolve('dualize_lp',dlp)

lpsolve('write_lp',dlp,'My_DLp.lp')
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This will return a file into the same directory as the file that My_Lp.lp is under the name My_DLp.lp. Because lpsolve55 was originally written for C++ and then messed with

to be workable with Python, the dualize function does not always work properly. In dualizing, sometimes the dual objective function will contain a very large constant, a

remainder of the (unnecessary) punishing term that the solver uses to dualize the program. When creating the dual program be sure to check for this constant in the objective

function of the new dual program file before attempting to use it.

IDLEs

Because most people working with .lp and .mps files are generally well versed in computing, the solvers for these file types are usually written in a language closer to machine

code. Instead of creating new solvers, a few developers have created IDLEs (integrated development environments) that are far more user friendly. A common freeware IDLE

for .lp files is LP_Solve. The interface of the IDLE is similar to that of the Terminal, but has a command bar that makes creating and solving these files much easier for people

that have little to no programming experience. In this IDLE and others like it, a user can write a program to a .lp or .mps file just the same as in a text editor. The difference is

that instead of needing to know all the code to call the program and solve it and copy it and dualize it, the IDLE has a command bar that the user clicks on to call commands

and view outputs. The downside to this is that these IDLEs are restrictive. They only are written with a limited number of commands and are not full programs that are meant

to run scripts. This means that while they are great for solving the programs and getting some of the information about the program, the more in depth information can only be

reached by knowing commands for the files in some other programming languages. However, writing the program to a .lp or .mps file is far simpler in many of the IDLEs than

it is in Python or C. This is because the IDLE is specific to linear programs so it knows that all of the input is going into the program. On the other hand, writing a program in

Python requires telling the machine that the code being written is for the program on each line, and specifying what part of the program the code is going to.

Solver Issues

Because the majority of students using this site will not have access to the best commercial solvers, some issues with freeware solvers will be discussed. Freeware solvers are
generally effective but not optimized and made to work under all circumstances. For example, a popular freeware solver, Lp_solve, is written in C and then forced into other
languages like Python and Matlab. While this means they are cheap to develop and therefore free to the public, they don't necessarily work right in these other languages. This
is normally not an issue, as developers make the most important parts of the solver work. However, some of the commands in the base language don't work properly in the
secondary language. For example, in C, the command

 lpsolve(dualize_LP, My_Lp.lp)

will create a dual program of the .lp file, and save the .lp as the new dual program. However, in Python the following script is necessary:

from lpsolve55 import *

lp = lpsolve('read_LP','My_Lp.lp')

lpsolve('solve',lp)

dlp = lpsolve('copy_lp',lp)

lpsolve('dualize_lp',dlp)

lpsolve('write_lp',dlp,'My_DLp.lp')

Even when this is all typed in, the way the commands run in Python can create a dual program with a punishing term in the objective function that makes the program

infeasible or unbounded.
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I am currently a second year graduate student at CU Denver, in the discrete group. I received his undergraduate degree at Colorado School of Mines in computational and

applied mathematics, and while there spent a semester studying abroad in the Budapest Semesters in Mathematics program. At Mines I did research on topological Ramsey

theory, and while at an REU at Rochester Institute of Technology I did research on a field of graph coloring called L(h,k) labelling. I currently work with Flo Pfender doing

research in flag algebras. When not doing math I like to rock climb, ski, and hike/backpack.

In Fall 2018 for Linear Programming I worked on a problem involving the placement of after school programs with Zachary Sorenson, the link is: Using After School

Activities To Reduce Crime.

In Spring 2019 for Integer Programming I worked on a problem on finding the most efficient routes to clean parks with Zachary Sorenson, the link is: Cleaning Parks for a

Safer Future
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Abstract

A housing shortage in Denver has hit the city’s most vulnerable hardest. In the greater Denver metro area, an estimated 14-60 thousand homes shortage persists. As a result,

candidates for Denver Mayor have suggested using vacant or underutilized land to develop affordable housing. This project seeks to determine ideal locations for conversion

based on centers of employment and walkability to grocery stores, schools, and public transit using equitable measures and methods from integer optimization.

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Michael_Schmidt


Trends in housing supply and

price

Motivation

During the financial crisis of 2008, the number of new homes being built dropped to the lowest point on record[1]. As the population has
continued to grow since 2008, the housing supply has not kept pace, resulting in a housing shortage. In the Denver Metro Area, there is an

estimated shortage of 14-60 thousand homes[2].

Candidates for Mayor have suggested building affordable housing on city-owned vacant lots[3]. However, determining which lots qualify

for such a designation and whether such land can be sold is an unsolved problem.

Instead of looking at the city and RTD land, as the candidates suggested, the following analysis looks at vacant private land around the

city. Ideally, incentives could encourage land owners to convert the land into housing. The only remaining question is what land to

encourage development on.

Goals

This analysis aims to determine which vacant lots within Denver are suitable for housing development with equity in mind. Access is the foremost concern for housing equity.

Transportation is a means to increase access; however, direct access is more advantageous. Therefore, this model assumes all core amenities should be accessible within a 20-

minute walk.

Here, a simplifying assumption is made that the transit network cannot be used. Transit networks are difficult to source information for, and connecting it to Open Street Maps

is non-trivial (specifically OSMNX, which doesn't encode relations between nodes). Given adequate time, allowing for walk times, including transit, would create a more

representative model. Instead of such an analysis, this analysis requires access to the light rail network within a 20-minute walk.

Since the policy suggestion is to encourage the construction of affordable housing through grants or tax breaks, ideally, the total cost of such grants is proportional to the

property value. Therefore, the total value of the land on which to encourage construction should be cost minimal.

Therefore, the relevant requirements are:

Equitable access to amenities, i.e., within a 20-minute walk:
Schools
Supermarkets
Light Rail Stations

Access to the maximum number of employment opportunities
Lowest cost

Data

Employment Density

Source: https://enviroatlas.epa.gov/arcgis/rest/services/PeopleBuiltSpaces/Employment/MapServer/2Typesetting math: 100%
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20-Minute

walking disk

from Auraria

Library
Total jobs in census tracts for Denver

Metro

The US EPA keeps a dataset of employment densities across census blocks for the US. This can be used to determine the locations of jobs in the Denver metro area.

Parcels

Source: https://denvergov.org/opendata/dataset/city-and-county-of-denver-parcels

Each parcel in Denver is labeled with a category (single family, condo, tower, warehouse, vacant land, etc.), a polygon defining its boundary, and tax information like

assessment. This data can be used to extract location data, filter for potential plots (vacant land), and determine the land value (assessment information).

Walking Network

Open Street Maps has information on walking paths available through the `OSMNX` Python package. Given an average walking speed of 4.8 km/hr, the time between nodes

can be determined, and each node within a 20-minute radius can be selected.

Analysis

Walk Disks

A 20-minute walk disk can be generated from the OSM walk network to determine if a parcel location satisfies the conditions above.

Job Densities

The total jobs in the Denver Metro Area by census tract. Each potential parcel's 20-minute walking disk can be compared to the employment density to

determine the number of jobs nearby. While not all jobs are available, it approximately measures job availability in the region.

Parcels

Denver's parcels are labeled with a `PROP_CLASS` attribute, where each value lower than 600 is some

variant of a vacant parcel. Some of these parcels are vacant but clearly used for some purpose; to further filter

these parcels, parcels with plots less than $300 total assessed value are ignored. It appears public parcels,

including several runways, are listed as vacant with a value of $30.

Areas of Interest

As the only parcels under consideration are those within a 20-minute walk of a Light Rail station,

supermarket, and school, the whole of Denver may be reduced to a subset area of interest. Doing this per

parcel would be too cumbersome; it is far easier to select each school, light rail station, and supermarket and,

compute the 20-minute walk disk, take each union, then take the intersection of all three.

The plots of the relevant areas can be found above. The final set of the points are therefore:
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Vacant Parcels in Denver

Areas near LightRail,

supermarkets, and schools Areas near supermarkets and

schools

Vacant parcels near Schools,

LightRail, and Supermarkets.

Optimization Problem

There are two programs one could use to find which parcels to select in this problem. One is to select

some number of parcels to meet some criterion (count or cost, for instance) and solve with an

implementation of the knapsack problem. This can lead to many parcels being chosen in the same

neighborhood. While this outcome could be ideal in many situations, it could also create adverse

competition for local jobs. To address this, another program could be to find an optimal covering of

the employment density (i.e. cover the maximal number of jobs) while minimizing the amount of

overlap between walk disks of each parcel.

Problem A

Here the problem has the form 

P

xp

cp

vp

ep

D

α, β > 0

: Set of parcels

: Indicator variables for parcel p. Selects whether the parcel is selected or not.

: Cost of parcel p

: Capacity, in units, of a parcel p

: Employment Coverage of parcel p

: Total demand in terms of units

: Weights for cost vs employment coverage
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with the program 

Problem B

Here the problem has the form 

with the program

Unfortunately, computing the relative overlaps between all pairs of walking disks for each vacant lot in the candidate area is computationally infeasible on the resources at my

disposal. (I plan to revisit this with some better methods).

Results

The solution to problem A for 1000 units can be seen in the following map.

min

s.t.

α ⋅ − β ⋅∑
p∈P

xp cp xp ep

≥ D∑
p∈P

xp

P

xp

cp

vp

θjk

α

ep

D

α, β > 0

: Set of parcels

: Indicator variables for parcel p. Selects whether the parcel is selected or not.

: Cost of parcel p

: Capacity, in units, of a parcel p

: Overlap of walking disks for parcels j and k

: Allowable overlap between two different parcel's disks

: Employment Coverage of parcel p

: Total demand in terms of units

: Weights for cost vs employment coverage

min

s.t.

α ⋅ − β ⋅∑
p∈P

xp cp xp ep

≥ D∑
p∈P

xp

∀j, k ∈ P : j ≠ k : < αxjxkθjk
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Code

The code can be found here: https://github.com/schmidmt/D2P-Disused-to-Housing

Notes

1. ↑ U.S. Census Bureau and U.S. Department of Housing and Urban Development, New Privately-Owned Housing Units Started: Total Units [HOUST], retrieved from
FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/HOUST, May 1, 2023.

2. ↑ https://commonsenseinstituteco.org/colorado-housing-affordability-update-november-2022/
3. ↑ https://denvergazette.com/politics/elections/denver-mayoral-candidates-leslie-herod-tom-wolf-agree-homeless-must-be-housed-but-disagree-how/article_938af810-

b30e-11ed-a7a3-fbe8e4ec47a1.html
Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Converting_Disused_Lots_to_Housing:_Equitable_locations_for_new_housing&oldid=4366"

This page was last modified on 4 May 2023, at 09:33.
This page has been accessed 94 times.
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Convex Hull Finding Algorithms
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Given a finite set , a convex hull finding algorithm is a procedure that generates a description of the convex hull of . Finding quick ways of generating

descriptions for the convex hull of a set is useful applications such as Geographical Information Systems (GIS), robotics, visual pattern matching, and finding integer hulls.

Depending on the algorithm and dimension of the set , the convex hull finding algorithm could give an half plane description and/or vertex description of the convex hull.

There are many convex hull finding algorithms such as Gift Wrapping, Graham's Scan, and Chan's algorithm which are specialized for  and . Other algorithms such as

Quickhull work well for higher dimensions. This article provides summary descriptions for some planar convex hull finding algorithms. All descriptions ignore degenerate

cases where the input is too small.

Contents

1 Gift Wrapping
2 Graham's Scan
3 Chan's Algorithm
4 Quickhull
5 References

Gift Wrapping

Gift Wrapping (Jarvis 1973) is an iterative convex hull finding algorithm for  which produces both a -description and -description of . It runs in 

where  is the number of points and  is the number of vertices in .

Assume no 3 points co-linear. A modification to the algorithm can account for colinear points. Begin by finding , the left most point of , which is a vertex of conv . At

a given step, find point  such that all elements of  are to the right of the line defined by . Add  to the description and repeat this process until

. The orientation of a three points  is the direction of travel from  to  to  is either a clockwise, counterclockwise, or colinear. The direction is

determined by the sign of . If the sign is positive, then the three points are oriented in a clockwise direction, counterclockwise if the sign is

negative, colinear if the dot product is 0. To test if a point  is to the right of a line defined by , the orientation is typically used. To find  such that all elements

of  are to the right of the line  is to search for  such that the triple  is oriented counterclockwise for all  that are not . This can be done

by iterating over all of  and updating a guess for  when the triple  is oriented clockwise. The complexity for Gift Wrapping is  because for each

vertex there is an  method to find the vertex as described above.

S ⊂ R
d S

S

R
2

R
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R
2 V H conv(S) O(nh)

n h conv(S)

P0 S (S)
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⋅ = || || ⋅ || ||cos(θ)ab
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bc
→
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A visualization of 2D Gift

Wrapping Algorithm.

The sorting phase in Graham's

Scan.

A demonstration of Phase 2 in

Chan's Algorithm.

Graham's Scan

Graham's Scan (Graham 1972) is an iterative algorithm for  which finds both a vertex description and half plane description 

and runs in  where  is the size of the input.

Assume that no 3 points are colinear. Simple modifications to the algorithm can be made to account for colinear points. Begin by selecting the

bottom left most point, , a vertex, of . Sort the points in  according to the angle the form from  relative to the -axis from

least to greatest. Starting from the inital point , iterate over this order. Let  be the most recent point found on the convex hull. Let 

and  be the next two points in the order. If  are oriented counterclockwise then  is apart of the convex hull.

Add  to the convex hull. Otherwise, remove  from the order and repeat until .

To find the angle of each point  to  relative to the -axis, use a dot product to compute . Since each angle is relative to the  axis

and  is the bottom left most point,  and thus  and can be ordered from greatest to least which corresponds

to ordering from the least to greatest angle. The complexity of Graham's Scan is  because any sorting algorithm which runs in

 can be used to sort the angles. All other steps can be accomplished with a method that is  time.

Chan's Algorithm

Chan's algorithm (Chan 1996) is a divide and conquer approach that combines Graham's Scan and Gift Wrapping. Chan's algorithm has two

phases. The first phase divides  into equally sized subsets and computes the convex hull of each one. The second phase uses the computed

convex hulls to find . The algorithm is output sensitive and runs in .

Phase 1: Let  be given. Partition  into  such that  and . Then for each partition compute

 using Graham's Scan.

Phase 2: Use a modification of Gift Wrapping and the precomputed convex hulls to compute the first  elements of the . If the

Gift Wrapping fails to complete, then increase .

The Gift Wrapping modification is as follows. Instead of searching all of , we search for , a vertex of such , that

 forms the greatest angle. Since the vertices of  are ordered, a binary search and testing orientation can be used to find

.

Phase 1 runs in  as does Phase 2. Ideally, we want to pick  but we do not know the number of vertices of the

. If we increase  too slowly, the algorithm becomes cumbersome and too quickly we fail to harness the advantage of the

algorithm. By picking  for  we can ensure . The algorithm terminates for some  when  thus

R
2 conv(S)

O(nlog(n)) n

P0 conv(S) S P0 x
P0 Pi snext

sfuture , ,Pi snext sfuture snext
snext snext =snext P0

s P0 x cos(θ) x
P0 θ ∈ [0,π] cos(θ) ∈ [−1, 1]

O(nlog(n))
O(nlog(n)) O(n)

S
conv(S) O(nlog(h))

H S , , . . .S1 S2 Sj | | ≤ HSk j = ⌈ ⌉n

H
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. Since Chan's algorithm occurs for  instances, the total running time is

.

Quickhull

Quickhull (Barber, Dobkin, Huhdanpaa 1996) is a divide and conquer algorithm. It works well for any dimension . For , it has worst case run time  and

average case . The algorithm as described will be for .

Find 3 points, , that are known to be vertices of . This partitions  into 4 subsets. The points inside the triangle, and points above (to the left of) the line

. Points inside the triangle can be ignored as they are not vertices of . If there are points above the line  find the point furthest from the line.

Add this to the description of the convex hull. This creates a new triangle with any points inside of it being apart of the current description of . With the two new

edges, if possible repeat the procedure of find a point above the line and furthest away. Once no points are above any edge, the algorithm terminates.

Note a triangle is a simplex and a line formed by two points in the plane is a facet of this. To generalize this procedure, use a  simplex and instead check if points

are 'above' a facet of this simplex and find the point that is furthest from this facet.
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Coordinating Response to Fatal Accidents

From CU Denver Optimization Student Wiki

Abstract

Denver Police and Fire Departments have separate dispatch systems that can only track their respective fleets. Because of this, dispatchers rarely have the opportunity to

communicate to the other dispatch entity about their deployment decisions. Given that potentially fatal car accidents require a response from both police and fire units, we can

better coordinate response to these incidents using a Many-to-One matching problem and the locations of previous fatal car accidents in Denver County. Our results offer a set

of “suggested partnerships” of police and fire units given the location of a potentially fatal car crash. Deploying units with a set of “suggested partnerships” can improve the

response to accidents; if the unit deployed from one entity is aware of the other’s activities, every responder will be better prepared to deal with life threatening emergencies.

Model and Description

We use Integer Programming to construct a Many-to-One matching between police stations and fire stations. We model this by assigning a binary variable to each pair that can

be possibly matched. If a pair is matched, the variable has value 1. If the pair is not matched, the variable has value 0. We sum the variables of the pairs involving a certain fire

station, and set that sum to 1, in order to ensure that every fire station is matched to exactly one police station. Similarly, we can set the sum of the variables of the pairs

involving a certain police station to be at least 1 to ensure that every police station is matched to at least one fire station. We additionally apply a cost to each matching based

on how synchronized those two stations would be responding to accidents based on past accident data. We then look for a matching satisfying these conditions which

minimizes that cost.

Where 

 is the set of police stations

Minimize 

Subject to 

∑
i∈P ,j∈F

cijxij

= 1 ∀j ∈ F∑
i∈P

xij

≥ 1 ∀i ∈ P∑
j∈F

xij

∈ {0, 1} ∀i ∈ P , j ∈ Fxij

= |dist(c, i) − dist(c, j)|cij ∑c∈C

  P
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 is the set of fire station

 is the set of all crashes we are considering.

Code, Poster and Presentation Slides

The AMPL code used, a PDF of the poster, and the PowerPoint presentation slides are in a Github repository here (https://github.com/eric-d-culver/D2P_Sp_2019).

Project by Eric Culver and Christina Ebben
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This page was last modified on 3 May 2019, at 11:38.
This page has been accessed 1,707 times.

  F

  C

Typesetting math: 100%

https://github.com/eric-d-culver/D2P_Sp_2019
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/User:Culvere
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Christina_Ebben
https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Coordinating_Response_to_Fatal_Accidents&oldid=2012


Counting Eulerian Cycles in Graphs

From CU Denver Optimization Student Wiki

Project Contributors

Alex Semyonov (http://math.ucdenver.edu/~sborgwardt/wiki/index.php/Alex_Semyonov)

Michael Boyce (http://math.ucdenver.edu/~sborgwardt/wiki/index.php/Michael_Boyce)

This project is a collaborative effort between Alexander Semyonov and Michael Boyce. This project was completed as an assignment for Steffen Borgwardt's Applied Graph

Theory course at the University of Colorado Denver. Each contributors page is linked above.

Abstract

In this project, we will investigate how to count the number of Eulerian circuits in a graph. We begin by introducing some terminology to explore necessary conditions for an

Eulerian circuit to exist in a graph, or digraph. The most important of which is that in-degree equals out-degree for every vertex in a digraph. We shift our attention to Eulerian

circuits in digraphs. This shift leads us the B.E.S.T theorem (van Aardenne-Ehrenfest, de Bruijin, Tutte-Smith). The B.E.S.T theorem gives a formula for counting the number

of Eulerian circuits in an Eulerian digraph. We take a look at the B.E.S.T. theorem and ultimately prove this theorem by partitioning the space of all Eulerian cycles into

disjoint classes (using rooted in-trees to create this partition) and then establishing that each class must in fact contain the same number of circuits.

After proving the BEST theorem, we investigate the problem of counting circuits in undirected graphs. This is a much more difficult problem, as it is a #P problem. We will

briefly discuss some difficulties associated with undirected graphs and highlight why the B.E.S.T theorem does not generalize to undirected graphs.

The Github below contains our slide deck.

Github link: https://github.com/asems99/Counting-Eulerian-Cycles-in-Graphs

References

1. Douglas B. West. Combinatorial Mathematics, 2021. (In particular, section 15.2)
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Contact Links

Email (mailto:courtney.franzen@ucdenver.edu)

Education

1. University of Central Arkansas, B.S., General Science with Math Minor
2. University of Central Arkansas, M.A., Mathematics Education
3. Air Force Institute of Technology, M.S., Operations Research

Professional Life

Career

Pet Store Associate - The Fish Bowl
Graduate Teaching Assistant - University of Central Arkansas
Operations Research Analyst - United States Air Force

mailto:courtney.franzen@ucdenver.edu


Programming Languages/Experience

MATLAB
Python

Projects

In the Fall of 2023 for Linear Programming, she worked on Housing Assistance Program Allocation. This project utilized a knapsack integer program to overcome challenges

in Denver regarding housing assistance program awareness and distribution of resources.
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I am currently a graduate student at the University of Colorado Denver studying Computer Science.

I enjoy taking on challenges that have a high likelihood of failure. When I am not working on a project, I enjoy golf and have recently started competing in Triathlons.

Minimum Planar Crossing Number
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Creating Fair Voting Districts
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This project is by Angela Morrison and Weston Grewe
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Overview

Electoral districts are a feature of democratic governments. Districts must be redesigned often as demographics change. In the U.S. districts are redrawn every ten years with

the arrival of a new census. The process of redrawing districts can be highly contentious and politically motivated. Standards for fair districts have been discussed at length in

political science and a few key concepts of what constitutes fair. First and foremost, every district should have roughly the same number of people to ensure equal

representation for each elected official. Second, a district should be simply connected. In most cases, two people who live close to one another should also be in the same

district, of course, there are exceptions for the boundary. Additionally, districts should be sufficiently regular in the sense that they look like convex polygons and the

maximum and minimum diameter of the set is similar. In our project, we implement a method, using linear programming, to design city council districts for the city of Denver

that contain the same number of people and are convex polygons with the exception of the boundary of the city. We begin by using  constrained clustering to assign

residents to voting districts. We then find the power diagram which yields the lines that define our voting districts.

k −
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Mathematics

In this section, we present the two linear programs used to create the voting districts. The first linear program provides an assignment of the blocks. The second linear program

produces values needed to create a power diagram for the districts.

Constrained Clustering

To assign residents to voting districts we use fractional  constrained clustering. In the context of our problem the data required for this clustering is the locations and

populations of each census block and locations for a number of sites, in our case we used polling locations in Denver, and in particular chose 11 polling locations since there

are 11 city council districts. Each site can be thought of as a base point for a district, then census blocks near a site are assigned to that site. Finally, all blocks assigned to a

particular site are grouped together as a voting district. In this project, we go one step further and allow for fractional clustering, this allows each census block to be assigned to

more than 1 site. In practice, few blocks are assigned to multiple sites and this is only necessary to ensure that every district has the exact same number of residents. Fractional

clustering could be avoided by relaxing the requirement that every district must have the same number of residents and instead decide on an acceptable range. Now, let's dive

into the mathematics. Assume you have a list  of census blocks where each  is the location of that census block, in our project this is a lat/long

value. Additionally, assume you have a list  where  is the population of , let  the total population of the city. Finally,

assume you have a list  of site locations. To find electoral districts, we need only solve the following linear program:

k −

B = ( , , … , )b1 b2 bk bi

W = ( , , … , )w1 w2 wk wi bi w = + ⋯ + ,w1 wk

S = ( , , … , )s1 s2 sn

min

s.t.

|| − |∑
i,j

xi,jwj bj si |2

= 1, ∈ [0, 1]∑
i

xi,j xi,j

=∑
j

xi,jwj

w

n
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The variables  correspond the proportion of block  assigned to site . The squaring of the norm guarantees that the districts will be polygonal. If we do not care about

polygonal districts, the squared-norm can be replaced with any distance-like function. Additionally, the squared distance also punishes districts being assigned to a voting

location that is not their closest location. This helps ensure a reasonable looking district. The first constraint is what forces the  to act like proportions, it tells us that the

entirety of a census block is assigned to some number of districts and it is not over-assigned. The second constraint ensures that each district will have the same number of

people. We have  districts and a total population of , thus each district should have  number of people. Summing over  simply counts the number of people from

each census block assigned to site .

Power Diagram

The power diagram for our clustering is illustrated below. Mathematically, the power diagram is formed from the separating hyperplanes between every pair of clusters.

Suppose our census blocks have already been clustered, denote this clustering . A separating hyperplane for the pair of clusters  can be

specified by a pair  where we have  and . It is often the case that the pairing  is not unique,

however, that is alright. We can get closer to uniqueness by seeking a so-called maximum margin power diagram. In this case, we seek a set of pairings  that

is a solution to the linear program

So far, what the  and  are has been skirted over. We will first discuss how the  are formed, then discuss the . Recall, our collection of site locations:

. The vector

Therefore,  may be interpreted as the normalized direction from site  to site . In the formulation of the hyperplane separating the cluster based at site  from site ,

the vector  implies that the hyperplane is orthogonal to the direction . With this in mind, the value  is a term that adjusts the position of the hyperplane. It is

calculated by ensuring that cluster  is on one side of the hyperplane defined by  and  is on the other side. Furthermore, the linear program yields a power

diagram of maximum margin . This ensures that the hyperplane is not too close to either cluster, on either side it is separated by this .

We can make one further simplification to the linear program. In our constraints we have  for all  It will suffice to set

 and then solve the following linear program to determine 

xi,j bj si

xi,j

n w w/n j
i
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The presented linear program can be solved by specifying clusters and site locations easily with a machine. We used Python and SciPy.Optimize to find a solution. The

program can be found in the GitHub link below for city council districts for the city of Denver.

Implementation

For this project, we primarily used Python and Jupyter Notebooks. The library SciPy provides a linear programming tool, optimize.linprog, that can solve linear minimization

programs given coefficients of optimization and sets of equality and inequality constraints. Our work can be found in the GitHub link below.

Before we could put our data into the linear program, we had to make some adjustments in order to solve the problem we had stated. In particular, the census blocks and in-

person voting locations needed to be cleaned up a bit before being manipulated into the correct form for the linear program in Python.

Census Blocks

The way the census block data comes in gives the geometry of the borders of each census block. While this is useful for plotting this information, it can make it difficult when

computing distances between census blocks and voting locations. Therefore, the center of each census block needed to be found in order to use that point when calculating

distance. Doing this does not change the project much as locations within the block would not have to travel much farther or shorter than the center of each block. Another

aspect of each census block that needed to be accounted for was the population. There were some blocks that, according to the dataset, had a population of zero people. While

this is certainly just a case of bad data, these census blocks need to be removed from this process. We did this because having a population of zero meant that these census

blocks would be assigned to each of the new districts being created, and would therefore throw off the calculations of the hyperplanes for the power diagram.

Voting Locations

Due to the fact we were trying to construct 11 new districts, we needed to adjust the voting locations used for this project. If we had used our entire set of voting locations, we

end up with the same number of districts as voting locations which is not as helpful for the overall goal of this project. To narrow down our choices of voting locations, we

performed a K-means clustering of the voting locations to create the same number of clusters as districts. Now, we could not just pick a single voting location in each cluster as

this might contain some bias and would mean that our results change depending on which location in the cluster we were to choose. To remove this concern, we decided to

create a new "voting location" by using the center point of each cluster as the "sites" in our linear programs. This removed any bias we might have in choosing voting locations

while still allowing us to have ach cluster represented as a possible site in our linear program.

With the data properly formatted, it is ready to be plugged into the linear program that determines the voting districts. The code is modular to allow for other data sets and will

run regardless of the number of census blocks or site locations. The limitation is only your computers processing power. The first linear program outputs a fractional cluster of

all census blocks. The clustering is returned through a matrix whose rows index site locations and columns index census blocks. The  entry is the proportion of the 

census block assigned to the  site location.

s.t. σi,j

γi,j

+ϵ ≤ γi,j

= −γj,i

i, j jth

ith
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With this clustering, the power diagram can now be computed. Again, the code is modular so it will run for a different set of census blocks and site locations. The functions

that run implement the simplified maximum margin separating power diagram found in page 12 of the paper linked below by Dr. Borgwardt. The program returns a collection

of triples, one triple for each pair of site locations, that defines the separating hyperplane. With these triples, a hyperplane can be graphed in Python by setting a range for the 

variable and then computing the corresponding  values that satisfy the hyperplane equation.

Results

The current city council districts look like:

Our program pulled from 481 census blocks to create the following districts (Colored), note that the current districts are overlayed on the image:

x
y
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Moving Forward

Our work does not have to be limited to the city of Denver. It could be applied to any region so long as there is a population count and a number of specified districts. We used

polling locations to determine our districts, however, any landmark could be used. This work could be applied to the U.S. House of Representatives by using electoral precincts

and determining centers of districts by calculating arithmetic means of current districts.

Moreover, implementing a program that incentivizes a fair distribution of seats is another path to explore. In particular, if some U.S. state has 10 congressional seats and 60%

of the population is Democratic and the other 40% is Republican than a fair distribution of seats may be 6 Democratic and 4 Republicans. Many states fail this for a number of

reasons. Some states are gerrymandered, others it may just be hard to find any region of the state where the statewide minority is a local majority. California and Alabama are

good examples of this phenomenon.

GitHub

https://github.com/DillWithIt77/D2P_Voting
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Presentation Materials

Introductory Slides: https://docs.google.com/presentation/d/173VWiBv43VMpyjKLuRN3FfMPVyyM0TyuaPJW0AkTK-Q/edit?usp=sharing

Slides for Linear Programming Presentation/D2P: https://docs.google.com/presentation/d/1DXEv6PCl5WqQ_z_nX_-pfgOnY0xQK5OjOS6DSEucSP0/edit?usp=sharing
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Andreas Brieden, Peter Gritzmann, Fabian Klemm, Constrained clustering via diagrams: A unified theory and its application to electoral district design, European Journal of

Operational Research, Volume 263, Issue 1, 2017

Census Data:

https://data.colorado.gov/Demographics/Census-Block-Groups-in-Colorado-2017/ty5m-9xub

Census Data Key:

https://data.colorado.gov/Demographics/Census-Field-Descriptions/qten-sdpn/data

City Council Map:

https://www.denvergov.org/maps/map/councildistricts
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Abstract

Many patterns of crimes distribute unevenly throughout the year, and people’s emotions and behaviors are highly influenced by ambient temperatures. In this research project,

we have studied the association between the number of incidences of six different types of crimes and the average temperature of the corresponding month, based on the local

data of Denver. We have found that there is clearly a positive linear relationship between the two variables, especially in aggravated assault.

To best prepare citizens with the knowledge to minimize their risk of becoming victims of crimes, many schools and communities have initiated “crime prevention/awareness”

programs. By introducing the concept of "social memory" of such programs and hypothesizing a formula to model the decay process of the "social memory", we have used

AMPL to calculate the optimized budgets and months of the year to host the crime awareness programs based on the constraint-free-scenario and certain scenarios with

constraints.

Questions

Is there a positive correlation between crime and temperature? If yes, how strong the correlation is? Many schools and communities have initiated "crime

prevention/awareness" programs. But how to determine the best time and budget allocation for hosting the awareness program?

Correlations

The crime data from 2015, 2016, and 2017 will be used to analyze the relationship between crime rates and average temperature. The correlation between average temperature

and different types of crimes were moderate. Correlation coefficients just measures the strength of the relationship between crime and average temperature. Thus, combining

all crimes and looking at the correlation between temperature and crime gave us a nearly strong Pearson correlation coefficient of 0.69.
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Crime versus Average

Temperature

Social Memory Coefficient

However, it is important to emphasize that one does not necessarily cause the other. It is possible that in the summer time when the

temperature is warmer, more people are in vacations out from the city. It is also possible that majority of people spent their summer time just

inside their home watching television which made them less vulnerable to violent crimes. But, there are numerous standard researches done

around the world studying crime rate and temperature. Most of the researches reached to a conclusion that crime rates are correlated with

warmer weather. "The warmer the weather, the more certain types of crimes are committed", said Lauristsen, a researcher. The crime rates are

not only correlated with temperature, crime can be correlated with various other factors such as socioeconomic statuses. However, for this

project we are specifically focusing on temperature and crime.

Following the correlation, a linear regression model was executed in the data. We regressed crime rates onto average temperature and saw an

interesting upward trend line. It seems that as the temperature gets warmer, the higher the crimes rates are. We also obtained a extremely

small p-value and R-squared of 0.48. However, we must recall that simply having a distinct trend line and a statistically significant p-value,

does not mean that one causes the other. But, crime is human behavior and practically it is very challenging to predict human behavior. Thus,

humans are harder to predict than physical processes because humans can be easily distracted by many factors. Therefore, studying this crime data, we found out that average

temperature has statistically significant impact on crime rates.

Social Awareness Program

Social Memory:

where  is the average crime incidents happening in the  month of recent years.  represents the particular month and  represents the effective social memory we

can produce if we host awareness programs on that month.  models the decay of people’s memory after participating the awareness program in the  month of the

year. The figure on the right shows what the social memory coefficients are for each months. It shows us that the memory is at maximum on the month of April.

Optimizing the Date

<1> If one and only one of month would be chosen, obviously we choose the  corresponding to the max value of . That is April.

<2> School scenarios: For a school with regular spring/fall semester, we can only pick  among {2,3,4,9,10,11}. That are April and

September.

<3> If we want to conduct awareness programs twice a year but with frequency no higher than once in every three months, maximizing the social memory is to maximizing

the following objective function:

That are April and July.

SM [k] = c[i] ⋅∑
i=k+1
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k SM [k]
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Optimal Months & Budgets

Allocating Budgets

 represents the budget allocated to each month.

Here is the link for the AMPL code for the linear program and the Project Poster: https://github.com/kushmakarb/LP-code

Future Work

One of the goals of this research is to find the correlation between crime and temperature. However, in our current analysis, we used the average monthly temperature as the

data for temperature which can be improved.

Future work to do:

Classify each crime case into indoor-type or outdoor-type. For outdoor type, use the precise outdoor temperature when the incident happened.
Divide the city into different regions and divide the crime into different sub-types. Then find how a particular type of crime would change along the change of the
temperature in a particular region.
Collect more information about how social awareness programs are organized so that we can design a more detailed plan for the budgeting of awareness programs.
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Crime response planning by linear programing

From CU Denver Optimization Student Wiki

Crime response planning by linear programming is a project giving the optimal police location knowing a set of crime positions. The objective of the project is to find the

optimal solutions of transportation problem for several marginals. In order to do this, Discrete Wasserstein barycenters was used.

The Denver crime data for the years 2012 to 2017 is available in Open Data Catalog. The analysis in the project was focused on murder data but could be extended to other

crimes.

The data was classified by months. The motivation to do this is that the number of police men in Denver for a year is fixed even when some months have more crime than

others. We need the police to be able to react to the crime in all the months. Then, the question is where to locate the police to react faster to the crime? The idea is to minimize

the distance between the crime location and the police location.

The main result of the project is a Python code that extracts relevant data from Denver Open Data Cataloge, computes discrete barycenters for crime data in AMPL, and

visualizes results on Google maps.

Contents

1 Data extraction and cleaning

2 Discrete Wasserstein Barycenters[2]

2.1 Linear programming model
2.1.1 Parameters
2.1.2 Variables

2.2 Experiments
2.3 Optimization using group of months

3 Strongly Polynomial 2-Approximation[3]

3.1 Optimization method
3.2 Experiments

4 Conclusions
5 References
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Data extraction and cleaning

Denver Open Data Catalog[1] includes criminal offenses in the City and County of Denver for the previous five calendar years plus the current year to date. The data is based

on the National Incident Based Reporting System (NIBRS) which includes all victims of person crimes and all crimes within an incident. The data is cleanned in the

preprocessing stage of the Python program avoiding crime locations outside of Denver area.

Discrete Wasserstein Barycenters[2]

The Discrete Wasserstein Barycenters model will be called exact model in future sections and it is defined in the next subsection.

Linear programming model

It is required to solve the next linear programming model:

Objective function

Subject to

Where the objective functions tries to minimize the Euclidian distance between the crime and possible police locations, the 2 first constrains balance the offer and demand of

police in the possible police locations and the 2 last ones ensure all the weights to be positive.

In the two next subsections, there are explained all the parameters and variables of the model using an example of 3 month murder data of Denver from January to March of

2016.

  min || − |∑
i=1

N

λi∑
j=1

| |S0

∑
k=1

| |Pi

xj xik |2
yijk

  = , ∀i = 1, … ,N , ∀j = 1, … , | |,∑
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| |Pi

yijk zj S0

  = , ∀i = 1, … ,N , ∀k = 1, … , | |,∑
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  ≥ 0, ∀j = 1, … , | |.zj S0
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Example of a 3 months crimes

data location ( )

visualization of Denver from

January to March of 2016.

Parameters

The crime location  in the month  is represented by . The location can be represent by a latitude-longitude representation and it is

possible to see in the figure on the right in a Google maps visualization. The 3 different marker colors: black, green and brown, represent

respectively the different months January, February and March ( ) and each month  has a particular number of crimes which are

represented by  ( ,  and ).

 is giving a specific weight for each month . The reason of this parameter is to set the different months by relevance. For instance, if it is

known that in March Denver is more dangerous than in the other months, it is possible to define a bigger weight in that particular month. The

only restriction defining  is that:

In all the experiments below,  is defined to have the same weight for each month:

So, in the example:

For each crime, it is necessary to know also a specific crime weight, , which represents the demand of each crime. If it was necessary to put more weight in a specific

crime, it will be possible using this parameter. The only restriction of  is:

In all the experiments below, it is used the same weight in all the crimes in the same month, so:

xik

k i xik
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In blue, the possible locations

of the police  using an

example of 3 months crimes

data  of Denver from

January to March of 2016.

So, in our example:

The last parameter is the possible locations of the police, represented by , which is computed using the crimes location data . It is

defined as the mean of all the individual combinations of the crime locations of each month. So, the number of possible police locations 

are:

So, in the previous example:

Therefore, in the left image, there are 18 blue markers representing the possible police locations.

Variables

All the linear programming model is controlled by the transport variable ( ) which balances the weights between crimes and police.

Finally, the police weights, , gives the offer of the model. Each weight represents the relevance of each police location and there is also the same previous restriction:
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Final location of the police (in

blue all  with ) of

an example of 3 months data

crimes of Denver from

January to March of 2016.

At the end, there are taken all the police  satisfying:

So, in the example, there are 4 police locations with positive weight and the other 14 are removed because they have weight 0.

xj > 0zj

xj

 > 0zj

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Modelresult.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Modelresult.png


Experiments

Discrete Wasserstein Barycenters experiments

Experiment name Map result Description

3 months experiment
(previous example)

The execution time using the exact model for 3 months is 0.12 seconds. The value of the
objective function is 0.00182.

9 months experiment
The execution time using the exact model for 9 months is 59 seconds. The value of the
objective function is 0.00377.

12 months experiment
The execution time using the exact model for 12 months is 66 minutes. The computer ran out
of memory before AMPL can give an optimal result.
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Optimization using group of months

Discrete Wasserstein Barycenters experiments using groups of months

Experiment name Map result Description

12 months experiment
using 2-months groups (6
groups)

Now It is possible to run the exact model for a year. The execution time using the exact model
for 12 months in groups of 2 months is 22 minutes. The value of the objective function is
0.00177.

12 months experiment
using 3-months groups (4
groups)

The execution time using the exact model for 12 months in groups of 3 months is 70 seconds.
The value of the objective function is 0.00107. There are a lot of police markers. This happens
because we are increasing the number of murders per group (period of time, 3 months per
group).

It is defined , the tolerance to choose the police. Then, it is chosen  such that:

So, going back to the 12 months experiment using 3-months groups, the result using  is:

ϵ xj

> ϵzj

ϵ = 0.03
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In blue, the possible locations

of the police  using the

exact model.

In blue, the possible locations

of the police  using the 2-

approximation method. The

crime data is below the blue

markers.

12 months experiment using 3-months groups (4

groups) and 

In the previous image, it is possible to see a significant reduction of the police markers.

Strongly Polynomial 2-Approximation[3]

The Strongly Polynomial 2-Approximation algorithm trades a small error for a significant reduction in computational effort. The Strongly Polynomial 2-Approximation will be

called 2-approximation in future sections and it is defined in the next subsection.

Optimization method

The main difference between the exact model and the 2-approximation method is computing the 

parameter (possible police location). In the exact model, the possible police location is the mean of all the

individual combinations of the crime locations of each month. In the 2-approximation, the possible police

location is the exact location of the crimes. The figure on the left is showing the possible police location for

the exact model and the 2-approximation technique is used on the right image.

Therefore, the reduction of possible police locations is significantly reduced and this gives a computational

memory solution that implies also a significant reduction of the execution time.

When the execution finishes, it gives the police locations over crime data (figure left below). Therefore, it is

necessary a postprocessing stage in the Python code where the final location of the police will be the mean

of the crime locations where the police have positive transport. In other words, the mean of the crime locations where a specific police marker

have to react. The final result doing this is showing in the image below in the middle which can be compare to the below right figure (result

for the same experiment using the exact model). It is possible to observe that the results are very similar, so the 2-approximation gives a very

good approximation.

ϵ = 0.03

xj xj

xj
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Result of the police location (in

blue) using Strongly Polynomial

2-Approximation and

postprocessing the results for the

previous example.

Result of the police location (in blue) using

Strongly Polynomial 2-Approximation for

the previous example.

Final location of the police (in blue) using the

exact model in the previous experiment.
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Experiments

Strongly Polynomial 2-Approximation experiments

Experiment
name

Map result Description

3 months
experiment

The execution time using 2-aproximation for 3 months is 0.11 seconds. The value of the objective function
is 0.00182.

9 months
experiment

The execution time using 2-aproximation for 9 months is 0.17 seconds. The value of the objective function
is 0.00379.

12 months
experiment

The execution time using 2-aproximation for 12 months is 0.29 seconds. The value of the objective
function is 0.00334. There are fewer police markers than the exact model with groups for the same number
of murders.
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67 months
experiment

The execution time using 2-aproximation for 67 months is 9 seconds. The value of the objective function is

0.00352. Those are all the months available (from feb 2012 to August 2017)[1]. Whit a total number of

murders of 263. The model sends all the police in the middle. This makes sense because it must send police
to all the months.

Conclusions

Method Number of months Objective Function Execution time (s)

Exact model 3 months 0.0018198 0.12

Exact model 9 months 0.0037722 59

Exact model 12 months None 3960

2-months groups 12 months / 6 groups 0.0017717 1320

3-months groups 12 months / 4 groups 0.0010652 70

2-approximation 3 months 0.0018227 0.11

2-approximation 9 months 0.0037932 0.17

2-approximation 12 months 0.0033421 0.29

2-approximation 67 months 0.0035176 9
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Abstract

This was created as a final project for MATH 7825: Topics in Optimization. It is a basic overview of the Cycle Cancelling Algorithm with explanations of the pseudocode and an example run in the presentation. It also includes explanations of the optimality

condition and the complexity.

Introduction

To understand the cycle-cancelling algorithm we need to understand what a minimum cost flow problem is as this is the type of problem this algorithm is intended for. A min-cost flow problem finds the minimum cost necessary to send the maximum flow

through a network.

Notation and Assumptions (heavily adapted from (Ahuja et al., 1993))

So, the minimum cost problem is:

subject to:

We will also assume: The network is directed. (This is necessary for us to have feasible flow.) The data is all integral. (Data being defined as arc capacities/costs and node supplies/demands)

Note: If we have integral values for all our data, our solution will also be integral which is important to note as many of these problems will not allow for a non-integral solution. The validity of this claim is discussed in Theorem 9.10 (Integrality Property)

(Ahuja et al., 1993)

Let:

G = (N, A)

≥ 0cij

uij

s(i)

C

U

 be a directed network with N nodes and A arcs.

 represent the cost of arc 

 represent the capacity of arc 

 represent the supply or demand of node i depending on whether s(i) > 0 or s(i) < 0, ∀i ∈ N

 denote the largest magnitude of any arc cost.

 denote the largest magnitude of any supply/demand or finite arc capacity.

(i, j) ∈ A

(i, j) ∈ A

Minimize z(x) = ∑
(i,j)∈A

cijxij

− = s(i) ∀i ∈ N ,∑
{f:(i,j)∈A}

xij ∑
{f:(j,i)∈A}

xji

0 ≤ ≤ ∀(i, j) ∈ A.xij uij
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Feasibility and Algorithm Setup

First we need to verify that the problem in question is feasible. To do this we first need to check if the sum of all the supplies (positive values) and demands (negative values) equals zero.

Next, we need to verify that a feasible flow exists. To do this we need to convert the problem into a max flow problem by adding an 's' node and a 't' node with arcs going to each supply and demand node respectively. We will set the capacities of these arcs to the

supply/demand values of those nodes.

Now, we will verify we can find a valid max flow using a max flow algorithm like Edmonds-Karp (an implementation of the Ford-Fulkerson augmenting path algorithm). If we find a valid max flow, we will use that as our initial feasible solution to start the

Cycle Cancelling Algorithm.

Solving and Optimality Condition

While the residual network G(x) contains a negative cost cycle:

Optimality:

"Theorem 9.1 (Negative Cycle Optimality Conditions). A feasible solution x* is an optimal solution of the minimum cost flow problem if and only if it satisfies the negative cycle optimality conditions: namely, the residual network G(x*) contains no negative

cost (directed) cycle." (Ahuja et al., 1993)

What this means is if there is no negative cost cycle in the residual network, an optimal solution has been reached. This is because the existence of a negative cost cycle implies that an alternate path with a lower cost still exists and/or has not been fully utilized

yet. Therefore if we have achieved maximum flow and there are no negative cycles, there is no better path to choose and we have found the optimal solution. 

Complexity

The complexity of the Cycle Cancelling algorithm will depend on the choices of subsystem algorithms. There are several components we will look at to find the order of the overall complexity but for a specific number it will end up being based on the algorithm

choices made for the max-flow algorithm and the negative cycle location algorithm.

Initially we add arcs in place of supply/demand values. In the worst case, where all nodes have non-zero supply/demand values, we add n arcs. O(n)

Note, this also increases our arc count, m, to m+n, and our node count, n, to n+2.

Then we run a max-flow algorithm to solve for the initial feasible solution. Here are a few options with varied complexity to use as a starting point:

 Edmonds-Karp (https://en.wikipedia.org/wiki/Edmonds-Karp_algorithm) (Better for low density graphs)

 Ford-Fulkerson (https://en.wikipedia.org/wiki/Ford-Fulkerson_algorithm) where F is the value of the max flow (Better if we know there is a small max flow)

 preflow-push (https://en.wikipedia.org/wiki/Push-relabel_maximum_flow_algorithm) (Using the FIFO selection rule, best for extremely dense graphs)

Next, we will be running an algorithm to find a negative cost cycle. This algorithm will run one time for each iteration, up to the maximum iteration count of $\mathbf{mCU}$ due to the integral data. Here are two options included in (Ahuja et al., 1993) which

have different running times:

 Floyd-Warshall (https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm)

 FIFO label-correcting algorithm for shortest path (Chapter 5.4 (Ahuja et al., 1993))

As an example, if we choose Edmonds-Karp, the FIFO label-correcting algorithm for shortest path, and let $mCU$ represent the maximum number of iterations needed to clear all negative cycles, we would be in the order of

.

s(i) = 0∑
{i∈N}

(1)

(2)

(3)

(4)

Build a residual graph based on the initial feasible solution.

Use an algorithm (discussed in detail during complexity section) to detect a negative cost cycle W in the residual graph of the initial feasible solution. If no negative cost cycle is found end. (The current solution is the optimal solution.)

If a negative cost cycle W is found, set δ = min{ : (i, j) ∈ W}; (sets the amount of units to augment the path to the lowest remaining capacity along that path)rij

Augment δ units of flow along all arcs in W to "cancel" the negative cycle and update residual graph G(x); (The updated G(x) becomes the residual graph used for step 1 of the next iteration.)

□

O(n )m2

O(mF)

O( )n3

Θ( )n3

O(mn)

O(n + n + mCUmn) ⊆ O(CUn )m2 m2
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We can see that while the choice of max flow algorithm can affect the complexity, it is likely that the iteration count will force the negative cost cycle finding algorithm term to dominate the complexity function. For larger problems with specific structure, it can

be useful to research a variety of options for these algorithms and find ones that suit your particular problem well.

Code Outline

As there are multiple algorithms used as a subroutine for the cycle cancelling algorithm, it lends itself well to object oriented programming languages. We can create a "Cycle-Cancelling" class with methods for each step. This will allow the user to select which

algorithms they prefer to use for the max-flow and negative cycle detection subroutines. Having a default algorithm for each will allow less knowledgeable users, as well as those who don't need that level of granularity to solve problems using Cycle Cancelling.

The first method would convert the problem to a max-flow problem by taking the supply/demand values and making them into arc capacities leading to dedicated supply and demand nodes. We can write methods for the initial max-flow calculation and for each

algorithm you may want to use to solve it. We will also write a method to detect negative cycles by calling a specified algorithm and again another for each algorithm you want to have available for this part. This structure makes it easy to adapt and add to. The

class can also have a solve() method which calls these methods and runs until an optimal solution is found.

The other advantage of coding it this way is you could build an algorithm selector which calculates the optimal algorithm to use based on the size/nature of the problem data using the complexity for each algorithm. There is a pseudocode example on the github

linked below showing how this might look if done in Python.

Files and Presentation

Presentation slides and code ran can be found at the following link. [1] (https://github.com/pgmath/Min-Mean-Cycle-Cancelling-Algorithm)

Contributors

Paul Guidas

Sources

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Prentice-Hall.

Korte, B., & Vygen, J. (2018). Combinatorial optimization: Theory and algorithms. Springer.
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Introduction

Geographic information system (GIS) software can be useful when visualizing spatial data. QGIS (https://www.qgis.org/en/site/) is a freely available, open source software

program that you can use on your personal computer (other tools are available for use at the Auraria Library (https://library.auraria.edu/)).

Installation

Installation is not difficult. There tend to be two versions available at any time, an older potentially more stable version and a newer version with more features (but perhaps

more issues). You will need to install Python (https://www.python.org/), and the QGIS installation instructions will guide you on the version.

Importing Data

Shapefiles

Spatial data, such as that found on Denver (https://www.denvergov.org/opendata) and Colorado (https://data.colorado.gov/) open data websites, is shared in a variety of

formats, including shapefiles, .shp. When downloading a shapefile, you will notice that it comes packaged with many other files. These must be kept together.

https://www.qgis.org/en/site/
https://library.auraria.edu/
https://www.python.org/
https://www.denvergov.org/opendata
https://data.colorado.gov/


Text Files

Connecting Points

Point Connector (https://plugins.qgis.org/plugins/PointConnector/) plugin for QGIS.

Example Project

QGIS was used to produce the visualizations for Denver Hate Crime Mapping: Visualizing Fluctuations through Linear Programming.

Resources

QGIS (https://www.qgis.org/en/site/).

Point Connector (https://plugins.qgis.org/plugins/PointConnector/) plugin for QGIS.

Auraria Library (https://library.auraria.edu/)).

Motivation

This page is an attempt by Kathleen_Gatliffe to document her progress using QGIS during the Fall 2018 session of MATH 5593: Linear Programming. It is far from complete.

Other users of QGIS are encouraged to expand on what little is written here.

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Data_Visualization_Using_QGIS&oldid=1866"

This page was last modified on 2 December 2018, at 12:37.
This page has been accessed 2,523 times.
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Abstract

This project focuses on the fundamental concept of the degree sequence in graph theory, which plays a critical role in several fields, including network generation, data

preprocessing, and algorithmic design. A degree sequence specifies the number of edges incident to each vertex, and verifying whether such a sequence can be realized by a

simple graph (i.e., deciding if it is "graphic") is a classical yet highly applicable problem.

To address this question, we first introduce the notion of degree sequences in a formal manner and discuss the 2-switch operation, which allows us to transform one graph into

another without altering the individual vertex degrees. We then present the well-known Havel–Hakimi Theorem, an essential procedure that determines whether a given

degree sequence is indeed graphic. Beyond theoretical interest, we also provide a practical Python implementation of the Havel–Hakimi Algorithm illustrating how this

algorithm can be employed in real-world scenarios, such as quickly generating synthetic networks or validating degree constraints in complex datasets.
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Overall, this project highlights how the concept of degree sequences connects fundamental graph-theoretic principles to practical applications in network analysis and

computational modeling. Through detailed examples and code demonstrations, we show how one can efficiently leverage the Havel–Hakimi algorithm and 2-switch operations

for both theoretical exploration and hands-on problem-solving.

Definitions

Definition 1: Degree Sequence

A graph  on  vertices has a degree sequence consisting of the degrees of each vertex, usually listed in nonincreasing order. A nonnegative integer list is called graphic if

there exists a simple graph whose degree sequence matches that list.

Example: The list (3,3,1,1) is not graphic for a 4-vertex graph, because

 if two vertices have degree 3, the other two must each be connected to both of those,

 implying they would have degree at least 2, which contradicts (3,3,1,1).

(For the original statement of this definition in Combinatorial Mathematics 1st Edition, see [Ref Book] Section 5.2.5.)

When we write , we mean the subgraph obtained by removing vertex  and all edges incident to .

Definition 2: 2-switch

A 2-switch is the operation of removing edges  and  from a graph  and instead adding the edges  and . This preserves each vertex’s degree but changes the

adjacency relationships.

(See [Ref Book] Section 5.2.7 for the original source.)

Theorem 1: Havel–Hakimi Theorem

Theorem 1 (Havel [1955], Hakimi [1962]). A nonnegative integer list  of size  is graphic if and only if the list , formed by removing the largest element  of 

and subtracting 1 from the next  largest elements, is also graphic.

Detailed Proof

We now provide a more comprehensive argument, split into two parts: **Necessity** ( ) and **Sufficiency** ( ).

Necessity: If d is graphic, then d' is graphic

1. Setup and Notation

G n

G − v v v

xy zw G xz yw

d n > 1 d′ Δ d
Δ

d → d′ → dd′
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  - Let  be a graphic degree sequence, and  be a simple graph realizing .  

  - Let . Choose a vertex  in  with .

2. Forming 

  - By definition,  is formed by removing  from  and subtracting 1 from  

    the next  largest entries.  

  - In graph terms, this corresponds to removing  and reducing the degrees  

    of its  neighbors by 1.

3. Selecting 

  - Let  be the set of  vertices other than   

    with the highest degrees in .  

  - If , then removing  directly produces the degree sequence .  

4. 2-switch (Case )

  - If  is not adjacent to some , or is adjacent to some ,  

    we can use a 2-switch to “swap” these adjacencies without changing any vertex’s degree.  

  - Repeatedly applying 2-switches increases  step by step, until  is adjacent  

    exactly to the vertices in .

5. Final Graph 

  - After finitely many switches, we get  with .  

  - Removing  in  yields a graph whose degree sequence is exactly ,  

    proving  is graphic.

Sufficiency: If d' is graphic, then d is graphic

1. Assumption

  - Suppose  is already known to be graphic.  

  - Thus, there is a simple graph  on  vertices, say ,  

    such that  matches the entries of .

2. Identifying -reduced Vertices

d G d
Δ = max(d) w G (w) = ΔdegG

d′

d ′ Δ d
Δ

w
Δ

S

S Δ w
G

(w) = SNG w d ′

(w) ≠ SNG

w x ∈ S α ∉ S

| (w) ∩ S|NG w
S

G∗

G∗ (w) = SNG
∗

w G∗ d ′

d ′

d ′

G′ n− 1 , , … ,v1 v2 vn−1

( )degG′ vi d ′

Δ
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  - Recall  was obtained by removing the largest element  from  and subtracting 1  

    from the next  largest elements.  

  - In reverse, to recover , we must add a new vertex  with degree  and connect it  

    exactly to those  vertices that were each reduced by 1.  

3. Constructing 

  - In , pick the  vertices that “lost 1” when forming  from .  

  - Add a new vertex  to . Then, create edges from  to precisely these  

     vertices.  

4. Resulting Degrees

  - The new vertex  has degree .  

  - Each of the chosen  vertices in  gains 1 in degree, returning to their original  

    degree values as specified by .  

  - All other vertices remain at their same degrees from .

5. Conclusion

  - The resulting graph  on  vertices realizes the sequence .  

  - Hence, if  is graphic,  must also be graphic.

Theorem 2: Graph Transformations via 2-switch

Theorem 2. (Fulkerson–Hoffman–McAndrew [1965], Berge [1970]). Let  and  be graphs on the same vertex set . Then  can be transformed into  by a finite

sequence of 2-switches if and only if  for all .

Necessity Proof

Suppose there is a finite sequence of 2-switches that transforms  into . Concretely, assume we have 

Each  is obtained from  by performing exactly one 2-switch. We claim that for every vertex , the degree  remains invariant throughout these

transformations. Hence  for all .

To see why the degree remains invariant, recall the definition of a 2-switch:

A 2-switch involves choosing four distinct vertices  such that

d ′ Δ d
Δ

d w Δ
Δ

G

G′ Δ d ′ d
w G′ w

Δ

w Δ
Δ G′

d
G′

G n d
d ′ d

G H V G H
(v) = (v)dG dH v ∈ V

G H G = … = H.G0 − →−−−
2-switch

G1 − →−−−
2-switch

− →−−−
2-switch

Gk

Gi Gi−1 v ∈ V deg(v)
(v) = (v)dG dH v ∈ V

{x,y, z,w}
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 either the edges  and  exist while  and  do not,  

 or vice versa.  

Applying a 2-switch replaces the two existing edges with the two missing edges (or the other way around).

In either case, each of the four involved vertices loses exactly one edge and gains exactly one edge, keeping its degree the same. Any vertex not involved in that specific 2-

switch remains unaffected, so its degree does not change. Consequently, every vertex  has the same degree in  and  for all .

By iteration,  for all . Since , we conclude that  for every . Thus  and

 coincide.

This completes the necessity part of the proof. 

Sufficiency Proof

We now show that if  for all , then  can be transformed into  by 2-switches.

We proceed by induction on :

Base Case ( ):**

When there are at most 3 vertices, any given degree sequence is realized by at most one graph (with labels). Thus if , then  and  must be the same graph already

—no 2-switch is required.

Inductive Step ( ):**

Assume that for any graph on fewer than  vertices, sharing the same degree sequence implies transformability by 2-switches. We prove the statement for -vertex graphs.

1. Let  be a vertex of maximum degree  in . Since  for all , vertex  also has degree  in .

2. Choose an arbitrary set  of size . By repeatedly applying 2-switches, we can ensure ’s neighbor set in  becomes exactly . We do this by removing

any “unwanted” neighbor  and replacing it with some “missing” neighbor  using a suitable 2-switch. Denote the resulting graph by .

3. Perform the same procedure in  to obtain , where  has neighbor set .</li>

4. Now remove  from both  and . Let

   and .  

  Since  had the same set  of neighbors in both  and , every other vertex  has the same degree in  and .  

5. By the induction hypothesis (on  vertices),  can be transformed into  by 2-switches. Those 2-switches do not involve  and thus can be carried out within ,

leaving  unaffected.

(x, y) (z,w) (x, z) (y,w)

v Gi−1 Gi i = 1, … ,k

(v) = (v) = ⋯ = (v)degGk
degGk−1

degG0
v ∈ V = HGk (v) = (v)degH degG v ∈ V dG

dH

□

(v) = (v)dG dH v ∈ V G H

|V |

|V | ≤ 3

=dG dH G H

|V | = n ≥ 4

n n

w Δ G (v) = (v)dG dH v w Δ H
S ⊆ V ∖ {w} Δ w G S
α ∉ S β ∈ S G∗

H H ∗ w S

w G∗ H ∗

= − {w}G′ G∗ = − {w}H ′ H∗

w S G∗ H∗ v ≠ w G′ H ′

n − 1 G′ H ′ w G∗
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  Hence  transforms into .  

6. Finally, invert the 2-switches used to form  from , thereby converting  back into  (2-switches are reversible).

Combining these transformations, we obtain a finite sequence of 2-switches converting  into . This completes the proof by induction.

Python Implementation of Havel–Hakimi

Below is a concise Python example illustrating the Havel–Hakimi algorithm. It checks whether a degree list is graphic by repeatedly removing the largest degree, subtracting 1

from the appropriate number of subsequent entries, and ensuring no negative degree arises: Note: The code can be downloaded from this link

(https://github.com/otter275/Degree-Sequence-MATH-6404/blob/main/havel-hakimi.py).

def havel_hakimi(deg_seq):

    """

    Determines if a given degree sequence is graphic using the Havel-Hakimi algorithm.

 

    Parameters:

    deg_seq (list of int): A list of nonnegative integers representing the degrees.

 

    Returns:

    bool: True if the sequence is graphic, False otherwise.

    """

    # Step 1: Sort the sequence in descending order for convenience.

    seq = sorted(deg_seq, reverse=True)

 

    while True:

        # Step 2: Remove all zeros (any vertex with degree 0 doesn't affect the process).

        seq = [d for d in seq if d > 0]

 

        # If the sequence is empty after removing zeros, it means all degrees are satisfied -> graphic

        if not seq:

            return True

 

        # Sort again in descending order to ensure we always pick the largest remaining degree first

        seq.sort(reverse=True)

 

        # Step 3: Take the first (largest) element, call it D

        D = seq[0]

        # Remove that element from the sequence

        seq = seq[1:]

 

        # If D is larger than the length of the remaining list, we can't subtract from enough vertices

        # -> not graphic

        if D > len(seq):

            return False

 

        # Step 4: Subtract 1 from the next D elements

        for i in range(D):

            seq[i] -= 1

            # If any element goes below 0, it means there's an impossible requirement -> not graphic

G∗ H∗

H ∗ H H ∗ H

G H
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            if seq[i] < 0:

                return False

        seq.sort(reverse=True) # keep order

 

def example_usage():

    """

    Demonstrates how to use the havel_hakimi function.

    """

    # Example degree sequence

    example_list = [3,3,2,2,2,1]

 

    # Print "Graphic?" if the sequence is graphic, otherwise "Not Graphic"

    print("Graphic?" if havel_hakimi(example_list) else "Not Graphic")

This implementation can be extended to construct an actual graph structure (e.g., adjacency list) once the sequence is confirmed to be graphic, by tracking which vertices are

decremented in each step.

Concluding Remarks

We have demonstrated the Havel–Hakimi theorem in full:

Necessity: If  is graphic, so is .

Sufficiency: If  is graphic, then  is also graphic.

Hence  is graphic if and only if  is graphic. This proof (combined with the constructive approach) underpins the Havel–Hakimi algorithm’s effectiveness in testing and

realizing degree sequences.

GitHub Repository

Degree Sequence Project Repository (https://github.com/otter275/Degree-Sequence-MATH-6404)
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Denver Fire Response Distances

From CU Denver Optimization Student Wiki

This page is for the Fall 2020 Linear Programming project by Sandra Robles and Hope Haygood. In this project, we seek to find the optimal assignment of fire stations to fire

(arson) crimes committed over the past 5 years in the Denver metropolitan area.
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Abstract

Being able to respond to arson calls effectively, efficiently, and quickly is a topic of pivotal interest for fire departments everywhere. The time it takes to drive from the fire

station to the scene of the fire needs to be as small as possible in order to ensure the damage is contained. Through methods of linear programming, we show that the choice of

fire stations to respond to a set of arson incidents can be optimized in view of minimal overall driving distances between fire stations and incidents, while balancing responses

among stations. Our results deviate from general response rules, which leads to policy suggestions for improvements in a coordinated response among fire departments.

We use arson incident data provided by the County of Denver for the Denver Metro area to provide a proof of concept for our methods. Our approach includes visualization

techniques to show possible patterns of fires and to recommend locations for new fire stations.
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Fire stations in Denver county

Overview & The Data

The County of Denver provides its citizens with a data repository (https://www.denvergov.org/opendata) detailing the minutia of life from the perspective of a local

government. One of these datasets contains all crime (https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-crime) that has transpired within country

boundaries for the last 5 years. This dataset contains arson crimes, which are the focus of our paper.

Arson is defined (https://www.merriam-webster.com/dictionary/arson) as "the willful or malicious burning of property (such as a building) especially with criminal or

fraudulent intent". It is also an event that is very time sensitive for first responders, as even seconds can make the difference between partial and full destruction from the fire.

In the last 5 years there have been 684 cases of arson within the county.

These cases of arson can be separated into the following subtypes, which specify what type of item or location was enveloped in fire: business, public building, residence,

vehicle, other.
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Location of each arson, by type of arson.

Methods

Our project uses an unbalanced assignment problem. This type of linear program is a close sibling to the classic transportation problem. A transportation problem is a type of

LP where we have a set of m supply points with non-zero supplies  and some sort of transportation cost  between these. An assignment problem will just be this set up,

but where the supply and demand are both one. Formally, we define it as:

Such that:

si cij

min( )∑
i∈n

∑
j∈m

cijxij

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:F20_arsonbytype.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:F20_arsonbytype.png


 for all 

Said in simpler terms, an assignment problem seeks to assign 'workers' to 'tasks' in such a way that the overall cost (measured in whatever units are relevant to the problem) is

minimized.

A hurdle with our data stems from the fact that we have significantly more arson cases than there are available fire stations. This results in our assignment problem being

unbalanced. This is a problem because an assumption of the Assignment problem is that the  are equal in size -- meaning, the matrix is square. A naive recommendation

(https://en.wikipedia.org/wiki/Assignment_problem#Unbalanced_assignment) is to take an unbalanced problem and turn it into a balanced problem by adding as many dummy

rows in either i or j as is needed until equality in size is achieved.

We chose to use Python's SciPy's implementation of the assignment problem,linear_sum_assignment

(https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html), which can implement a generalized assignment problem without the need to

constrain the problem to a square matrix.

Results

We saw that our LP recommended a fire station respond outside of its fire district on 78% of instances.

Sample Output from our program

Column ‘arson_district’ is the district in which the fire occurred
Column ‘firestation’ is which station in which the Linear Program recommends to respond to the fire
Column ‘District’ is the district of the fire station that the Linear Program says should respond
Column ‘different_district’ triggers FALSE if the responding fire station is outside of the district in which the fire occurred.

= 1∑
i∈n

xij i ∈ n

>= 0xij

i, j
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Plot showing which fires should be attended by stations outside of their fire district. 'True' indicates the responding fire station belongs to the same fire district as the location of

the fire.

Policy

Our results show that a majority of fires could be attended by fire stations closest to them, even if outside of their fire district. As such, there is strong evidence to suggest

heightened communication between the districts would greatly improve the response to fires. We hope that by minimizing the response times to these fires through open

district communication, these crimes of arson can be less damaging.

Further, this is likely indication that building more fire stations would be beneficial.

Code and Presentations

https://github.com/srobles09/Minimizing_Arson (Github contains the code and presentations)
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Introduction

When working with geographic data on a local level (such as the data sets available on the Denver (https://www.denvergov.org/opendata) and Colorado

(https://data.colorado.gov/) open data websites, you may notice that some data sets use x and y coordinates, not latitude and longitude. These coordinates are coded using the

State Plane Coordinate (SPC) system. The SPC system is a set of 124 coordinate systems spanning the entire United States. The boundaries between zones are made on the

county level. These coordinate systems are highly accurate and generally more convenient when working in two dimensions. Thus they are preferred over latitude and

longitude in many civil engineering and surveying applications, which is why they are included in city and county level data.

Another important two dimensional projection to be aware of is the Universal Transverse Mercator (UTM) coordinate system.

UTM is a global projection, dividing the earth into sixty-six degree longitude strips running north to south. Unlike longitude,

these strips do not vary uniformly in width so care must be taken the closer a projection gets to the poles.

Colorado

There are three state plane coordinate systems in Colorado: north, south and central. There are two UTM zones that cross

Colorado, but, for convenience, all references in Colorado are made to only one, zone 13.

Abbreviation Code Designation Origin Longitude Origin Latitude

CO N 501 North 105o30'W 39o20'N

CO C 502 Central 105o30'W 37o50'N

CO S 503 South 105o30'W 36o40'N
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Colorado state plane coordinate systems (blue is

north, fuschia is central, green is south)

Note that Denver is in Central, as are most of the surrounding counties, but counties just north of Denver (Adams, Boulder,

Broomfield) are in North. If using data from these two areas be extremely careful to ensure that you are using the correct

projections.

Working with Alternate Coordinate Systems

Check carefully what coordinate system your data is in. If all the data is using the same coordinate system, you can use the

coordinates without much trouble. Unfortunately, there is no easy metric to converting SPC coordinates to (for example)

latitude and longitude. Individual points can be entered into online conversion tools (this one

(http://www.earthpoint.us/StatePlane.aspx), from Earthpoint is very good). In addition, GIS Software (such as QGIS

(https://www.qgis.org/en/site/)) is able to make the conversions for you, provided you specify the correct projection (more on

that (here).

The Auraria Library maintains a GIS expert on staff, Diane Fritz (https://library.auraria.edu/about/staff-directory/diane-fritz), who is available to meet by appointment

(https://ucdenver.co1.qualtrics.com/jfe/form/SV_cYmzZtsxNgoFHx3) to assist you. The Auraria Library also has computers dedicated to working with GIS information that

you can use.

Resources

Auraria Library (https://library.auraria.edu/).

Covert State Plane to Latitude and Longitude (http://www.earthpoint.us/StatePlane.aspx).

State Plane Coordinate System. (https://en.wikipedia.org/wiki/State_Plane_Coordinate_System) Wikipedia.

Universal Transverse Mercator coordinate system (https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system) Wikipedia.

Information page (https://www.codot.gov/business/designsupport/cadd/tips-tricks/miscellaneous/misc-tip-survey-coordinate-system.pdf) from CDOT concerning the State

Plane Coordinate System in Colorado.

Information from NOAA (https://geodesy.noaa.gov/library/pdfs/NOAA_SP_NOS_NGS_0013_v01_2018-03-06.pdf) including maps of all US SPCS zones.

SPC Information (http://stateplane.ret3.net/#UT) for every county in the United States.

Motivation

This page is an attempt by Kathleen_Gatliffe to answer questions that came up during the Fall 2018 session of MATH 5593: Linear Programming. Edits are encouraged!
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This page was last modified on 2 December 2018, at 13:21.

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Countymap.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Countymap.png
http://www.earthpoint.us/StatePlane.aspx
http://www.earthpoint.us/StatePlane.aspx
https://www.qgis.org/en/site/
https://www.qgis.org/en/site/
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Data_Visualization_Using_QGIS
https://library.auraria.edu/about/staff-directory/diane-fritz
https://ucdenver.co1.qualtrics.com/jfe/form/SV_cYmzZtsxNgoFHx3
https://ucdenver.co1.qualtrics.com/jfe/form/SV_cYmzZtsxNgoFHx3
https://library.auraria.edu/
http://www.earthpoint.us/StatePlane.aspx
https://en.wikipedia.org/wiki/State_Plane_Coordinate_System
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://www.codot.gov/business/designsupport/cadd/tips-tricks/miscellaneous/misc-tip-survey-coordinate-system.pdf
https://geodesy.noaa.gov/library/pdfs/NOAA_SP_NOS_NGS_0013_v01_2018-03-06.pdf
http://stateplane.ret3.net/#UT
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Kathleen_Gatliffe
https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Denver_Government_Coordinate_Systems&oldid=1871


This page has been accessed 17,654 times.



Number of hate crimes reported nationally and

in Denver, by year, 2010-2017.

Denver Hate Crime Mapping: Visualizing Fluctuations through Linear

Programming

From CU Denver Optimization Student Wiki
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Abstract

Bias-motivated crime--criminal acts galvanized by prejudice--showed an uptick in the year 2017 after holding relatively

steady in the United States for over a decade. This surge in domestic extremism has awakened concerns about public safety.

These crimes are of special interest to the Federal Bureau of Investigation and thus many police departments, including

Denver, collect information on the bias-motivated crimes committed within their communities and share it with the national

database. This data is available from 2010 to 2018 and is updated frequently. The number of bias-motivated crimes reported in

Denver also increased in 2017, similar to the national trend, while the crimes reported to date for 2018 suggest that this year will be equally high. In this project, linear

optimization techniques were applied to the data released to the public by the Denver Police Department. This research detected patterns of interest, some matching national

trends and others in opposition.

Introduction to Bias Motivated Crime

Bias motivated crime, commonly called hate crime, are acts committed against a person or persons in an attempt to victimize an entire group of people.

In Colorado, protected categories include: disability, ethnicity, gender identity, race, religion, and sexual orientation. The Federal Bureau of Investigation also considers hate

crimes by gender, but these are tracked in Denver.

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Screenshot_2018-11-29_12.20.17.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Screenshot_2018-11-29_12.20.17.png


Percentage of various types of hate crime in Denver, by year, 2010-

2017.

National statistics are gathered monthly by the FBI as part of their Uniform Crime Reporting (UCR)

program and summary data is released in a yearly report. Several Colorado agencies contribute, including

the Denver Police Department.

Reported hate crimes in Denver tend to follow national trends, but due to the relatively small number of

reported crimes, fluctuations can appear magnified. In addition, hate crime is tends to be underreported

meaning that increases in reported crime may reflect growing awareness of the issue on the part of the

public and not an escalation in bias motivated crime.

Bias motivated crime was high at the beginning of the decade, but declined over the next few years, only to

surge again in 2016-2018. Since 2010, the percentage of crimes motivated by race and religion bias in

Denver tends to be much lower than the national average. Denver tends to report a higher percentage of

crimes related to sexual orientation than the national average. Crimes related to ethnicity (primarily crimes

against the Latino community) have increased in Denver, exceeding the national average, especially in

recent years. Denver has also seen a dramatic increase in crimes related to gender identity in the past two

years, far beyond the national average.

Methods

This project used a linear sum assignment problem to connect crimes committed in one year to another. While assignment problems tend to be used to connect people and jobs,

or resources and plants, they can also be used to show spatial shifts.

The mathematics is relatively simple. Choose two years. Let  denote the crimes in the earlier year, and  be the crimes in the following year. Define the Euclidean distance

between locations to be  and let  be a Boolean variable that is true is there is a connection between  and , and false otherwise . We choose our objective function

to be the minimization of the summation of all distances.

We have two classes of constraints. Without loss of generality, we set the assignments emerging from each origin equal to one,

 for all 

Since there tend to be a different number of origin  and destination  crimes, the destination constraint is that the assignments to each destination are equal to the ratio

between the number of origins and destinations,

i j
ij)c( ij)x( i j

min( )∑
i∈S

∑
j∈D

cijxij

= 1∑
i∈S

xij i ∈ S

nS nD
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Bias motivated crime in Denver for the years 2011 and 2014, linked by

assignment.Yellow dots depict reported crimes 2011 and orange dots depict crimes in

2014.

 for all 

Analysis and Results

Case Study: 2011-2014

In this project two assignments were analyzed. Since there were major changes between

2010 and 2018, three years were chosen, 2011, 2014, and 2017, three years apart.

Between 2011 and 2014, reported hate crimes decreased in Denver.

Reported hate crimes were scattered throughout the city in 2011, often occurring near major

roadways.

BY 2014, we see hate crime condensing into downtown with isolated incidents in less

travelled areas. Hate crimes in Five Points and North Capitol Hill moved from major roads

onto side streets.

Case Study: 2014-2017

From 2014 to 2018 there was a dramatic increase in hate crimes in the city.

By 2017 the reported numbers were equal to where they were in 2010. New hot spots

developed in 2017, including Hampden and the neighborhoods near Ruby Hill Denver

University also was a target with numerous reports of anti-Jewish activities. Numerous hate

crimes remain in Downtown, but now center on the Union Station transit center and Arapahoe.

The increase in 2017 seems to be primarily driven by increased reports of criminal mischief, and may not indicate increased aggression and danger.

Discussion

The use of an assignment problem creates an new tool for visualizing changes in criminal activity. Coupled with the associated statistics, the linear sum assignment model can

provide new information on crime location.

References

Burkard R.E., Çela E. (1999) Linear Assignment Problems and Extensions. In: Du DZ., Pardalos P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA

Fourer, R. 2011. Assigning People in Practice (https://ampl.com/MEETINGS/TALKS/2011_01_Chiang_Mai_Plenary.pdf). Chiang Mai University International Conference.
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Bias motivated crime in Denver for the years 2014 and 2017, linked by

assignment.Yellow dots depict reported crimes in 2014 and orange dots depict crimes

in 2017.

Hauslohner, A. 11 May 2018. Hate Crimes Jump for Fourth Straight Year in Largest U.S.

Cities, Study Shows. (https://www.washingtonpost.com/news/post-

nation/wp/2018/05/11/hate-crime-rates-are-still-on-the-rise/?

noredirect=on&utm_term=.a597d2eaa2f8) Washington Post.

Luenberger, D.G. and Ye, Y. 1973. Linear and Nonlinear Programming. Springer.

Hate Crime Statistics Act. (https://en.wikipedia.org/wiki/Hate_Crime_Statistics_Act)

Wikipedia.

Motivation

This is Kathleen Gatliffe's Fall 2018 project for MATH 5593: Linear Programming taught

by Steffen Borgwardt (http://math.ucdenver.edu/~sborgwardt/). This project uses the Hate

Crimes (https://www.denvergov.org/opendata/dataset/hate-crimes) database from the

Denver Open Data Catalog (https://www.denvergov.org/opendata/).

This project was performed in AMPL (https://ampl.com/), R (https://www.r-project.org/),

and QGIS (https://www.qgis.org/en/site/). This project will be presented at the Auraria

Library's Data to Policy (https://library.auraria.edu/d2pproject) event on the 30th of

November, 2018.

Resources

The code (https://github.com/Kgatliffe/DenverBiasMotivatedCrimes) and other files

produced for this project.

Project data (https://www.denvergov.org/opendata/dataset/hate-crimes), last collected 10 October, 2018.

National yearly statistics summaries (https://www.fbi.gov/investigate/civil-rights/hate-crimes#Hate-Crime%20Statistics) from the Federal Bureau of Investigation.

Additional information on methods can be found at Data Visualization Using QGIS and Denver Government Coordinate Systems

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?
title=Denver_Hate_Crime_Mapping:_Visualizing_Fluctuations_through_Linear_Programming&oldid=1834"

This page was last modified on 29 November 2018, at 23:06.
This page has been accessed 6,414 times.
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Derivation of Blood Flow as a Network Flow

From CU Denver Optimization Student Wiki

The circulatory system, also known as the cardiovascular system, is an organ system that permits the circulation of blood to transport oxygen, carbon dioxide, nutrients (such as electrolytes and amino
acids), blood cells and hormones to and from the cells in the body in order to to provide nourishment and maintain homeostasis, stabilize temperature and pH, and fight diseases. The circulatory system
also includes the lymphatic system which helps rid the body of toxins, cellular debris and other waste products. Signs of poor circulation can include dizziness, migraines, varicose veins, numbness, cold
hands and feet, and pain in your feet and legs. Untreated poor circulation can lead to high blood pressure, stroke, reduced recovery from strenuous exercise and physically demanding work, a weakened
immune system, kidney damage and can also be associated with diabetes, metabolic syndrome and other diseases.

Numerical simulation combining Hemodynamics (the study and transmission of blood flow) with the application of modelling the function of the heart as a network flow might just prove to be an
invaluable tool that will help us better understand the function of the circulatory system given the specific scientific criteria. We might be able to better assess poor circulation and/or in detecting a stroke
or some other kind of cardiac dysfunction and any other associated diseases before it occurs, and help improve in treating certain health conditions and injuries that might now be less surgery invasive
while maximizing optimal blood flow to enhance the healing and recovery process.

The goal of this project is to determine if we can derive any clinical relevance in the application of modelling the function of the heart and blood flow as a network. Given that there is clinical significance
in our described application, this could one day result in better prevention and treatment of strokes, cardiac dysfunction and any other associated diseases, a better protocol in the training and recovery of
athletes, and in enhancing the effects in Sports, Massage and Physical Therapy by optimizing blood flow in the treatment of the specific injured body part.

We will first introduce some basic and important concepts of physiology pertaining to the function of the heart and blood flow and will then translate these physiological mechanisms to a network flow.

Contents
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2 Variables That Can Affect Blood Flow and Blood Pressure
3 Poiseuille’s equation and Compliance
4 The heart as a network flow

4.1 Basic formulations
4.2 Problem derivation

5 Simplified model
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6 Conclusion and Future Work
7 References

Basic anatomy and physiology of the heart

The human heart is a hollow muscular organ that pumps blood filled with oxygen and nutrients (via the arteries) to the body, after dropping off the oxygen and nutrients to the body (via the capillaries),
the now deoxygenated blood returns back to the heart (via the veins). The human heart has four chambers: two upper chambers (the atria) and two lower ones (the ventricles). According to the National
Institutes of Health, the right atrium and right ventricle together make up the "right heart," and the left atrium and left ventricle make up the "left heart." As the heart pumps blood through the body, it is
divided into the circulatory and pulmonary systems. The circulatory system consists of the heart pumping the oxygenated blood from the left ventricle to the body and the now deoxygenated blood returns
to the right atrium of the heart. The pulmonary system consists of the heart pumping the deoxygenated blood from the right ventricle to the lungs in order to pick up the oxygen and the now oxygenated
blood then returns from the lungs to the left atrium of the heart.

Blood is made up of plasma, red blood cells, white blood cells and platelets. In addition to blood, the circulatory system moves lymph, which is a clear fluid that helps rid the body of unwanted material.
Blood pressure is also of vital importance pertaining to the function of the heart and it is referred to as the pressure in large arteries of the systemic circulation. This is further expressed in terms of theTypesetting math: 100%



systolic pressure (contraction of the heart given a single heart beat) over diastolic pressure (relaxation of the heart that is between two heart beats) and is measured in millimeters of mercury (mmHg),
above the surrounding atmospheric pressure (considered to be zero for convenience). Normal blood pressure of the heart is considered to be 120 (Systole)/80 (Diastole) of mercury (mmHg).

In the average human, about 2,000 gallons (7,572 liters) of blood travel daily through about 60,000 miles (96,560 kilometers) of blood vessels[1]. An average human's heart pumps about 4.7 to 5.6 liters of
blood per minute.

Variables That Can Affect Blood Flow and Blood Pressure

Cardiac Output:

Cardiac Output is the amount of blood the heart pumps through the circulatory system in one minute. In other words, CARDIAC OUTPUT =  (Heart rate)  (Stroke Volume). Stroke Volume is
defined as the amount of blood pumped by the left ventricle of the heart in one contraction (heartbeat). While at rest (for example sitting at home reading a book), a normal healthy male about 25 years of
age that weighs about 70 kg with a resting heart rate of 70 bpm (beats per minute) and has a stroke volume of 70 ml per heartbeat has a cardiac output where his heart pumps about 4.9 L of blood in one
minute. A world class endurance athlete during a high intensity bike ride however, can have a cardiac output of 35 L in one minute.

Compliance:

Compliance is the ability of any compartment to expand to accommodate increased content. A metal pipe, for example, is not compliant, whereas a lung is as it has the ability to expand. The greater the
compliance of an artery, the more effectively it is able to expand to accommodate surges in blood flow without increased resistance or blood pressure. Veins are more compliant than arteries and can
expand to hold more blood. When vascular disease causes stiffening of arteries, compliance is reduced and resistance to blood flow is increased. The result is more turbulence, higher pressure within the
vessel, and reduced blood flow which also causes the heart to work harder.

Volume of the Blood:

The relationship between blood volume, blood pressure, and blood flow is considered to be very intuitive. Just as water may slightly trickle along a creek bed in a dry season, but then it can rush quickly
and under great pressure after a heavy rain, the same can be said if blood volume decreases, then its pressure and flow will decrease and if blood volume increases, then its pressure and flow will increase.

Viscosity of the Blood:

Viscosity is the measure of resistance of a fluid to flow. A fluid that is highly viscous has a high resistance (like having more friction) and flows slower than a low-viscosity fluid. In other words, the
viscosity of blood is directly proportional to resistance and inversely proportional to flow; therefore, any condition that causes viscosity to increase will also increase resistance and decrease flow. For
example, imagine sipping water, and then a milkshake, through the same size straw. You will experience more resistance and therefore less flow from the milkshake. Conversely, any condition that causes
viscosity to decrease (such as when the milkshake melts) will decrease resistance and increase flow.

Blood Vessel Length and Diameter:

The length of a vessel is directly proportional to its resistance: the longer the vessel, the greater the resistance and the lower the flow. As with blood volume, this makes intuitive sense, since the increased
surface area of the vessel will impede the flow of blood. Likewise, if the vessel is shortened, the resistance will decrease and flow will increase. In contrast to length, the diameter of blood vessels changes
throughout the body, according to the type of vessel. A slight increase or decrease in diameter causes a huge decrease or increase in resistance. This is because resistance is inversely proportional to the

radius of the blood vessel (one-half of the vessel’s diameter) raised to the fourth power . This means, for example, that if an artery or arteriole constricts to one-half of its original radius, the

resistance to flow will increase 16 times. And if an artery or arteriole dilates to twice its initial radius, then resistance in the vessel will decrease to 1/16 of its original value and flow will increase 16
times.

Poiseuille’s equation and Compliance

Jean Louis Marie Poiseuille was a French physician and physiologist who devised a mathematical equation describing blood flow and its relationship to known parameters. The same equation also applies

to engineering studies regarding the flow of fluids. This equation is mostly focused on the three critical variables: radius ( ), vessel length ( ), and viscosity ( ).

Poiseuille’s equation Blood flow = 

HR ×SV

(R = )1
r4

r L μ

πΔPr4

8μL
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One of several things this equation allows us to do is calculate the resistance in the vascular system. Normally this value is extremely difficult to measure, but it can be calculated from this known
relationship:

If we rearrange this slightly,

Then by substituting Pouseille’s equation for blood flow:

By examining this equation, you can see that there are only three variables: viscosity, vessel length, and radius, since 8 and π are both constants. The important thing to remember is this: Two of these
variables, viscosity and vessel length, will change slowly in the body. Only one of these factors, the radius, can be changed rapidly by vasoconstriction and vasodilation, thus dramatically impacting
resistance and flow. Further, small changes in the radius will greatly affect flow, since it is raised to the fourth power in the equation.

The heart as a network flow

In order to derive the whole cardiac cycle (One cardiac cycle is defined as the contraction of the two atria followed by contraction of the two ventricles (Sequence of events that occur when the heart

beats)) as a network flow, we need to identify several important components as the basic assumption of a network. The basic setup for a graph is given by , where  is the node set, and 

represent the connectivity between any two nodes in the node set (arc), and the flow of the network is denoted by , where each arc has its corresponding upper capacities .

Basic formulations

Given the Basic Anatomy and Physiology of the heart Section, we know that the heart pumps oxygenated blood from the left ventricle to the organs and tissues of the body courtesy of the arteries. In this
application, we setup the node as any tissue or organ of the body that receives the oxygen and nutrients from the delivery of the oxygenated blood. We also let the blood vessel (arteries and veins) to be a
direct arc that transmits the blood to flow to another body part. The compliance of the blood vessel will then determine the upper capacity for each arc, . The following table shows the basic setup for

the graph:

Given the laws of fluid mechanics[2], we consider the blood flow in a single distensible vessel subjected to constant, nonpulsatile flow. For ease of exposition, assume Poiseuille flow (pressure induced

flow) within the vessel. If a vessel segment is modeled as a distensible right circular cylinder and entrance effects are ignored, the upper capacity of each arc can be determined by

ΔP : represent the pressure difference.

r : the radius of the vessel to the fourth power.

μ : the viscosity of the blood.

L : the length of a blood vessel.

Blood flow =
ΔP

Resistance

Resistance =
ΔP

Blood flow

Resistance =
8μL

πr4

G(N ,A) N A
x uij

uij

N : node set ,  important tissue or organ of the body that receives the oxygen and nutrient from the oxygenated blood.

A : arc set(direct) ,  blood vessel(arteries and veins).

x : a flow, unit determined by Cardiac Output or blood pressure divided by the total peripheral resistance.

: upper capacity, determined by the compliance of the blood vessel (arteries or veins).uij
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Illustration of the heart as a network[3].

where  denote the pressure,  is vessel length,  is blood viscosity,  is vascular flow, and  is vessel diameter. Based on the assumption corresponding to the structure of the circulation, there is no

negative cycle in our graph.

Problem derivation

It is a fact that if we have an increase in healthy blood flow, then the increased delivery of oxygen and nutrients will accelerate the healing

process given any open wound injury[4].

Given our definition of cardiac cycle and cardiac output from an earlier section and our goal which will then be to try and maximize blood
flow to a specific body part that will result in having a bigger delivery of blood and oxygen in the capillary of the specific body part, we have
the following setup that will help allow us to derive the problem as a max flow problem:

These basic constraints also meet the conservation law in fluid mechanics. To solve this particular max flow problem, we need to set the
source node  and the sink node  which will be sending out the blood flow and the node we want to maximize the blood flow. The circulatory system will then start from the left ventricle (source node)
and will then pump the oxygenated blood depending on the different goal(specific tissue) that we would like to achieve, in which we will then have a different setup of the sink node and the arcs for the
max flow problems:

Cardiac cycle as different networks

Type of Circulation Networks

Systemic Circulation

Network #1
Source Node: Left Ventricle
Sink Node: Right Atrium
Arcs: Arteries and Veins

Network #2
Source Node: Left Ventricle
Sink Node: Capillaries of issue
Arcs:Arteries

Network #3
Source Node: Capillaries
Sink Node: Right Atrium
Arcs:Veins

Pulmonary Circulation

Network #4
Source Node: Right Ventricle
Sink Node: Left and/or Right Lung
Arcs: Pulmonary Artery

Network #5
Source Node: Left and/or Right Lung
Sink Node: Left Atrium
Arcs:Pulmonary Veins

In this project, we focus on the second network of systemic circulation.

Simplified model

The traditional methodology for solving the heomodynamics problem has a very large amount of computational cost. From the previous section, these concepts may help in describing blood flow system
given the systemic circulation. However, the complexity of the vessel may lead to a huge network wherein it will increase quite a bit of construction for a node adjacency model. In the following section,

we used geometric properties of arteries to simplify the network[2].

= d = F ⋅ d > 0uij Pij

128μ

πD4
Lij

P L μ F D

maxv
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Reconstruction of large arteries: (a) segmentation, (b) extracted centerlines, and (c) 3D

core graph.[5]

Derivation of systematic circulation to graph.[6]

Blood vessel as network

There are networks that can be used in the modeling of blood flow that are incorporated with other physiological

processes in tubular structures[5]. In order to help simplify the intricate blood vessel model we can break into sub-
problems, which will include all the important nodes such as the capillaries and lungs. We will neglect the small
capillary on the aorta in which it has a relatively small radius.

We use the above formulation to simplify and construct a network that can derive the blood flow, and since the end of
the capillary might not have the sink node connect to them, therefore, we add the sink node that connect with the end of
the capillary.

To solve such a maximum flow problem, we will use the pre-flow push algorithm to solve this problem, based on the
branching structure of the graph.

Conclusion and Future Work

This project has introduced a computationally economical method in attempting to increase blood flow from the human
heart towards a specific body part in which it decreases the cost in building the structure of the blood vessel and saving
the computational cost from solving the conservation equations. However, given certain time restraints and so many
other variables that still needs to be considered, there may still be several questionable factors to consider. For example,
the upper bound of each arc may not be rational in which this might lead the algorithm into an infinity loop. Also, this
derivation did not factor in certain properties of hemodynamics such as the velocity-dependent viscosity of blood and
also, the branching of the capillary may not have been accurately computed especially since we needed more time and
better computational instrumentation. Given our future research, we do hope to equate for other variables (Cardiac
Output, Total Peripheral Resistance, Compliance, Blood Pressure) regarding maximizing blood flow while minimizing
the cost of the heart function and we will also investigate into incorporating such algorithms as Dijkstra's Algorithm and

the Ford-Fulkerson Algorithm[7] while considering maximum flow and circulation minimum cost flow problems in
order to use these modalities regarding increasing blood flow to a certain body part, or looking at certain variables given
their costs during blood flow in hopes of detecting strokes and cardiovascular disease or manipulating maximal and
minimal blood flow in certain areas that will allow for optimal surgery planning.
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Introduction

For the spring 2024 section of combinatorial optimization I worked on a project exploring a few different implementations of Dijkstra's shortest path algorithm. This algorithm

determines all shortest paths between a designated source node and all other nodes in a network with nonnegative arc lengths. Through the use of clever data structures, the

implementations explored in this project either reduce the running time of the algorithm in practice or focus on improving the algorithm's worst case complexity.

Abstract

The shortest path problem is one of the most common problems in network flows. This can be attributed not only to the ubiquity of practical applications where determining

the shortest (alternatively cheapest, quickest) path between two points in a network lies at the heart of a problem, but also because the shortest path problem oftentimes will

arise as a sub-problem when one is solving other, more complex combinatorial optimization problems in a given network. One of the most common algorithms for solving the

shortest path problem is Dijkstra's algorithm. This is a label-setting algorithm capable of determining the shortest path between a designated source node and all other nodes in

a network with nonnegative arc lengths. In this project we explore three variations of Dijkstra's algorithm where researchers have shown that by using slightly different data

structures either the practical running time or the worst case complexity of the algorithm can be improved upon.
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Recap of Dijkstra's Algorithm

Given a directed network  with nonnegative arc lengths and source node , Dijkstra's algorithm computes the shortest path between the source and all other

nodes. This is accomplished by maintaining an array of distance labels  for each node  in the network. At each iteration the node set  is partitioned into two sets:  and

. The nodes  are those which are permanently labeled and so  is the length of the shortest path from  to . The nodes in  are designated as temporarily labeled;

for , the label  is an upper bound on the length of the shortest path between  and . The algorithm begins by assigning a permanent label of 0 to the source node 

and temporary labels of  to all other nodes in the network, so that initially  and . It then proceeds to fan out from the source to adjacent nodes

 and changes their temporary labels from  to the length of the arc between  and . Then, at the next iteration we select that node in  whose label is

minimum, designate this label as permanent and then update the temporary label of nodes in the adjacency list . Once all nodes have been moved from  to  the

algorithm terminates. The correctness of the algorithm relies upon proving the twin inductive hypotheses: (1) that the distance labels for all nodes in  are in fact true shortest

path distances and (2) if  and and the temporary distance label corresponds to a path whose internal nodes consists solely of nodes in , then this distance label does in

fact correspond to the length of the shortest path. The validity of these two hypotheses is what allows us to designate the node with minimum temporary label as permanent,

the crux of Dijkstra's algorithm. [1]:

In it's simplest form Dijstra's algorithm maintains the distance labels in a simple array that needs to be scanned a total of  times, where  is the number of nodes in the

network. There are two fundamental operations involved in updating the array:

1. Node selection: In order to determine which temporary label is minimum, the algorithm must scan all temporary labels. This operation must be performed  times and since

at each iteration one node is moved from temporary to permanent the node selection time is given by

2. Distance updates: After designating node 's label as permanent, we must then update all temporary labels of nodes in . Each of these updates requires  time and

since this must be done for each node in the network the algorithm requires  time for all distance updates. Since

putting all of this together implies that solving the shortest path problem with Dijkstra's algorithm in its simplest form requires  time. The main bottleneck here is node

selection. In what follows we explore some alternative data structures for storing our temporary labels that can reduce the time requirement of node selection.
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Alternative Implementations

Dial's Implementation

As mentioned above, the main bottleneck in terms of computation time for Dijkstra's shortest path algorithm is the node selection procedure[2]: In effect, on each iteration the

temporary labels for nodes in  need to be sorted in order to identify the smallest temporary label and designate it as permanent. Dial's implementation of Dijkstra's algorithm

addresses this bottleneck by storing temporary distance labels in a sorted fashion, thereby bypassing the need to sort all temporary labels at each iteration. The ability to do so

relies upon the clever observation that the distance labels designated as permanent throughout the algorithm form a nondecreasing sequence.

To see why, consider a node  that is permanently labeled  on some iteration. The next step for Dijkstra is to scan the nodes in  and

determine whether or not the temporary labels need to be updated. If a label for  does in fact need to be updated, we relabel it as

where the inequality follows since all arc lengths  are assumed to be nonnegative.

Instead of storing the temporary distance labels in a simple array, Dial's implementation [3]: stores them in a an array of  "buckets", where  denotes the largest arc
length in the network. Since there are  nodes in the network,  represents an upper bound on the distance label of any finitely labeled node and this allows us to store those

nodes with temporary label  in bucket  for . Thus, in the node selection step we need not examine all temporary labels to find the minimum but can

instead scan the buckets  and so on until we find the first nonempty bucket.

If the th bucket is the first nonempty bucket, then since all nodes in this bucket have the same temporary label  and they're all minimal, we can designate each node in the

bucket with the permanent label  and update the temporary labels of all its adjacent nodes. At the next iteration, we need only scan buckets  since as we

mentioned above, all of the updated labels are at least . Checking whether a bucket is empty or not, deleting a node from a bucket, adding a node to a bucket and distance

updates are all  operations. It follows that the distance updates require  time and the scanning of the  buckets is , implying Dial's

implementation is .

Some potential disadvantages to Dial's implementation compared to Dijkstra's original implementation is that if  is large, a large amount of storage is required to be allocated

for the  buckets. Moreover, the running time of the algorithm is pseudopolynomial so if  is in fact large relative to , the running time of Dial's implementation is

strictly worse than Dijkstra's; e.g. if , then Dial's implementation is .

-Heap Implementations

Improvements in the running time can be achieved via even more clever data structures for storing of the nodes in  and their corresponding temporary distance labels. One

such example is the -heap. Before discussing how -heap data structures can be utilized in Dijkstra's algorithm, first we briefly discuss these data structures in their own

right. -heaps are data structures capable of efficiently storing and manipulating a collection  of objects where each object  has an associated real number key,

denoted . The manipulations are relatively basic but include

Create Heap: Creates an empty heap.
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find-min( ): Return the object  of minimum key.

insert( ): add a new object  to  with predefined key.

delete( ): delete object  from the heap.

decrease-key( ): Reduce the key of object  from current value to . Only defined when current value is greater than .

increase-key( ): increase the key of object  from current value to . Only defined when current value is less than .

delete-min( ): Delete the object  with minimum key.

Assuming a -heap has  objects, the operation find-min runs in  time, the insert and decrease-key operations run in  time and the delete, delete-min and

increase-key operations run in  time.

In most applications of heaps to problems in network flows, the elements of  are the nodes and their corresponding keys are some kind of label associated with a node. -

heaps are tree-based data structures where each node in the has up to  children. In the context of Dijkstra's algorithm, the elements of  are those nodes with a finite

temporary distance label and their corresponding keys are their current label. The -heap allows us to efficiently maintain a priority queue of nodes that have yet to be visited

but are candidates for the next step of the algorithm. Given a graph  with  edges,  nodes and source node  the following pseudocode is an example of how a -

heap can be utilized in Dijkstra's algorithm:

When a -heap is utilized as the priority queue in Dijkstra's algorithm, the time complexity can be reduced from the original [2]. The main while loop runs  times as

each node needs to be processed at least once. Inside this loop, we need to perform the extract-min operations  times, yielding a time complexity of . We also need to

perform the delete-min operation  times, yielding a time complexity of . In the worst case, we need to perform the operation decrease-key for each neighbor

of the current vertex, which would imply that the total number of edges processed throughout all iterations is . Then the total time complexity for processing all edges is

. Thus, it follows that the total time complexity of the algorithm is .

i,H i ∈ H
i,H i H
i,H i

i,H i ∈ H v v
i,H i v v

i,H i

d n O(1) O( n)logd

O(d n)logd

H d
d ≥ 2 H

d
G(V ,E) m n s d

d O( )n2 n
n O(n)

n O(nd n)logd

m
O(m n)logd O(m n + nd n)logd logd

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Heap_dijkstra.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Heap_dijkstra.png


As one can imagine, the choice of  makes a difference when it comes to efficiency. To determine the optimal value of  we set the two terms in the sum equal and solve for

. Doing so obtains  where the ceiling function comes in since  is an integer. Using this choice of , the running time reduces to . For

sparse networks where , the running time is improved to . For dense networks where  for some , the running time can be

shown to be , which is optimal.

For Dijkstra's algorithm, a common choice is . This special case is referred to as the binary heap since each node can have at most two children. All -heaps can be

stored as arrays but the memory footprint of -heaps increases with the value of . The binary heap is a common choice because it requires storage proportional to the number

of objects in . In the context of Dijkstra's algorithm the storage requirement is proportional to the number of vertices.

In order to examine how Dijkstra's original implementation compares with the theoretically more efficient binary heap implementation, both were used to solve the shortest

path problem on 40 random graphs containing between 10 and 10,000 vertices using the python programming language. For Dijkstra' original implementation, we loop

through an array of distances on each iteration to find the minimum temporary label while for the heap implementation python's heapq

(https://docs.python.org/3/library/heapq.html) module was utilized. As can be seen in the plot below, the savings in terms of runtime are significant when the binary heap is

employed.
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Github

Github Containing Code Used for Dijkstra Heap Implementation Project (https://github.com/fureyc/Dijkstra-Project)
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Abstract

During disaster evacuations, it is crucial to have an evacuation plan that allows people to find safety in the shortest amount of time. In 2018, California experienced its most

deadly fire to date, the Camp Fire, in which 85 civilians died. Due to the capacity of the roadways along evacuation routes, traffic jams trapped residents in their cars, killing at

least 7 people. Colorado is no stranger to disaster. Last year there were 1,017 fires reported by the National Interagency Fire Center which burned a total 48,195 acres. This

year we have already seen both the Marshall Fire and the NCAR fire force thousands of residents out of their homes.

Our project uses methods from optimization to identify 'bottlenecks’ in evacuation routes so that we can ensure that every resident can safely evacuate during a disaster. We

model the potential evacuation routes as a network and solve a maximum flow problem. The solution to this maximum flow instance identifies both the capacities and

locations of bottlenecks in our network. This information can inform policy makers on areas to consider expanding capacities to reduce the risk of a traffic jam in evacuation

situations.

Motivation

The authors of this project were both affected by wildfires in California. There are more than 7000 wildfires per year in California and on average 1.2 million acres have been
burned each year over the past 5 years. The deadliest fire in California's history, the Camp Fire , occurred in 2018 when the town of Paradise burned down. Due to high winds,

the fire spread at a rate of 7500 acres an hour at its peak[1]. By the time the fire was contained it had destroyed 18804 structures, killed 85 people, and burned over 153,336
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Map of 2017 Fires in Northern California Aftermath of the Camp Fire in Paradise, CA

acres [2]. In addition to the destruction, there were many challenges
during evacuations. One such being that roadways were congested with
cars, causing residents to abandon their vehicles and resort to
evacuating on foot. The abandoned of vehicles further exacerbated the
traffic issues.

Now both authors live in Colorado, which is no stranger disaster, and

wildfires are not an exception. Not only have 15 of the top 20 largest

wildfires in Colorado's history occurred in the last decade, but also the

top 4 of 5 wildfires happening since 2018[3]. With the Marshall fire

happening a in December of 2021 and over 1000 homes destroyed, and

being affected by wildfires ourselves, we decided to try and explore a

way for people to be prepared if a wildfire started near them. The goal

of the project is to find evacuation routes in which the maximum amount of people can escape the fire boundary.

Another motivation for this project was the Love Parade disaster in Duisburg Germany. The Love Parade was a free music festival is which over a million people attended. The

disaster happened when people sought to get into the delayed festival, but the problem was there was only one entrance and exit to the festival. Once people were allowed into

the festival it created a stampede of rushing people in which several people were killed and hundreds more injured. In addition to wildfire evacuation our project could be

extended to make evacuation routes for buildings, festivals, etc...

Methods

The goal of this project is to get as many people to safety in the shortest amount of time, therefore, we decided to model evacuation routes as a maximum flow problem. There

are two main types of algorithms when talking about solving maximum flow problems; preflow push algorithms and augmenting path algorithms. For this project, we

implemented an augmenting path algorithm--specifically the shortest augmenting path algorithm. In general, in an augmenting path algorithm we push flow along the 'shortest'

paths from a source (start) to a sink (end), while making sure to not surpass the capacities of the networks. (In the case of our application, this is the capacities of the roads).

The shortest augmenting path algorithm selects a shortest path in the residual network and augments as much flow as possible along the path. Then, it updates our residual

network and continues iterating through this same process until no more s-t paths exist.

For our specific program, we chose to choose each shortest s-t path by travel time. The travel time for each arc (road) was computed using OSMNX (see data section). In
addition to considering the travel time, we also had to calculate the capacity of each arc. In 2013 Moore et. al published a method to calculate the capacities of roadways based
on safe breaking distances between vehicles, speed limits, and the number of lanes. We chose this method to calculate capacities of the roads in our network because during
evacuations, if there are blockages such as crashes on roads or construction, the algorithm could be adjusted to to reduce the number of lanes available. The next consideration
was which path to send people on. For example, if 500 people could escape if they took route A, but it took 15 minutes versus 700 people could escape on route B, but it took
25 minutes. What path should be chosen for the evacuation route? The way that we made this decision was based on two factors. First, what was the population density of the
area that was being evacuated. Take for instance Lyons, Colorado which has a population of around 2300 people in 800 households. In many cases there were only 1 or 2
routes leaving the town away from the fire zone. So, by taking the most densely populated neighborhood (roughly 500 households) and sending them along Highway 66 which
leads to the larger Highway 36, that would leave the other 300 households to travel along Highway 7 . In this case even though that neighborhood was closer to Highway 7 by
roughly 5 minutes it would be more beneficial for them to travel along Highway 66 so that the road would not become backed up. The second factor was the evacuation route
density. For example there were over 50 routes in Denver area for residents to evacuate along if the fire started near 16th Street Mall. All of these routes had travel times within
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Lyons, Colorado

Psuedocode

10 minutes of each other, but the problem was that the capacity of these routes were much smaller since they used city
streets. In this scenario we would recommend splitting groups of people along multiple different routes to try and not clog
any particular roadway but allow flow even if it meant travel time was longer. Now that we have covered what the
algorithm does not consider we will talk through our
algorithm process. The pseudocode is listed in Figure 3.
For our full code please see our github

(https://github.com/drewhort/disaster_evactuations_for_colorado) Our algorithm starts by calculating the
distances using the above method of Moore et al. We then take in our data (see next section) and add
capacity to our data frame. Using the osmnx package in python we then create our original graph with
nodes, edges, capacities and travel times. We then calculate the shortest path from our designated source
node to our sink node. The sink and source node are determined by where the evacuation starts to outside
the fire area respectively. We then find a feasible flow along our shortest path and augment the flow. We
now update the residual network. This will be one iteration of our algorithm. We continue iterating until
there are no more paths from our source to our sink node. We then plot all of these shortest paths and
overlay a street map to get our evacuation route.

Data

The data needed for the project consisted of a list of streets, speed limits, and how many lanes per road. We used Open Street Maps (OSM) ([4]) to collect this data. OSM is a

community open source data hub that uses GIS and aerial imagery to ensure up to date and accurate information. We also needed the gather fire data regarding different fire

boundaries. Boulder County Geospatial Open Data contains different data on plats and geographical surveys. Our last piece of data that we needed was to determine the

population density of a given town. We utilized IPUMS (Integrated Public Use Microdata Series) National Historical GIS ([5]) which is a data base that provides different

census and survey data using GIS systems.

In order to utilize our algorithm we had to construct a graph from our data. First, we imported our data using the python package OSMNX[6]. Using the imported data we

calculated the capacities by the method above. Next, we had to clean the data by removing intersections on our graph that were not really intersections. We then added edge

speeds, travel times, and capacities to our data frame. Then, using OSMNX we constructed our graph. Knowing that our graph would be constantly changing as we updated

our residual network we created a copy so we could overlay the shortest paths when the algorithm was finished.
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Shortest Path Lyons Evacuation Route

Zoomed in Lyons Evacuation Route

Results

The two main cities that we looked were Lyons and Pueblo West. We choose these cities based on the criteria that they:

only have a few entrances and exits, close to high fire danger, have/next to a large population density [7]. The first city we
will look at is Lyons, Colorado. As mentioned above,
Lyons only has a few entrances and exits but is next to
a massive high fire wilderness area. We decided to set
our start node as the center of Lyons and see the
maximum flow to the Boulder city evacuation area. Our
maximum flow algorithm found several shortest paths
(Figure 3) to the evacuation area. With all of these
routes we were able to find a maximum flow of
approximately 1950 vehicles an hour. What this means
for us is that every household in Lyons would be able to
take at least one vehicle if we split the maximum flow
over our three evacuation routes in Figure 3. It is worth
noting that the maximum flow is so high because Lyons
is next to highway 36 which is a major highway that
has a high capacity theoretically. The next town that we
looked at was West Pueblo, Colorado. Similar to Lyons,
West Pueblo has limited entrances and exits and is
located in a high fire danger wilderness area. For the
start node of this instance we decided to start in a
neighborhood that backs up to one of the major fire
areas. In Figure 5 you can see the shortest paths from
this node to the evacuation site in Pueblo. The problem is that West

Pueblo has a population of approximately 32,000 people, but using all of these evacuation routes, only 1800 vehicles an
hour can fill those roads. That means it would take over 10 hours to have everyone evacuated from West Pueblo (assuming
that each household has 3 people). This is problematic since West Pueblo is surrounded on all sides by wilderness area
allowing fires to surround the town easily. Another issue is that many of the evacuation routes stem by going West first.
Too the west of town lies a river and the wind moves South West. So in the result of a fire that stemmed on the west side of
town some of the evacuation routes would be blocked.

Policy Recommendations

Our first type of policy recommendation is to make an evacuation plan for towns that do not have one, but are located in

high fire danger areas [8]. In the case of Lyons, on the city website it says to always be prepared for a fire evacuation but

does not have a plan listed. Along these same lines we can use the algorithm to assess current evacuation procedures. By

comparing current plans and the plan developed by our algorithm we can assess whether the current procedures are up to

date or need to be revised. As populations continue to grow across Colorado, many cities will need to update their
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evacuation plans. Utilizing the algorithm to reassess evacuation plans can be an easy way to make sure

citizens are prepared in case of an emergency. Our final type of policy recommendation is useful for towns

like West Pueblo. In these towns we can identify "bottlenecks" and recommend that either more exits be

built out of the town or that current roads need to be expanded.

Limitations of Algorithm

Given these results, it is important to discuss the limitations of our algorithm. The biggest of these being

that our algorithm is based on calculated capacities of roads. As mentioned above the capacities are

calculated based on a formula by Moore et al. [9] These are theoretical capacities in which everyone is

driving at a safe distance and speed. During an evacuation however, these distances and speeds are likely to

differ greatly from just a regular day of driving. Collecting data on driving during an evacuation would

allow us to calculate realistic capacities, leading to more accurate results.

The other major issue that our algorithm does not cover is that if there is only 1 path from our start node to

our end node it just runs one iteration. An improvement for this would be to calculate another shortest path

to a different end node that is still outside the fire zone. This would require that the algorithm be able to

search for the shortest path to an entire boundary. This could be implemented by taking the centroid of fire

area and calculating the shortest path to each boundary point. Once those distances had been calculated we

could run the algorithm to each of those end nodes and choose the one with max flow or most evacuation routes. Along this same problem, we manually have to enter in our

start and end nodes to find maximum flow along. Implementing a choice program for people to input there start location and then just it tell them where to evacuate to would

be more ideal.
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Dongdong Lu
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Welcome!

I am a graduate student in applied mathematics at the University of Colorado Denver and currently, I am teaching college algebra recitation classes 1110-003 & 004.

I am from Anhui, China, a province with a rich cultural background: it is also the birthplace of China's first Nobel prize Laureate, first electronic computer, and current prime

minister.

Also, I am also a big fan of national parks and outdoor activities, paddling in particular. Besides, I play table tennis and was the Intramural Champion last year.

I enjoy reading Scientific American, National Geographic and Chinese literature.

My personal philosophy is deeply affected by Rudolf Carnap and primitive principles of Buddhism.

Life Value: Help less-resourced people in a scientific, systematic and sustainable way.

For fall 2018, I was working with Kushmakar Baral. The link to the project is: Crime & Temperature: Scheduling Awareness Programs

For spring 2019, I am considering to work with Christina Ebben and User:Culvere on Police vs Firefighters or doing the project Optimizing the patrolling route.
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Bio goes here!
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Contact Links

Email (mailto:drew.Horton@ucdenver.edu)
Twitter (https://twitter.com/drewhort)
GitHub (https://github.com/drewhort/)

About Me

My name is Drew Horton, and I am a PhD student at University of Colorado Denver. I graduated with my BA in pure mathematics from Sonoma State University in Spring

2019. As an undergraduate I did research in enumerative combinatorics working with a generalization of arithmetic progressions, which we called pseudo progressions. I also

did research in Leibniz Algebras at the Institute of Mathematics in Uzbekistan during a summer REU funded by CSU Fullerton. My current research is in optimization, in

particular, non-linear programming. My advisor is Dr. Emily Speakman.

Education

1. Santa Rosa Junior College, A.A. in Spanish, A.A. in Mathematics
2. Sonoma State University, B.A. in Pure Mathematics
3. University of Colorado Denver, M.S. in Applied Mathematics

Programming Languages/Experience

AMPL
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Mathematica
Python

Projects

In Fall 2020 I worked with Makayla Cowles and Michael Burgher on fighting voter suppression through our project Location! Location! Where polling places are and

where they should be(Making Voting More Accessible). This project won “Best in Policy” at the Fall 2020 Data to Policy Symposium.

In Spring 2021 I worked with Rebecca Robinson on combating food deserts through our project Hungry for Equality: Fighting Food Deserts. This project was the Honorable

Mention for “Data Analysis” at the Spring 2021 Data to Policy Symposium.

In Fall of 2021 I worked on a project Claws and Effect: Finding Strategies to Increase Pet Adoption, where we use sign-compatible circuit walks to figure out a strategy for

transferring pets among shelters and rescues in such a way that increases adoption rates.

In Spring of 2022 I worked with Nicholas Crawford on our project Extinguishing Bottlenecks: Optimizing Fire Evacuation Routes (Disaster Evacuations for Colorado).

This project won grand prize at the Spring 2022 Data to Policy Symposium.
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Duality
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In mathematical programming, duality is the theory that any program can be both viewed and solved from two perspectives. The first is the primal program and the second is

the dual program. Using both of these methods to look at a program provides deeper insight in to the program functions.

Contents

1 The Dual Program
2 Constructing the Dual Program

2.1 General Lagrangian Dual Program
2.2 Linear Dual Program

3 Interpretations of the Dual Program
3.1 Economic Interpretation
3.2 Dual Program as Bounding
3.3 Analyzing Sensitivity with the Dual

The Dual Program

The dual program is obtained from the primal program, and can be created and understood in various ways. The dual problem referred to in this section is the Lagrangian dual

problem, but there are special cases of dual problems that have constraints on when they can be used. The primal problem is a mathematical program that has yet to be solved.

The dual program is the program generated by transposing the negative constraint matrix of the primal problem. Then the objective function and right hand side values of the

primal problem are are switched and negated. When attempting to understand the relationship between the primal problem and the dual problem, it is important to note that the

dual problem of a dual problem is the primal problem from which the dual is obtained. That is to say, if a problem is dualized and the resulting dual problem is dualized, the

resulting problem is the primal problem.

Constructing the Dual Program

General Lagrangian Dual Program

Given the primal program P:

  min f(x)
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 where  is the domain of definition for .

 * The  is defined to be:

 * The , , is defined to be:

 * And the  to solve is defined to be:

This is the general form for a non-linear program.

Linear Dual Program

Given a linear program in standard form:

  s. t.   (x) ≤ 0 i =  1, 2, . . . , kgi

   (x) = 0 i =  1, 2, . . . , lhi

     x ∈ X

      X x

Lagrangian
− −−−−−−−−−

L(x, u, v) := f(x) + (x) + (x)∑
i=1

k

uigi ∑
i=1

l

vihi

Lagrangian Dual function
− −−−−−−−−−−−−−−−−−−−−

θ

θ(u, v) := inf{f(x) + (x) + (x) : x ∈ X}∑
i=1

k

uigi ∑
i=1

l

vihi

Lagrangian Dual P roblem
− −−−−−−−−−−−−−−−−−−−−

max θ(u, v)
∀u ≥ 0
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The dual program is:

Notice that the primal  constraint matrix becomes transposed into the dual  constraint matrix. The maximization problem becomes a minimization problem,

and the right hand side values are switched with the objective function. Lastly, instead of  as the variable, a new variable  is introduced to take its place in the new problem.

There will be a  variable for each of the constraints in the primal problem, more information on that is given in the section on bounding. This example is rather simple,

because all of the constraints are less than the right hand side value and all of the variables are non-negative. This, however, is rarely the case in practical applications. Each

inequality and turns into an inequality in the comparable part of the dual program.

Minimization Problem Maximization Problem

Constraint Variable

= Unrestricted

Variable Constraint

Unrestricted =

This table is a reference for how to switch between each component of a primal problem and its respective constraints and variables in the dual problem. Each individual

constraint and variable are looked at individually, not as a whole matrix.

Max

S. T .

∑
j=1

n

cjxj

≤∑
j=1

n

aijxj bi

≥ 0xj

i = 1, 2, 3...m
j = 1, 2, 3...n

Min

S. T .

∑
i=1

m

biyi

≥∑
i=1

m

ajiyi cj

≥ 0yi

m × n n × m
x y

y

≥ ≥ 0
≤ ≤ 0

≥ 0 ≤
≤ 0 ≥
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Interpretations of the Dual Program

The dual program can be constructed and interpreted in various ways. Each way is more useful for some applications than others, and each gives further insight into the primal

program.

Economic Interpretation

In an economic setting, the program can be thought of as not only a way to maximize profit given certain resources for an entity doing business, but as a dual program

minimizing the resource allocation given a certain amount of profit. For example, it takes a certain amount of resources to build a product that can be sold for a profit.

However, the resources are limited and other businesses are willing to buy them. The business can then either sell the product or the resources, but if they sell the resources the

want to make sure they make the same amount of profit while selling as few resources as possible. The dual problem minimizes resources distributes while constraining the

resources to be at least at a certain level of profit. Contrast this with maximizing the profit while only having a certain amount of resources, and the relationship between the

primal and dual problems becomes apparent. There is an example of this on its own page.

Dual Program as Bounding

Any feasible point in a mathematical program is a lower bound on what the optimal objective function value can be for a maximization problem. This follows from the logic

that any feasible point is either an element of the Pareto set or has a worse objective function value than any element of the Pareto set. For small problems, like the ones

outlined in this Wiki, finding the optimal solution from any feasible point is not difficult. However, for very large and complicated problems, this process becomes harder. In

order to bound the problem from the top, a dual program can be constructed. Any feasible point in the dual program provides an upper bound on the optimal objective function

vale for the primal problem. The space between these feasible points is the duality gap. The goal of programming search algorithms is to close the duality gap to find the

optimal objective function value. Many commercial solvers use an algorithm called the primal-dual algorithm that uses both the primal and dual problem to close the duality

gap.

Analyzing Sensitivity with the Dual

Another thing the dual problem can tell about the primal problem is what happens when small changes are made in the constraints. The change in objective function value

based on a marginal change in the right hand side coefficients of the primal problem. These small changes are referred to as the shadow prices. The optimal solution vector of

the dual problem gives the shadow prices for the respective constraints at the optimal solution of the primal problem. For the calculus inclined, the gradient of the objective

function value with respect to each constraint is equal to the objective function vector of the dual program.
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Duality: Bounding the Primal

From CU Denver Optimization Student Wiki

Constructing the dual program is as simple as taking the negative constraint matrix and switching the negative right hand side values for the negative objective function. To

gain an understanding of why that is, first consider the same problem constructed for the economic interpretation:

First, find any feasible point in the primal problem given. For example  is a feasible point for the program. The objective function value for this point is

Because this point is feasible, the optimal objective function value is either at this point or at a greater value. Therefore, any feasible point gives a lower bound on what the

objective function value can be. This function value can be improved with another feasible solution . This point gives the objective function value of 

Now that there is a lower bound on the optimal solution, the next step is to find an upper bound. This can be done by adding the constraints together as such:

which is simplified to 

Since each variable is greater than or equal to 0, we know

.

This implies that  is an upper bound on the objective function value. the difference between these two values is called the duality gap, and the goal of optimization is

to close this gap as much as possible. Since linear programs are always convex, the duality gap is 0. The only time there will be non-zero gap is if the program is concave.

Back to the original problem, the upper bound can be improved by adding the constraints together in different ways to get a lower upper bound. For example, adding 3 of the

first constraint to 3 of the second constraint gives

which is a lower upper bound than the previous one. The goal is to find the infimum of the upper bounds, which can be done by assigning variables to each of the constraints

and then solving for those variables to find an optimal solution. Using the variable , the constraints become:

max

s. t.
11x1

2x1

2x1

10x1

x1

+
+
+

+
,

5x2

1x2

2x2

5x2

x2

+
+
+

+
,

5x3

1x3

1x3

6x3

x3

≤
≤

≤
≥

400
500

2, 400
0

(0, 200, 100)

11(0) + 5(200) + 5(100) = 1, 500

(0, 400, 0) 20, 000

(2 + 2 + 10) + (1 + 2 + 5) + (1 + 1 + 6) ≤ (400 + 500 + 2, 400)x1 x2 x3

14 + 8 + 8 ≤ 3, 300x1 x2 x3

11 + 5 + 5 ≤ 14 + 8 + 8 ≤ 3300x1 x2 x3 x1 x2 x3

3, 300
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which can be re-written as

and then reconfigured without the inequalities to be

It is assumed that each  variable's coefficient is at least as large as its objective function coefficient, so

Last bring back the inequalities and remember that each of the variables must be less than their corresponding coefficients, which implies that is the upper bound. In order to

find the least upper bound, it is best to minimize this bound to obtain the program

This program is the dual of the original optimization problem. The reader is challenged to follow this logic on the dual program and see if they obtain the primal.

[1] [2] [3]
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Duality: Economic Example
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The following is an example of an economic interpretation of a dual program.

Klein's Bottle Company makes 3 different types of bottles. They make a growler that takes 2 kg of glass, 2 sections of label paper, and 10 minutes to make. Klein also makes a

short, fat bottle that takes 1 kg of glass, 2 sections of label paper, and 5 minutes to make. Lastly, he makes a tall, thin bottle that takes 1 kg of glass, 1 section of label paper,

and 6 minutes to make. He sells the growler for $11 and each of the smaller bottles for $5. Klein stocks up on supplies weekly, and therefore has a limited number of supplies

to make bottles with each week. His stock at the beginning of each week contains 400 kg of glass and 500 sections of label paper. He can only spend up to 40 hours per week

making the bottles, as he has to spend much of the rest of his time selling the product, balancing the books, and performing other various administrative tasks for his business.

With this information, he hires a savvy operations researcher and she creates the following LP:

Klein will be out of town for a week at an important bottle making conference, but does not want to disrupt his reputation with the glass and label paper providers by stopping

shipment for a week. He knows that he can sell the resources he has, but does not want to sell them unless he can recover at least what they would be worth in the finished

bottles. What he wants is to make the same relative profit as he would if he stayed in business for the week he is taking off. What he wants is to make $11 for every 2 kg of

glass, 2 sections of label paper, and 10 minutes that he loses. He tells this to the operations researcher and she writes his request as:

She then generalizes to the other two bottles to generate the set of constraints:

Lastly, Klein wants to minimize the effect to his business that selling off resources would have, so the operations researcher finishes her program by adding in an objective

function:

Max

S. T .
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This is the dual problem as a resource allocation model to complement the primal problem of maximizing profit.

[1] [2] [3]
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Dynamic Programming

From CU Denver Optimization Student Wiki

Dynamic programming can be used to solve many optimization problems. In particular, this page was inspired by how to use dynamic programming to solve a subproblem in

column generation. This subproblem is classified as a knapsack problem; column generation seeks to find a variable to add to a master problem, and this is done by using the

dual problem to generate a column corresponding to a variable with negative reduced cost. The reduced costs is parallel to the value of an item, and the dual variables are the

items. We will, however, be exploring dynamic programming in the more general context of the classical knapsack problem.

Contents

1 The Knapsack Problem
2 Dynamic Programming
3 An Example
4 References

The Knapsack Problem

The classical knapsack problem gives a set of items that each have a given value, and finds the optimal combination of items to yield the maximum value the knapsack

can hold. Let  be the set of items, each with weight . Let  be the value associated with  and the total capacity of the knapsack be .

Lastly, define integer valued variables  which will determine how many of each item  we will put in the knapsack. The linear program associated to this problem
can now be given as follows.

This optimization problem (finding the maximum value) is NP-hard, so cannot be solved in polynomial time. The decision problem, however, is NP-complete, meaning

if we can find a solution to the decision problem then we can calculate the maximum optimal value in polynomial time. [1] Clearly, the decision problem is more difficult
to solve. But, it has the type of structure that can be broken into a iterative sequence of problems that are easy to solve. This is the idea behind dynamic programming:
use an iterative process to solve the decision problem and use that solution to calculate the solution to the optimization problem.

I = { , , . . , }i1 i2 in wk vk ik C

xk ik

max

s. t.

⋅∑
i=1

n

vk xk

⋅ ≤ C∑
i=1

n

wk xk

≥ 0xk
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Dynamic Programming

The goal of dynamic programming is to take a complex problem and break it into a sequence of simpler problems. To do this, we can consider the following questions.

1. Can we view the choice of a feasible solution as a sequence of decisions occurring in stages? This will allow us to say the total value is the sum of the values of
individual decisions.

2. How can we define the current state of the problem as a summary of all past decisions?
3. What are possible ways can we transition from one state to another?
4. How can we write a recursive formula for the objective function so we can deduce the optimal value from the previous states?

Let us attempt to answer these questions in the context of the knapsack problem. First, we try to find a way to view our item choices as a series of decisions. For this
problem, it is fairly clear that we will choose one item at time. Then, the total value of the knapsack will be the sum of the items chosen at each decision stage.

At each stage we make one decision and the state of the problem at that stage informs the decision. We have no other information: the state of previous stages is not
known at the current stage. In our problem, in order to make a decision on the number of an item to include, we need to know the remaining capacity, c, of the knapsack
and this will be our state. The state is "independent" of the previous states in way that at each stage we don’t need to know the capacity at previous stages, only how
much we have left currently. To move to the next stage, we simply have to find the greatest total value of the items in the current and remaining stages. This can be

described by the following iterative relation. [2]

In order to implement this on the computer we must implement the iteration recursively. In other words, we only want to make decisions based on what we already know

instead of what the following decisions will be. Some pseudocode for this process is given below. [3]

# VALUES (stored in list v), WEIGHTS (stored in list w)

# No. of distinct items (N), Knapsack capacity (C)

for j from 0 to C:  # no items are chosen in stage 0 

    V[0, j] := 0  

for i from 1 to N:

    for j from 0 to C:

        if 

    w[i] > j then m[i, j] := m[i-1, j] # if not enough capacity, move on

        else:

            m[i, j] := max(m[i-1, j], m[i-1, j-w[i]] + v[i] # recursive implementation of iterative process 

An Example

Suppose we have  types of items  which have respective weights , ,  and values , , . Further, our

knapsack has the capacity . Below are the computations for each state at each stage.

(c) = + (c − )Vk max
0≤ ≤⌊ ⌋xk

c

w
k

vkxk Vk+1 wkvk

N = 3 , ,i1 i2 i3 = 6w1 = 4w2 = 9w3 = 3v1 = 7v2 = 4v3

C = 12
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c

- 0 -

1 0 -

2 0 -

3 0 -

4 0 -

5 0 -

6 3 1

7 3 1

8 3 1

9 3 1

10 3 1

11 3 1

12 6 2

c

0 0 - - - 0 0

1 0 - - - 0 0

2 0 - - - 0 0

3 0 - - - 0 0

4 0 7 + - - 7 1

5 0 7 + - - 7 1

6 7 + - - 7 1

7 7 + - - 7 1

8 7 + 14 + - 14 2

9 14 + - 14 2

10 - 14 2

11 - 14 2

12 21 21 3

(c)V3 x∗
3

= 0x2 = 1x2 = 2x2 = 3x2 (c)V2 x∗
2

(0)V3

(1)V3

(6)V3 (2)V3

(7)V3 (3)V3

(8)V3 (4)V3 (0)V3

(9)V3 7 + (5)V3 (1)V3

(10)V3 7 + (6)V3 14 + (2)V3

(11)V3 7 + (7)V3 14 + (3)V3

(12)V3 7 + (8)V3 14 + (4)V3
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c

9 0 + 4 + 7

10 0 + 4 + 14

11 0 + 4 + 14

12 0 + 4 + 21

The value of , which implies that the optimal value of the knapsack is 21. This happens when , , and .

References

1. ↑ https://en.wikipedia.org/wiki/Knapsack_problem#0/1_knapsack_problem
2. ↑ https://www.utdallas.edu/~scniu/OPRE-6201/documents/DP3-Knapsack.pdf
3. ↑ AMPL, R. Fourer, D.M. Gay, and B.W. Kernighan, Duxbury Press, 2002.
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Elise Reed

From CU Denver Optimization Student Wiki

Hello! I am a second year graduate student at the University of Colorado Denver, pursuing a PhD. I got my undergraduate degree in mathematics from the University of

Minnesota in 2015. I then spent a year at Smith College before moving to Colorado. During my undergraduate studies, I participated in many math related activities.

The research I did during my junior and senior year investigated human effects on the climate. We used simple ODEs to describe how humans thousands of years ago

contributed to global warming with their primitive and inefficient agriculture. Our results indicated that it is not unreasonable to assume that early human activity did in fact

contribute to the global warming we are currently experiencing.

Another research project I was able to work with is called Girls Excel in Math (or GEM). The purpose of this project was to train elementary school teachers on how to teach

higher level math concepts (e.g. graph theory, combinatorics). One Saturday a month, female teachers and their female students all met on the U of MN campus. During the

morning, the teachers attended a training session on the lesson they would be teaching in the afternoon. During this time, undergraduate students (such as myself) would spend

time with the elementary students doing basic and fun math activities. The teachers would then return to the room and teach the lesson they were just trained on, with

undergraduate students available for assistance. I much enjoyed working with this project and strongly believe we should be trying to train more school-aged teachers on

interesting math.

I am most proud of being a founding member of the undergraduate Women in Math club at the U of MN. This group is still active and providing support to undergraduate

women who have an interest in mathematics.

My contribution to this wiki:

Dynamic Programming
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Contact

Email (mailto:emma.gibbs@ucdenver.edu)

About

Education

Pursuing a B.S. in Mathematics and M.S. in Applied Mathematics from CU Denver.

Programming Languages

C++
Java
Python
R
AMPL

Projects

For the Spring 2022 Network Flows class, I worked with Evan Shapiro and Michael Schmidt on the project Finding Optimal Shared Streets in Denver. In this project, we

worked to identify streets in Denver as potential candidates for conversion to Shared or Open Streets, using equitable street selection criteria, and by identifying streets with

low traffic flow impact.

mailto:emma.gibbs@ucdenver.edu
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Evan_Shapiro
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Michael_Schmidt
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Embedding AMPL In C

From CU Denver Optimization Student Wiki

Abstract

Many times when we are optimizing, we may not want to leave the comfort of our programming language of choice or we may not have access to GUI for the AMPL IDE.

Whatever the reasoning may be, we demonstrate how to run an AMPL program from within C using Sudoku as a motivating example.

1. Files are already created and you want to run them inside an existing C program
2. You need to create the files from scratch

The first use case requires us to only create a "run" file of AMPL commands and execute this file.

The second use case requires us to generate the AMPL model and data files from scratch, which will vary depending on the problem being solved, but is really just printing

strings to files and then repeating the steps in the first use case.

We show a general form that could be abstracted to fit more types of problems as well as mention how one could add extra constraints to solve related forms of Sudoku

Helpful Project Links

GitHub (https://github.com/jprhyne/AMPLInsideC)
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Emissions and Equality: Colorado Car Share Optimization

From CU Denver Optimization Student Wiki
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Abstract

Car sharing programs, like the nonprofit, federally funded organization Colorado Car Share (CCS), offer an innovative solution to lower the ownership costs of personal

vehicles while concurrently contributing to emissions reduction through short term car rentals. To expand these programs, an easier way to find the ideal locations for new

vehicles is needed. As the funding for non-profit organizations can come with stipulations on how it can be spent, any model created needs flexibility to allow for them to

focus on the target demographic(s) of each grant they receive. We created a linear model that uses US Census tracts to divide the city of Denver into regions. Using population

density, and restrictions chosen by the user, it identifies how many vehicles should be added to each tract. This model can be weighted by inputting a variety of factors to

locate where the maximum number of people in a particular group may live. We used data from the Denver Open Data Catalog cross-referenced with the current vehicle

locations listed on Colorado Car Share's public website. We focused on adaptability given the broad range of stipulations which can be placed on the grant money they receive

so, unsurprisingly, we found that the answer depends on the inputs chosen by the user. Our policy recommendations after seeing our results would be to have the city work

with CCS to find locations within the identified tracts which allow federal grant money to reduce the cost to build them as well as increase funding/ease of building charging

capable carshare spots for new electric vehicles around Denver. By identifying regions that best fit the funding criteria, it allows the city to expend less resources identifying

possible locations for charging capable carshare spots and can possibly help to cover the cost of their construction as well.

Typesetting math: 100%



Data

To conduct our project, we needed two key pieces of data, census tract basic information of Denver, including the tract name and common indicators of each track, we also

needed the information of which tract already has a car from Colorado CarShare. The tract information was easy to find and accessible for the city of Denver [1]. The CarShare

data on the other hand needed to be manually collected from their website [2]. The census tract data comes from American community survey tracts, from 2016-2020 and

included 178 tracts. For our project we eliminated to tracts that were parts of DIA and Montebello because they didn't represent areas where we wanted our CarShare parking

spaces.

Optimization Model

For our model, overall, want we want to optimize is placing car parking spots in areas that are most dense. Therefore, we create sets, parameters, and variables with this in

mind. The model looks as follows: First, we define some sets, parameters, and variables that will be used throughout.

This gives way for our basic model where we only care about maximizing population density.

.

Set:

Variable:

Parameter:

Parameter:

Parameter:

Parameter:

Parameter:

Parameter:

R the set of all census tracts in Denver under consideration. i = 1 … n

 The number of cars to add to census tract i, ∀i ∈ Rxi

.  The number of cars currently in census tract i, ∀i ∈ Rti

 The population density of census tract i, ∀i ∈ Rpi

 Weighting based on model variation for census tract i, ∀i ∈ Rwi

c The total number of cars to be added

m = max( ), ∀i ∈ R
ti

pi

ℓ An upper bound on the number of cars added to any one tract.

Here we are not using any weighting, so = 1 for all tracts in R. Our objective function is given by:wi

max ⋅ ( + )∑
i∈R wi pi ti xi

subject to the constraints:

≤ C,∑i∈R xi

m( + ) ≤ ,  for all i ∈ R,ti xi pi

+ ≤ ℓ for all i ∈ R,xi ti

and the variable constraints: 

≥ 0, ∈ Z.xi xi
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We have four more iterations of the model where we focus on maximizing total density and either, percent of households without access, percent of cost burdened population,

and percent of population in poverty. The models are as follows, note all constraints stay the same the only thing that changes is the objective function so, only the objective

functions will be shown:

Optimizing Vehicle Access for Households Currently Without Access

For this model, we would use the percentage of households with no vehicle access in each tract as our weight. In this case, our objective function would be:

.

Optimizing Vehicle Access for Cost Burdened Population

For this model, we want to maximize vehicle access for that portion of the population classified as "cost burdened" in each region. We'll denote the proportion of region 

classified as "cost burdened" as . Here, our objective function is:

.

Optimizing Vehicle Access for Population in Poverty For this model, we want to maximize access for that portion of the population in a given region classified as "cost

burdened". In this case, our objective function in this case becomes:

.

Optimizing Vehicle Access for Renters For this model, we want to maximize access for that portion of the population in a given region classified as "renter". Our objective

function in this case becomes:

.

Results

We can see in each of the following images that adjusting our model with the different weights will prioritize different tracts to service different population with vehicle access.

max ⋅ ( + )∑
i∈R

wi pi ti xi

i
wi

max ⋅ ( + )∑i∈R wi pi ti xi

max ⋅ ( + )∑
i∈R

wi pi ti xi

max ⋅ ( + )∑
i∈R

wi pi ti xi
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Here we see which tracts are already being served by Colorado

CarShare.

After using our model, with no weighting, focusing only on density

of tracts, here is where it is recommended to place cars.

After using our model, with weighting for percent of population

without vehicle access these are the tracts where it is recommended to

place cars.

After using our model, with weighting for percent of population in

poverty these are the tracts where it is recommended to place cars.
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After using our model, with weighting for percent of population

paying more than 1/3 of their wages to rent these are the tracts where

it is recommended to place cars.

     Key: 

     blue - adding 9 cars to Colorado CarShares fleet

     magenta - adding 18 cars to Colorado CarShares fleet

     orange - adding 27 cars to Colorado CarShares fleet

     Note: in each increase cars we are still adding to the same tracts previously identified.

There are lots of overlap in placements of the cars. We see in each iteration of our model, it is recommended to place new cars in 27.05.

Presentation

Presentation slides and code ran can be found at the following link. [1] (https://github.com/pgmath/Emissions-and-Equality)

References
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Equal Flow Problem

From CU Denver Optimization Student Wiki

The Equal Flow Problem is a generalization of the Minimum Cost Flow Problem where there are classes of arcs, valid solutions require that all arcs in a given class have the

same flow. This problem has many applications, and many variants. Applications include water resource management[1], federal matching of funds to projects, estimating

driver costs for transit operations, and the two duty scheduling problem. Variants, such as "pair only" equal flow problems (each class has two arcs), simple equal flow

problems, and integer equal flow problems (an NP complete equal flow problem where the classes must have integer flow) are also all seen.[1]

Contents

1 General Linear Programming Formulation
2 Variants

2.1 The Simple Equal Flow Problem
2.1.1 The Network Simplex Algorithm
2.1.2 Parametric Algorithms

2.1.2.1 The Parametric Simplex Algorithm
2.1.2.2 The Combinatorial Parametric Algorithm
2.1.2.3 The Binary Search Algorithm
2.1.2.4 The Capacity Scaling Algorithm

2.2 The Pair Equal Flow Problem
2.3 The Integer Equal Flow Problem

3 References

General Linear Programming Formulation

Similar to the LP formulation of a Minimum Cost Problem, the only difference is the arc class restrictions, .Rm
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Variants

The Simple Equal Flow Problem

In the Simple Equal Flow Problem, there is only one arc class( ) with more than one member arc. This variant originated by the consideration of a water resource

management issue in Sardinia, Italy. The seminal problem was quite large (60,000 nodes and 180,000 arcs) and required something more efficient than the standard LP

solution. Ahuja et al. presented 5 different algorithms to address it[1]. In what follows,  represents the common flow across arcs in , and  represents the least upper

capacity of the arcs in 

The Network Simplex Algorithm

A complex Linear Programming method.

Parametric Algorithms

Parametric Algorithms take the common flow  and parameterize it as an input to an objective function ( ) measuring the cost of the minimum cost flow where the

common flow value is forced. This function, by an LP result, is a piecewise linear convex function, in which breakpoints only on (reduced) rational numbers having a

denominator smaller than the size of the arc class , and defined on . The left and right derivatives (  respectively) can be determined by some small sequence

of shortest paths algorithms and , they are necessary for certain algorithms. The goal for parametric algorithms is to obtain the minimum of the objective function, and thus

an optimal solution.

The Parametric Simplex Algorithm

The Parametric Simplex Algorithm is a parametric algorithm utilizing LP techniques to find a minimum of the objective function to arrive at an optimal solution.

Given a network G = (N , A), and class sets , minimize Rm ∑
(i,j)∈A

cijxij

with restrictions:

− = b(i),  ∀i ∈ N ,∑
{j:(i,j)∈A}

xij ∑
{j:(j,i)∈A}

xji

0 ≤ ≤ ,  ∀(i, j) ∈ A,xij uij

= = ,  ∀(i, j), (k, l) ∈ .xij xkl xRm
Rm

R

xR R uR

R

xR f(x)

R [0, ]uR ,f− f+

f

Typesetting math: 100%



The Combinatorial Parametric Algorithm

The Combinatorial Parametric Algorithm is a parametric algorithm utilizing sequences of shortest paths in order to find the minimum of the objective function to arrive at an

optimal solution. Unfortunately, though the algorithm makes use of some fairly effective tools, it can get hung up unexpectedly in an exponential number of consecutive

degenerate pivots.

The Binary Search Algorithm

The Binary Search Algorithm is a parametric algorithm utilizing a binary search to find the minimum of the objective function to arrive at an optimal solution. In essence, the

algorithm is run by taking the midpoint of the current interval, computing left and right derivatives, and taking the path which leads "downhill" towards the minimum, this

works out as the objective function is convex. Also note that the left endpoint has to be checked before starting the algorithm proper, as 0 may be the only solution. If lucky,

when the algorithm sees that there is no "downhill" path, the minimum is also found, however due to the nature of representing a real number in a computer, it's possible that

the process never converge. However, with some cleverness, the algorithm can be terminated early once the interval size is smaller than , as at that point there is a unique

break point of the function between the two endpoints (necessary, as the algorithm would have terminated earlier).

The number of interval cuts is , and each interval cut requires the recalculation of the derivatives, which means that a minimum cost flow

must be calculated at every step.

The Capacity Scaling Algorithm

The Capacity Scaling Algorithm is a parametric algorithm utilizing scaling of arc capacities and shortest path calculations to find the minimum of the objective function to

arrive at an optimal solution. This algorithm is the best in terms of complexity of the parametric algorithms, yielding a cost of .

The Pair Equal Flow Problem

In the Pair Equal Flow Problem (Ali, Kennington, Shetty [1988]) we have an Equal Flow Problem where each flow class has two arcs.

The Integer Equal Flow Problem

In the Integer Equal Flow Problem (Meyers, Shulz [2009]), we have an Equal Flow Problem where each flow must have integer quantity. This problem is known to be NP-

complete.

References

1. ↑ 1.0 1.1 1.2 https://pubsonline.informs.org/doi/abs/10.1287/mnsc.45.10.1440 "Algorithms for the Simple Equal Flow Problem"
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Abstract

We investigate the equitability of fire hydrant placement throughout the Denver Metro area. We do this by assigning each home in select neighborhoods to a fire hydrant, and

consider how far away houses can get from their assigned hydrants. We pay special attention to regions of both relatively large and small size, which have room for potential

improvement. The former would mean we have few hydrants per building while the latter means the area would be more densely populated. Our aim is to highlight these areas

especially in the context of costs for potential locations for new housing, and the safety of the occupants by proposing locations to add new hydrants in order to increase

equitibiliy. Furthermore, we aim to see if fire hydrant density is correlated to other socioeconomic factors which could warrant further study around potential effects or other

mitigating factors.

Overview

We looked at several select regions inside the Denver Metro area and their fire hydrant distribution. We determined if we could decrease the overall distance from houses to

their closest fire hydrant by adding more.

Facility Location

In this project, we perform a facility location problem, all this means is that we want to find the optimal placement of some kind of facility (in our case fire hydrants) to

minimize some kind of cost (in our case distance). A part of this process will be similar to a clustering problem where we need to assign every
Typesetting math: 100%
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Implementation

We approach this problem in two steps

1. Isolate regions inside the Denver-Metro area
2. Run a facility location problem to determine where we can benefit from adding fire hydrants

The first step is accomplished through manual inspection of regions on OpenStreet maps. A more data driven approach could look into population densities and potentially

factors like socioeconomic status

Our second step is accomplished by proposing some grid points to add hydrants to, and then running a facility location problem on these proposed grid points. Our model

looks like

Our c[i,j] values determine the distance from house i to hydrant j. These are parameters determined prior to running our program

x[i,j] = 1 if and only if house i is assigned to hydrant j

y[j] = 1 if and only if we are adding hydrant j

Our d[j] parameters are indicators if hydrant j was already constructed. The purpose of this parameter is to model the fact that we don't want to remove existing fire hydrants.

M is the "cost" of constructing a new hydrant. Since it is difficult to compare the money and time needed to construct the hydrant, we use a surrogate value that represents this

cost. The smaller this value is, the more hydrants our model wants to create.

min

x[i, j]∑
j=1

m

x[i, j]

x[i, j]∑
i=1

n

c[i, j]

x[i, j]

y[j]

d[j]

c[i, j] ⋅ x[i, j] + M ⋅ y[j] ⋅ d[j]∑
i=1

n

∑
j=1

m

∑
j=1

m

= 1;  for i = 1, . . . ,n

≤ y[j];  for i = 1, . . . ,n; j = 1, . . . ,m

≤ N ;  for j = 1, . . . ,m

≥ 0 for i = 1, . . . ,n; j = 1, . . . ,m

∈ {0, 1} for i = 1, … ,n; j = 1, … ,m

∈ {0, 1} for j = 1, . . . ,m

∈ {0, 1} for j = 1, . . . ,m
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N is the maximum number of houses we want assigned to each hydrant. This models the fact that we want to also not over allocate the hydrants in the event of several

connections needed or a large emergency being needed.

Results

From the regions that we considered, we found that we would not really benefit from adding anymore hydrants with our current model. This can be for several reasons

We may have only considered neighborhoods with good coverage
We may have made it too costly to construct a new hydrant (M too large)
We may have allowed too many houses for each hydrant (N too large)
The current distribution is sufficient.

In order to make more definitive statements, further testing would be needed

Future Work

This work can be extended to areas outside the Denver Metro area and considering larger regions at a time.

We can also consider more complicated ways to penalize adding a house to a particular hydrant like penalizing based on number of inhabitants (apartment complexes are more

costly than a single family home)

Github

Github Repository (https://github.com/jprhyne/EquitableFireHydrantPlacement)

Presentation Materials

Presentation Files (https://github.com/jprhyne/EquitableFireHydrantPlacement/tree/main/presentation)
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Eric Hu

From CU Denver Optimization Student Wiki

Hello! I am currently a second-year graduate student of Mathematical and Statistical Sciences department at the University of Colorado Denver, my research interest are in the

area of scientific computation and application on engineering problem.

During my M.S. study at the National Central University in Taiwan, my research topic primarily discussing the rheological properties, the strain rate dependence viscosity of

blood, and its effect in the different complexity of arteries. Typically, the blood expresses the nonlinear visco-property as the strain rate is lower than the threshold value; we

adopt the Carreau-Yasuda model to indicate the relationship of blood flow and its viscosity. In order to deal with the irregular geometry of blood vessels, I use the tetrahedral

element for the spatial discretization. For the tetrahedral-based finite element scheme, we applied P1-P1 Galerkin-Least Square finite element method for solving Navier-Stoke

equation and added two stabilization parameters to solve discretization caused by convection-dominated.

Another research project in my undergraduate was on Mathematical Biology. The topic is related to the regeneration of fish scales using reaction-diffusion model to rebuild the

pattern on the fish body. We tried to simulate the gene regulation to achieve the pattern formation in the given domain which represents the fish body, and it also led me to

explore the integrated research in scientific computing in my graduate study.

My contribution for the network flow project:

Derivation of Blood Flow as a Network Flow
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Eric Olberding

From CU Denver Optimization Student Wiki

Eric Olberding is a Master's student in Statistics at CU Denver. He plans to graduate Spring 2020. His BS in Mathematics was earned at the University of Tennessee Knoxville.

Follow this link to see my Linear Programming class project: Linear Regression as Linear Programming

Follow this link to see my Network Flows class project: Separable Convex Cost Network Flow Problems
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Contact Info

Email (mailto:Evan.Shapiro@ucdenver.edu)
Linkedin (https://www.linkedin.com/in/evan-shapiro-01953794/)

About Me

I am a 3rd year PhD Student in the department of Applied Mathematics and Statistics at CU Denver. I am interested in studying whether uncertainty quantification methods

used for dimension reductionin a high-dimensional setting can be applied effectively in a machine learning and AI setting. Personal interests include hiking, cooking, and

travel.

Education

Programming Languages/Experience

Python Matlab AMPL Fortran C

mailto:Evan.Shapiro@ucdenver.edu
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Optimization Related Project

During the fall 2022 semester I worked on the D2P project Finding Optimal Shared Streets in Denver for MATH 5490 - Network Flows. I contributed to the policy portion of

the project, and I constructed a tutorial using Jupyter Notebooks.
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Exploring The Blossom Algorithm

From CU Denver Optimization Student Wiki

This page is for Anne Kreeck's Spring 2025 Graph Theory project 'Exploring the Blossom Algorithm'.

Project Summary

The blossom algorithm is an extension of the augmenting path algorithm for an -bigraph  that handles the problem of odd cycles using blossoms and stems. The

method was presented by Jack Edmonds in 1965 in a famous paper titled "Paths, Trees, and Flowers", a rather appropriate title given that the blossom algorithm uses a forest

(made of trees) to find, if they exist, augmenting paths and blossoms.

The approach of the blossom algorithm hinges on Berge's Theorem: "A matching  in a graph  is a maximum matching in  if and only if  has no -augmenting

path." Essentially, the algorithm wander's the forest looking for exposed vertices (vertices not in ) searching for  augmenting paths and blossoms until it can find no

more and determines the matching  to be maximum.

A blossom is a cycle in a graph  consisting of  edges of which exactly  edges belong to the initial matching , and where one of the vertices  of the cycle is such

that there exists an alternating path of even length from  to an exposed vertex . This path of even length is referred to as the stem.

Figure 1 shows a blossom (of length 5) and a stem (of length 4) in green, where dotted lines are in the matching  and solid lines are not. The blossom algorithm contracts

these blossoms to a single vertex resulting in a graph  that has no odd cycles, allowing us to continue finding augmenting paths without needing to check every edge of the

blossoms as each blossom already has a maximum matching.

Figure 1

Figure 2 Figure 3
Figure 4
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Figure 2 shows the graph after the blossom has been contracted, while figures 3 and 4 show the -augmenting path and the graph after we have expanded our blossom, with

 now having 1 additional edge where the edges of the blossom in  have been adjusted to line up with the augmentation.

The blossom algorithm runs in  time and was the first proof of a polynomial time algorithm for finding a maximum matching. Edmonds followed this work later

in 1965 with an approach for minimum-weight matchings using a linear programming polyhedral description of the matching polytope.

GitHub Repository

In the GitHub (https://github.com/A-Kreeck/Exploring-The-Blossom-Algorithm) repository for this project you will find the slide deck used for the end of semester

presentation.
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Review of the Simplex Method

What is the Simplex Method?

The Simplex method is an algorithm used to find the optimal solution for a Linear Program (LP). Starting at an initial feasible solution, the algorithm determines a direction of

improvement for the objective function. From there, the algorithm performs an edge walk between vertices of the polyhedra in the direction which improves the objective

function. Each "step" in the Simplex method is called a pivot. These pivots are how the algorithm chooses which direction to traverse during its edge walk.

Generalization of the Simplex Method

We will start by looking algebra behind the tableau notation for the Simplex method. Suppose we are given an LP in standard form:

max 

s. t. 

xcT

Ax

x

=

=

≥

Z

b

0
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We can separate all of the information in the LP based on the basic and non-basic variables in the following fashion:

where  is the set of basic variables and  is the set of non-basic variables. With this in mind, we can rewrite our LP as:

Because of the way we have rewritten the LP, we can rewrite the constraints in the LP in terms of the constants and the non basic variables by solving for  to obtain

From here we can make some substitutions in the objective function of the LP:

which simplify to

From this, we can see where some of the terms in our dictionary come from. In particular
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where  is the objective function value at a particular vertex, and , , and  are the updated cost, coefficients, and bounds for the vertex.

We can represent this LP in a simplex tableau as follows:

With this tableau, we can use the largest coefficient rule and the minimum ratio test to choose the pivot location within the tableau, call it .

Because we know the position of , we can perform a matrix multiplication with a Gaussian-Jordan pivot matrix, in order to perform the pivot itself [1]. A Gaussian-Jordan
pivot matrix is defined as:

where  is the number of rows above the pivot position ,  is the number of rows below the pivot position,  are the entries in the pivot column above the pivot position, and

similarly  are the pivot column entries below the pivot position.

This Gaussian-Jordan pivot matrix is what we multiply the simplex tableau by in order to perform the row operations which would switch out our new basic and non-basic

variables in the tableau. It also updates all other entries in the tableau accordingly. This is the general process behind the iterations of the Simplex method.

Simplex Method Example

Suppose we are given the following LP [2], and are asked to find the vector  which gives the optimal solution. It is important to note that any optimal solution to this LP

will occur at a vertex of the feasible region depicted in Figure 1. In order to traverse these vertices and find our optimal solution, we will use the Simplex Algorithm.

A requirement of the Simplex method is that our LP be in standard form, so we will need to add slack variables to our constraints. The new formulation of the LP is therefore:
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Figure 1: Feasible region of

the LP.
With our LP in standard form we can begin finding an initial feasible solution. This gives us a vertex to start at for our edge walk along the

feasible region of the polyhedra. For this example, it is rather easy to find an initial solution since the point  works. However, for some

LP's it is just as much work to find an initial feasible solution as it is to solve the problem itself.

With our initial feasible solution , we can write the initial tableau of the Simplex method [3] in the following format:

Looking at this initial tableau, we employ the largest coefficient rule in order to determine which variable moves from non-basic to basic, also called the entering variable. The

largest coefficient rule states that the entering variable will correspond to the variable which has the largest non-negative coefficient in the objective function of the LP. Based

on this, our entering variable would be .

To choose which variable will then move from basic to non-basic, also called the leaving variable, we apply the minimum ratio test. The minimum ratio test is way to

determine what the step size will be when we move in the direction of our entering variable. To perform the minimum ratio test, we take all the nonzero coefficients of our

entering variable in each constraint, divide its corresponding $b$ value, and choose the smallest ratio. Our example has the following ratios:

Since there is a tie for the minimum ratio test, we could choose either row as the pivot row. However, whenever such a tie happens, the vertex that we would be moving to is

degenerate, i.e., there are more active facets than necessary to specify the vertex. In such a situation, it is necessary to prevent the Simplex method from cycling or stalling.

One common way to do so would be to instead use Bland's Rule of choosing our entering and leaving variables. Using the largest coefficient rule and minimum ratio test alone
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do not guarantee the algorithm will terminate. However, Bland's Rule is guaranteed to terminate assuming that the entering and leaving variables are chosen in the same

fashion.

While our example would have terminated successfully had we kept going in this fashion, invoking Bland's Rule adds another level to the example that is worth discussing.

For reference, Bland's Rule is that the entering and leaving variable be chosen from their respective sets such that their index is the smallest [3]. In short, we look at the sets of
all eligible entering and leaving variables, and choose the variable with the smallest index in each set respectively. Since our variables are not written in a notation that is easy

to see which index is larger than another, we can think of them as

Applying Bland's Rule to this example, the entering variable would be . In choosing  as the entering variable, we have the following ratios from the minimum ratio test:

Based on these ratio values, we see that our leaving variable will be .

With our new basic and non-basic variables chosen, we use the substitution  to rewrite our Simplex tableau as:

Looking at our feasible region, this pivot of the Simplex method corresponds to the path shown in Figure 2.

Repeating these steps, we arrive at the final Simplex tableau.
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Figure 2: Step after the first

iteration of the simplex

method.

With this final tableau, we can now determine the vector for the optimal solution. The optimal solution is  with an objective value of 16.

Our path for the Simplex method is shown in Figure 3.

Figure 3: Full path taken to completion of the simplex method.

Z

y

w3

x

w4

=
=
=
=
=

16
2
2
2
1

−
+
+
−
−

w1

w1

2w1

2w1

w1

−
−
−
+
+

w2

2w2

3w2

3w2

2w2

(2, 2)

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:First_step.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:First_step.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Gif_path.gif
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Gif_path.gif


Networks

What is a Network?

A network  is a directed graph which contains nodes  and arcs . Each arc has an associated lower capacity  and upper capacity  which sets bounds on

how much flow can be sent along it. Each arc also has an associated cost  for carrying flow from node  to . Lastly, each node itself has a supply/demand  for all .

 is if that node is able to supply flow, 0 if it meant to have no flow at the end of the problem, negative if the node demands flow. The particular network of interest to us is the

minimum-cost flow problem which is represented as:

Here the matrix  represents a node-arc incidence matrix. It expresses how the arcs connect the nodes within the network where each row of the matrix represents a node and

each column an arc. In particular, the matrix will contain a 1 the places where an arc comes out of a particular node and a -1 where it is going into a particular node. Also, 

represents the amount of flow on each arc in .

This type of network flow problem is of interest because unlike general LP's, minimum-cost flow problems are efficiently solvable through the so called network simplex

method (a special derivation of the simplex method) or min-mean cycle cancelling.

Before jumping into the network simplex method itself and without any loss of generality, we make a few assumptions about our minimum-cost flow problems. The first is that

the system is closed in order to allow for feasible flow. The second is that the network is connected. That is to say, all the nodes in the network for the minimum-cost flow

problems are have a have path between them.

Spanning Trees in the Network Simplex Method

In general, the network simplex algorithm rotates through a series of spanning tree solutions until it reaches an optimal one. In order to better understand the iterations of the

Network Simplex method, some terms associated with these spanning trees are necessary and are thus defined in this section.

For any feasible solution to our network , an arc  is a free or basic arc if  and a restricted or non-basic arc if  or  [4]. The feasible

solution  and its associated spanning tree is what is known as a spanning tree solution if every nontree arc is a non-basic arc. This type of solution is exploited by the

network simplex algorithm in that it only looks for spanning tree solutions. We can also guarantee this type of solution exists by the Spanning Tree Property which states that if

the objective function of a minimum-cost flow problem is bounded from below over the feasible region, the problem always has an optimal spanning tree solution [4].

Due to the way spanning tree solutions are defined, we can partition our set of arcs, , into three subsets call them , , and  with

, , and . A spanning tree structure is feasible if it

satisfies all the arc's flow bounds, and is degenerate if not every arc is a basic arc.
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Network Simplex Method

Now that we have an understanding of the type of solution we are expecting to get from the network simplex method, we can get into the steps of the algorithm itself. These

steps are given as follows [5]

1. Obtain an initial feasible spanning tree solution for the minimum-cost flow problem by:

Establishing a feasible flow by solving a maximum flow problem and convert that solution to a spanning tree solution [4].
Northwest-Corner Rule, which takes the first supply node and sends as much as possible on an arc that goes to a demand node, and each subsequent supply node

does the same until a new demand node must be satisfied, see [5].
2. Compute initial dual variables, assuming the root node has a value of 0, using

and the dual slack variables on non-tree arcs using

3. Begin iterations:

1. Add an arc to spanning tree solution which creates a cycle. The arc that is added must be dual infeasible. That is to say . In fact, one could even pick the

most negative .

2. Since this forms a cycle we need to remove an arc in order to form a new spanning tree. The arc we remove must be in the reverse direction of the entering arc and
have the smallest flow among all such arcs. One could think of this as being the arc which goes to zero the fastest when increasing flow on the entering arc and
adjusting all other arcs in the cycle for this increase in flow.

3. Update the flows of the primal spanning tree. When the leaving arc is removed, but before adding in the entering arc, the original spanning tree is divided into two
disjoint subtrees: one which contains what we have decided is the root node and one which does not. Only the arcs of the new spanning tree that lie in the non-root
node subtree need to be updated for this change this flow in the primal spanning tree. This is because only the flow in the cycle created by having the entering and
leaving arcs is effected by this change from non-basic to basic arcs. The arcs that meet this criteria are updated as follows:

If the arcs are in the same cycling direction as the leaving arc, then their flows are all decreased by the amount of flow that was put on the entering arc.
If the arcs are in the opposite direction of the leaving arc, then the flows along those arcs are increased by the amount of flow sent along the entering arc.

4. Update the dual variables:

Dual variables are also updated based on lying in the non-root node subtree or not. Because the dual variables are calculated starting at the root node, the arcs

which would be part of the root node subtree would not need to be updated. This means the only dual variables (nodes) that need to be updated are those of the

non-root node subtree. This is done as follows:

If the entering arc connects the root node subtree to the non-root node subtree, increase all nodes on the non-root node subtree by the amount of flow on the
leaving arc.
Otherwise, decrease all non-root node subtree nodes by the amount of flow on the entering arc.

5. Update dual slack variables:

Again, the only dual slack variables that will be updated are those that connect the root node subtree to the non-root node subtree. These dual slack variables (non-

tree arcs) are updated as follows:

Arcs that are in the same cycle direction as the entering arc as decreased by the amount of flow on the leaving arc
Arcs that are in the opposite cycle direction as the entering arc are increased by the amount of flow on the leaving arc

6. Terminates when there are no longer any negative reduced costs in the primal.

− =yj yi cij

= + − .zij yi cij yj

< 0zij
zij
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With this outline of the network simplex process, let us begin working through a simple example to better understand what this procedure looks like.

Network Simplex Example

Suppose we are given the following LP [3]:

where

and

The network associated with this LP is shown in Figure 4.

From the outline given in the Network Simplex Method section, the first step in the Network Simplex method is finding a feasible spanning tree. This can be done in a variety

of ways, but for this example we will be using the Northwest-corner Rule. In using this rule, we want to form a table of our supply and demand nodes, and allocate as much as

we can to the demand node in the first column from the supply node in the first row. We will continue in this fashion until all requirements have been met. For our example,

this allocation looks as seen in Table 1.
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Figure 4: The blue next to the

nodes represent the

supply/demand values, while

the black on the arcs

represent the cost for each

arc.

Figure 5: The red arcs are part

of the spanning tree. The blue

values on the non-tree arcs

are the dual slack variable

values. The pink values next

to the nodes represent the

dual variable values.

Table 1

Supply

6 3 0 9

0 3 2 5

Demand 6 6 2

Along with finding an initial feasible spanning tree solution, we also need to pick a root node for our spanning tree. For the sake of this

problem, we will choose node  as the root node for our spanning tree solution. With this assignment of the root node done, we can compute

the values for the dual variables and dual slack variables. The dual variables are computed as:

Similarly the dual slack variables are computed as:

With the distribution of flow along with dual variables and dual slack variable information, we arrive at the initial solution depicted in Figure 5.

The entering arc that is selected based on the dual slack variable values in Figure 5 is . Having this arc enter creates a cycle between , , and . Our leaving arc must then

be an arc that is going in the opposite direction of  and also the lowest flow of all such arcs. Thankfully, there is only one such arc to choose from, so our leaving arc is

. Because of the entering and leaving arcs, the non-root node subtree is just the node , and the remaining nodes are then part of the root node subtree. This means that only

node  needs to have its dual variable updated as well any arcs connected to node .
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Figure 6:This is the spanning

tree solution and updated

variables for the first iteration

of the Network Simplex

method.

Figure 7:This is the spanning

tree solution and updated

variables for the second

iteration of the Network

Simplex method.

We update the spanning tree values as described in the network simplex algorithm, and arrive at the new spanning tree solution in Figure 6.

Once again, we need to choose an entering and leaving arc. There is only one remaining dual slack variable which is negative, so the entering

arc will be , and the leaving arc will then be . Note that once again the non-root node subtree is a single node, . Therefore the dual

variable associated with node  along with all arcs connected to node  will need to be updated.

Once everything is updated, the spanning tree for iteration looks as shown in Figure 7.

There are no longer any negative reduced costs to choose as an entering arc, so there is no need for another iteration of the Network Simplex

method. The solution after the second iteration, Figure 7, is the final answer for our problem.
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Overview

Background

During the COVID-19 pandemic, in an effort to encourage people living in cities to go outside while maintaining proper social distancing measures, many cities completely or

partially closed city streets to cars, creating Open or Shared Streets, respectively. In its Shared Streets Initiative, Denver closed seven stretches of street when the program

launched in April 2020.[1] The program was very popular, with the Denver Streets Partnership finding that 71% of voters approved of the program,[2] with some streets seeing

an increase in pedestrian and bicyclist usage from 351 per day to 1,700 per day.[3] While the Shared Streets Initiative officially ended in the week of August 16, 2021, due to

the popularity of the program, the City of Denver is considering implementing a permanent version of the Shared Streets Initiative, although the development of this project is

still underway.

Abstract

Demand for pedestrian-friendly business districts and recreational areas in the Denver area has increased since the beginning of the COVID-19 pandemic. A 2020 Denver

Streets Partnership survey found respondents increased their walking and biking by 80%. In one area, the Colorado Public Interest Research Group saw a 400% increase in

pedestrian traffic. In response to this, the city and county of Denver’s Shared and Open Streets program has established precedence of partially or completely closing streets

around Denver to improve the safety of pedestrians and increase areas for recreation. These Open or Shared Streets also provide safer, more accessible walkways for people in

wheelchairs and people living with disabilities.

In this project, we intend to design a framework for identifying potential candidates for shared street conversion to promote shared streets and accommodate a growing

population. First, we find the maximum traffic flow for both the current street layout and the layout after the road is converted to an open street to understand the impact. Then,

using criteria for equitable street selection, we can compare the effects of potential conversions across several candidate roadways. With these results, policymakers can

determine which roads are ideal for conversion to shared access by minimizing impact on traffic flow and maximizing equity.

Data

For this project we use the Statistical Neighborhoods[4] and Street Centerline[5] data from the Denver Open Data Catalog, for Denver neighborhoods and streets, respectively.

Street Selection Criteria

To serve as a framework for selecting candidate streets for testing maximum flow differences, we wanted to consider how cities previously selected streets for their respective

open and shared street programs during the pandemic. Boulder published their Low-Stress Walk and Bike Network Plan,[6] in which they identify four main criteria for street

selection, those being:

Equity Index
Population and Employment Density
Traffic Accidents
Key Destinations
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In this project, we use the equity index and population and employment density to identify candidate neighborhoods from which to pick streets, and we use traffic accidents

and key destinations to identify candidate streets within those neighborhoods.

Candidate Neighborhoods

In Boulder's Network Plan, they develop an equity index consisting of the following:

 % population with a disability
 % families living below the poverty level
 % households with no vehicle
 % non-white population
 % population under 17 or over 65 years old

The Network Plan then ranks neighborhoods within Boulder by census tract, and gives higher prioritization to those with a lower equity index.

In the Open Data Catalog, Denver defines their own equity index[7] by the following criteria:

Socioeconomic score
Access to care score
Morbidity score
Mortality score
Built environment score

Although these criteria are not the same as Boulder's, we can use Denver's equity index to inform neighborhood selection, and give higher priority to neighborhoods with

lower equity index scores.

The other criteria as defined by Boulder's Plan that we use for neighborhood selection is population and employment density. The Open Data Catalog provides Pedestrian

Demand Index data that "estimates the demand for walking in different areas of the City and County of Denver based on population and employment density."[8] Both Boulder

and this project give higher prioritization to neighborhoods with higher population and employment density.

By sorting Denver neighborhoods (as defined by the Statistical Neighborhoods data) using the difference of their pedestrian demand index and equity index (i.e., high

pedestrian demand and low equity most highly favored), we identified the following five neighborhoods as the best candidates for shared street consideration:

CBD
Capitol Hill
City Park West
Five Points
North Capitol Hill
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Candidate Streets

Boulder's Network Plan specifies that it gives highest priority for shared street conversion to streets who have a high frequency of "pedestrian-involved, bicyclist-involved, and

killed or seriously injured (KSI) crashes." The Open Data Catalog has significant crash data,[9] and we subset this data by those that were pedestrian-involved, bicyclist-

involved, or KSI crashes.

Boulder's other street selection criteria is those that are near key destinations. The Network Plan defines key destinations as including libraries, fitness centers, trailheads,

restaurants, cafes, and grocery stores, but due to research and public input, defines the following three as those given consideration:

Parks
Schools
Transit stops

For Denver, we collected park data from the Open Data Catalog,[10] school data from Open Street Map,[11] and bus and light rail stop data from the RTD website.[12]
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With all of this data, Boulder specifies that they consider the number of crashes and key destinations within 1/4 mile of each street. By creating a 1/4 mile buffer around each

street within the identified candidate neighborhood and counting the percentage of crashes and key destinations within those buffers, we can identify ideal candidate streets

within each neighborhood.
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With several potential candidate streets identified, we can find the maximum flow within the street network with and without those streets to find which streets have minimal

traffic impact.

Algorithms

Assumptions

Maximum flow is the most important quantity of interest. While transit time, time spent in congestion, and ease of the route and potentially as important as the flow rate,
we assume the flow rate is the most salient factor in policy development.
Road Segment capacity is determined by the number of lanes, maximum speed, and a function that maps the speed to a safe following distance. Even though this
simplifying assumption falls short at intersections and junctions where human factors cause slowdowns, it is necessary to model flow as required by the restrictions of a
network flows model. However, the assumption still allows the algorithm to set an upper bound on the max-flow.

Determining Road Capacity

The flow rate of a roadway is determined by the density of traffic and the speed of that traffic. The density and speed have a non-linear relationship which produces a

reasonably complex flow rate over combinations of speed and density. Still, they will generally produce a curve with a maximum flow rate. A simple thought experiment can

understand this behavior: if there are no cars on the road, the cars may reach the maximum speed, but the flow rate will be low; if the roadway has a very high density of

vehicles, the speed of traffic will be far from the maximum (potentially as low as zero); therefore, there must be some point in between these two extremes where traffic flow

is maximized.

Since this behavior is dependent on a locale, local data is needed to characterize the maximum flow rate across any roadway. As such data is challenging to produce, we choose

a simpler model to estimate the maximum flow rate.

Moore et al., in "Maximum flow in road networks with speed-dependent capacities-application to Bangkok traffic" (2013), suggest a model of traffic flow based on the max

speed, number of lanes, and the safe following distance. Their model is expressed as  where C is the capacity, s is the maximum speed, and δ is the separation of cars.

We use the same safe following distance data as Moore et al. from Toyota listed in their paper.

The code used to perform this operation can be found below:

from scipy.interpolate import UnivariateSpline

# Moore et al (2013) safe breaking distances

MOORE_AFTER_BREAK_SPLINE = UnivariateSpline(

    [20, 30, 40, 50, 60, 70, 80, 90, 100],

    [3.9, 6, 11, 18, 27, 39, 54, 58, 84],

)

MOORE_BEFORE_BREAK_SPLINE = UnivariateSpline(

    [20, 30, 40, 50, 60, 70, 80, 90, 100],

    [6, 8, 11, 14, 17, 19, 22, 25, 28],

)

C =
s

δ
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MOORE_SAFE_BREAKING_DISTANCE = lambda x: MOORE_AFTER_BREAK_SPLINE(

    x

) + MOORE_BEFORE_BREAK_SPLINE(x)

def capacity_moore(lanes: float, max_speed: float):

    """Maximum capacity for a road network based on

    "Maximum flow in road networks with speed-dependent capacities-application to Bangkok traffic", Moore et al, 2013

    """

    return 1000 * max_speed / (MOORE_SAFE_BREAKING_DISTANCE(max_speed) + 5) * lanes

The capacities for the Denver network are show below: 

Max-Flow with Preflow Push

The Generic Max-Flow Algorithm with Preflow Push is an algorithm that finds the maximum flow between a source and a sink node in a connected graph. The reason we

chose this algorithm is that it has a strong polynomial time complexity, making it very efficient for large graphs. The critical step in the Generic Max-Flow Algorithm with

Preflow Push is that at each iteration, a node, call it node i, with excess (>0) flow, and distance label d is chosen. This excess is succesively discharged across arcs originating

from node i in current residual graph, until the excess is 0. The arcs must be both admissible, and have positive capacity. If the excess on a node is positive, and there are no

admissible arcs, then the distance label of node i is changed until an admissible arc is created.
Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Denver-road-capacity.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Denver-road-capacity.png


This process allows the maximum-flow value to accumulate very quickly on the sink node. The downside of the Generic Max-Flow Algorithm with Preflow Push is that after

the max-flow value has been pushed to the sink node, there may still be excess flow on other nodes in the graph. This condition violate the mass-balance constraints of the

max-flow problem formulation. Using the same methodology desrcibed aboce, the remaining excess on each node is pushed back toward the source node until no excess

remains, except on the sink and source node.

Initialization

To initialize the Generic Max-Flow Preflow Push Algorithm, a capacitated network, a source node s, and a sink node, t, are chosen. Starting from the sink node, distance

labels, d(i), are calculated and assigned to each node, i, in the network using a Breadth First Search Labeling Algorithm. Given a node i, and a node j in the adjacency list of

node i, we define an arc (i,j) to be admissible if d(i) = d(j) +1. Primary Step: The adjacency list, A(s), of the source nodes is scanned, and a node j from A(s) is chosen. Notice

that the distance label d(s) = d(j) +1 for all j in A(s), so the arc (s,j) is an admissible arc. A flow value equal maximum capacity of the arc (s,j) is pushed from s to j, yielding an

excess flow e(j) = c_(s,j) on node j. The residual graph is updated so that the capacity of arc (j,s) = e(j). This step is repeated for all nodes in A(s). The distance label of the

source node, d(s), is changed to equal the number of nodes in the network. This disconnects the s from the sink node in the original graph, and ensure that the algorithm does

not push any flow from the source to sink node again.

Push or Relabel

Once the network has been initialized, the algorithm either pushes flow from an active node along an admissible arc, or relabels an active node to create an admissible arc.

Active nodes are nodes with a positive excess flow on the, excluding the sink and source nodes.

In the Push/Relabel step the network is scanned to see if an active node exists.

If such a node exists, call it node i, scan the adjacency list, A(i), for an an admissible arc.
If an admissible arc, (i,j), exists, then:

flow(i,j) = min(capacity(i,j), excess(i)) is pushed across the arc (i,j).
The excess, excess(i), is decreased by flow(i,j).
The excess, excess(j), is increased by flow(i,j).
The capacity of arc (i,j) is decreased by flow(i,j).
The capacity of arc (j,i) is decreased by flow(i,j).

If an admissible arc, (i,j), does not exist, then the distance label, d(i), is relabeled:
d(i) = min{d(j) + 1: j is in A(i) and the capacity of arc (i,j) is greater than 0}.

All Pairs Impact

To understand the impact of removing a road segment (length between two intersections), we compute the max-flow between all pairs of points on the network with the

segment present and the network with the segment removed. The following code performs this action:

import networkx as nx

def removal_impact(

    network: nx.DiGraph,

    arc: (int, int, int),

    radius: float, Typesetting math: 100%



) -> float:

    

    net = nx.DiGraph(network)

    edges = ox.utils_graph.graph_to_gdfs(network, edges=True, nodes=False)

    area_of_interest = edges.loc[[arc]].to_crs(epsg=util.CONFIG.local_crs) \

        .geometry.representative_point().buffer(radius) \

        .to_crs(epsg=util.CONFIG.base_crs).iloc[0]

    

    net = nx.DiGraph(ox.truncate.truncate_graph_polygon(net, area_of_interest))

    

    unperturbed_flow_values, _unperturbed_flows = util.all_pairs_max_flow(net, net.nodes)

    net.get_edge_data(arc[0], arc[1])["capacity"] = 0

    if (arc[1], arc[0]) in net.edges:

        net.get_edge_data(arc[1], arc[0])["capacity"] = 0

    

    perturbed_flow_values, _perturbed_flows = util.all_pairs_max_flow(net, net.nodes)

    return {x: perturbed_flow_values[x] - unperturbed_flow_values[x] for x in perturbed_flow_values.keys()}

(For the full code see: https://github.com/schmidmt/Finding-Optional-Shared-Streets/blob/main/notebooks/StreetSelection.ipynb)

For a given street segment, the difference in max-flow networks can be examined to determine the impact. An example of such a network is below
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Results and Policy

Top 3 Candidates

The following represent the top three candidates for conversion to shared streets.

Curtis Street (15th Street – 17th Street)

Impact: -1.8 Cars/Hr

Adjacent to 16th street mall, this area has a significantly higher occurrence of traffic accidents and could provide a protected pedestrian area with a minimal impact on traffic.

There are also bus stops and lightrail stations nearby, so it is part of a major hub for commuters to Downton Denver and Auraria Campus. We recommend that the Denver

Department of Transportation (DOTI) consider this street and adjacent streets while completing the feasibility study to expand the Open and Shared Streets Initiative.

Marion Street (East 18th Ave – East 19th Ave)

Impact: -5.5 Cars/Hr

In a primarily residential block, this segment is adjacent to Hillcrest middle school. Converting this street, and possibly nearby streets to shared access could provide safer

routes for parents to walk their kids to school. It also could provide reasonable access to a place for communities to interact and play.
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Lafayette Street (East 17th Ave – East 18th Ave)

Impact: -6 Cars/Hr

Lafayette Street sits on the other side of a residential block from an existing park. It is very close to Hillcrest Middle School. Converting this street, and possibly nearby streets

to shared access could provide safer routes for parents to walk their kids to school. This closeness could extend the existing pedestrian space and provide additional safe

outdoor space for the area's residents.
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Marion Street (East 18th Ave – East 19th Ave) & Lafayette Street (East 17th Ave – East 18th Ave)

It should be noted that these streets are within 1 block of each other, indicating that the area around these streets has a high pedestrian demand, 2 different primary key

destinations, a middle school and a park. Removing these streets will have a low overall impact on traffic flow through this area, so we recommend that the Denver DOTI

consider these streets while completing the feasibility study to expand the Open and Shared Streets Initiative.

All Candidates Impact By Neighborhood

The following tables detail the impact of removing the stated road segment from the traffic network and determining the impact on all-pairs max-flow, sorted by impact and

grouped by heighborhood.

CBD

impact road between_left between_right neighborhood

-1.59 Curtis Street 15th Street 17th Street CBD

-7.88 California Street 17th Street 15th Street CBD

-9.93 Stout Street 15th Street 17th Street CBD

-12.22 Welton Street 15th Street 17th Street CBD

-15.98 Champa Street 17th Street 15th Street CBDTypesetting math: 100%
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Capitol Hill

impact road between_left between_right neighborhood

-14.66 Clarkson Street East 8th Avenue East 9th Avenue Capitol Hill

-19.96 Clarkson Street East 9th Avenue East 10th Avenue Capitol Hill

-24.07 East 9th Avenue Clarkson Street Emerson Street Capitol Hill

-27.76 East 9th Avenue Washington Street Clarkson Street Capitol Hill

-45.61 East 8th Avenue Clarkson Street Washington Street Capitol Hill

City Park West

impact road between_left between_right neighborhood

-5.72 Marion Street East 18th Avenue East 19th Avenue City Park West

-6.45 Lafayette Street East 18th Avenue East 17th Avenue City Park West

-7.21 Humboldt Street East 17th Avenue East 18th Avenue City Park West

-15.48 Humboldt Street East 17th Avenue East 16th Avenue City Park West

-25.94 Humboldt Street East 18th Avenue East 20th Avenue City Park West

Five Points

impact road between_left between_right neighborhood

-11.81 California Street 27th Street 28th Street Five Points

-11.86 California Street 26th Street 27th Street Five Points

-12.46 27th Street Stout Street Champa Street Five Points

-14.00 Stout Street Park Avenue West Five Points

-14.71 Welton Street 28th Street 29th Street Five Points

North Capitol Hill

impact road between_left between_right neighborhood

-11.57 Pennsylvania Street East 18th Avenue East 19th Avenue North Capitol Hill

-12.63 East 19th Avenue Pearl Street Pennsylvania Street North Capitol Hill

-13.28 East 19th Avenue Logan Street Pennsylvania Street North Capitol Hill

-14.78 Pennsylvania Street East 19th Avenue East 20th Avenue, 22nd Street North Capitol Hill

-31.66 East 18th Avenue Pennsylvania Street Logan Street North Capitol Hill

Further Research

Due to the way candidate streets were selected, many of the streets were uninteresting in the actual context of the city. Additionally, many proxy variables used in the
context of optimization are too general to quantify. We might relax the QoI and consider additional streets within these neighborhoods, or streets close to heavily
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trafficked paths.
Due to the nature of neighborhood selection, only neighborhoods in downtown Denver were considered. Using different neighborhood selection criteria or manually
selecting neighborhoods outside of downtown could provide interesting results.

Using just Pedestrian Demand and Equity as factors to select neighborhoods is not very rigorous, and additional criteria could be considered. Additionally,
Denver's Equity Index was used in place of Boulder's, but they're not based on the same criteria. Creating unique neighborhood selection criteria for each city
would give more meaningful results.

Like with neighborhood selection criteria, specific criteria were used for street selection. Depending on the intention of the city converting their streets, different key
destinations could be considered, like arenas, cafes, or hospitals. Cities with very considerable public transportation networks might give streets near those stops even
heavier consideration.
We used the Pedestrian Demand Index to inform the neighborhoods that we investigated, weighting neighborhoods with a high Pedestrian Demand Index Score higher
than neighborhoods with a low Pedestrian Demand Index Score. This led us to investigate neighborhoods like North Capitol Hill, the Central Business District, and West
City Park, which are neighborhoods with plenty of sidewalks and bike lanes. This led to the realization that basic pedestrian infrastructure, like sidewalks, bike lanes and
parks, can lead to increased Pedestrian Demand, as people desire to live and move to neighborhoods that are supported such infrastructure. Light rail stations and the
River North area in Denver are examples of infrastructure leading to increased pedestrian demand.

Considering this, it may be wise to rerun our analysis, weighting neighborhoods with a low Pedestrian Demand Index score higher than neighborhoods with a high
Pedestrian Demand Index Score. Developing pedestrian infracture via Open and Shared Streets in these neighborhoods may lead to an increased Pedestrian
Demand Index Score as these neighborhoods become more pleasant to live in, and possibly improve the overall equity score of these neighborhoods.

Generality of Code

The code used to generate these recommendations is general to any area with streets in OpenStreetMaps and an equivalent measure of inequity (or any objective function).

GitHub

GitHub Repository (https://github.com/schmidmt/Finding-Optional-Shared-Streets)

Tutorial

Jupyter Notebook Tutorial (https://github.com/schmidmt/Finding-Optional-Shared-
Streets/blob/main/notebooks/Finding%20Optimal%20Shared%20Streets%20Tutorial.ipynb)

Resources

Moore, E.J., Kichainukon, W. and Phalavonk, U., 2013. Maximum flow in road networks with speed-dependent capacities-application to Bangkok traffic. Songklanakarin

Journal of Science & Technology, 35(4).

Boeing, G. 2017. OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks. Computers, Environment and Urban Systems 65,

126-139. doi:10.1016/j.compenvurbsys.2017.05.004

Katz, Danny, Locantore, Jill, 2021, “Denver Shared and Open Streets program working…”, DenverStreetPartnership
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“2019 And Bike Network Plan Boulder - Bouldercolorado.gov.” 2019 Boulder Low-Stress Walk & Bike Network Plan , City of Boulder, 2019,

https://bouldercolorado.gov/media/4530/download?inline=.

Ahuja, K. R., et al, “Network Flows: Theory Algorithms & Applications,” Prentice Hall-1993

1. ↑ https://www.denvergov.org/Government/Agencies-Departments-Offices/Agencies-Departments-Offices-Directory/Department-of-Transportation-and-
Infrastructure/Programs-Services/Shared-Streets

2. ↑ https://denverstreetspartnership.org/project/press-release-denverites-strongly-support-citys-shared-and-open-streets-efforts-to-expand-bicycle-network/
3. ↑ https://denverstreetspartnership.org/wp-content/uploads/2020/04/Media-Release-Shared-Streets-1.pdf
4. ↑ https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-statistical-neighborhoods
5. ↑ https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-street-centerline
6. ↑ https://bouldercolorado.gov/projects/low-stress-walk-and-bike-network-plan
7. ↑ https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-equity-index-2020-neighborhood
8. ↑ https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-pedestrian-demand-index
9. ↑ https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-traffic-accidents

10. ↑ https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-parks
11. ↑ https://www.openstreetmap.org/
12. ↑ https://gis-rtd-denver.opendata.arcgis.com/maps/e14366d810644a3c95a4f3770799bd54/about
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Finding Your Optimal Home Subject to Personal Constraints

From CU Denver Optimization Student Wiki

This Project is by Alex Semyonov, Jacob Dunham, and Orlando Gonzalez.

Abstract

Link to GitHub Repository: in progress
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Food Deserts

From CU Denver Optimization Student Wiki

The authors of this project are Drew Horton and Rebecca Robinson.
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Gentrification

From CU Denver Optimization Student Wiki

This project is concerned with Identifying Gentrification. I will use structure age, income, and race data to inform a linear program to find out which areas are likely to be

gentrified, and make suggestions on what to do with that information.
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About me

Hi! My name is Grace Truong and I am currently a first year PhD student at CU Denver.

Education

I received my Bachelor's in Mathematics at Regis University in May 2024.

Projects

Spring 2025: Burnside's Lemma (for Applied Graph Theory)

GitHub

Github (https://github.com/Grace-Truong)
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Gradient Descent Method in Solving Convex Optimization Problems

From CU Denver Optimization Student Wiki

During the class, Siyuan_Lin and Gregory_Matesi have learned various knowledge of linear programming problems. So, we take this project as a chance to learn something

new. We are interested in solving the nonlinear programming problems and we take the convex optimization problems as an example.

Contents

1 Project Abstract
2 Gradient descent
3 Limitations of Gradient Descent

3.1 Zigzagging Issue
3.2 Non-Convergence Issue
3.3 Does not work for linear programming

4 Implementation
4.1 Implementation in AMPL
4.2 Other options

5 Newton methods
5.1 Difference between newton methods and gradient descent?

6 Github and future work
7 References

Project Abstract

The gradient descent method is a first-order iterative optimization algorithm for finding the minimum of a function. It is based on the assumption that if a function  is

defined and differentiable in a neighborhood of a point , then  decreases fastest along the negative gradient direction. It is a simple and practical method for solving

optimization problems with an objective function that is well conditioned.

However, it comes with a few drawbacks. It can exhibit poor convergence if the problem is not strongly convex. Gradient descent may also exhibit zigzagging when the step

size is too big and slow search when the step size is too small. Also, gradient descent may not perform well in a setting where the objective function is linear. Newton's method

is more widely implemented by programmers in python and AMPL. Newton's method features use of the Hessian which corresponds to information about the curvature of the

objective function. This information may help Newton's method performs better than relatively simpler gradient descent method. In particular, Newton's method is used in the

Generalized Reduced Gradient (GRG) method implemented in the CONOPT solver in AMPL.

F (x)
x0 F (x)
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Gradient descent

Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function. It originates from the Taylor Series, which represents a function by an

infinite sum of terms that are calculated from the values of the function's derivatives at a single point. Let  be any function infinitely differentiable around .

So, when  is close to , the function  will have a close approximation with only the first two terms of Taylor Series.

For a multivariable function, the approximation could be written as below:

The gradient  is a vector whose components are the first order partial derivatives of  at .

It can be interpreted as the "direction and rate of fastest increase". In order to find the minimum of the target function, we take the negative direction of the gradient, which will

give us the max-rate descending direction.

Given initial point , the gradient descent algorithm uses the following update to generate , , . . ., until a stopping condition is met:

from the current point  generate the next point  by

where  is called the step size.

In practice, step sizes are often chosen
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When the step size is too large,

the iteration diverges.

1. as a fixed value if  is Lipschitz (rate of change is bounded) with the constant known or an upper bound of it known;

2. by line search;

3. by a method called Barzilai-Borwein with nonmonotone line search.

Limitations of Gradient Descent

There are certain limitations of the gradient method.

Zigzagging Issue

For poorly conditioned convex problems, gradient descent increasingly 'zigzags' as the gradients point nearly orthogonally to the shortest

direction to a minimum point.

Non-Convergence Issue

When the step size is too big, it can cause overshooting. When the step size is too small, the gradient descent may never converge because

it is trying really hard to exactly find a local minimum.

Does not work for linear programming

We examined whether or not the gradient descent method was a good option for solving linear programming problems.

Implementation

Implementation in AMPL

We tried to implement gradient descent to solve a convex quadratic problem in AMPL but found that there were no readily available solvers that did so.

Other options

We are working on modeling a convex quadratic programming problem in AMPL and then sourcing it to a gradient descent solver in python. There may not be any libraries

that use gradient descent in python so we may need to write our own.

We are also looking at using the CONOPT solver in AMPL that uses newton methods[1].

∇f
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Newton methods

Difference between newton methods and gradient descent?

We looked at the difference between newton methods for optimization and gradient descent. We examined whether or not newton methods were typically a better option for

solving convex quadratic optimization problems. We also examined whether or not there were any available libraries that made use of newton methods.

Github and future work

Please see our Github repository for code and a pdf/ppt of our slide show presentation.

https://github.com/GregoryMatesi/GradientDescent_MATH5593

References

1. ↑ https://ampl.com/SOLVERS/conopt3.pdf

2. “Nonlinear Programming,” Athena Scientific, by Dimitri P. Bertsekas 3. "Gradient descent", https://en.wikipedia.org/wiki/Gradient_descent# 3.
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Gradient Descent Method in Solving Convex Quadratic Optimization Problems

From CU Denver Optimization Student Wiki

During the class, Siyuan_Lin and Gregory_Matesi have learned various knowledge of linear programming problems. So, we take this project as a chance to learn something

new. We are interested in solving the nonlinear programming problems and we take the convex optimization problems as an example.

Contents

1 Project Abstract
2 Gradient descent
3 Problems with Gradient Descent

3.1 Convergence Analysis
3.2 Zig zagging
3.3 Does not work for linear programming

4 Implementation
4.1 Implementation in AMPL
4.2 Other options

5 Newton methods
5.1 Difference between newton methods and gradient descent?

6 Github and future work
7 References

Project Abstract

The gradient descent method is a first-order iterative optimization algorithm for finding the minimum of a function. It is based on the assumption that if a function  is

defined and differentiable in a neighborhood of a point , then  decreases fastest along the negative gradient direction. It is a simple and practical method for solving

optimization problems with a quadratic objective function that is well conditioned.

However, it comes with a few drawbacks. It can exhibit poor convergence if the problem is not strongly convex. Gradient descent may also exhibits zigzagging when the step

size is too big and slow search when the step size is too small. Also, gradient descent may not perform well in a setting where the objective function is linear. Newtons method

is more widely implemented by programmers in python and AMPL. Newtons method features use of the hessian which corresponds to information about the curvature of the

objective function. This information may help Newtonian methods perform better than relatively simpler gradient descent method. Newtons method is used in the Generalized

Reduced Gradient (GRG) method implemented in the CONOPT solver in AMPL.
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Gradient descent

Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function. It originates from the Taylor Series, which represents a function by an

infinite sum of terms that are calculated from the values of the function's derivatives at a single point. Let  be any function infinitely differentiable around .

So, when x is close to , the function  will have a close approximation with only the first two terms of Taylor Series.

For a multivariable function, the approximation could be written as below:

The gradient  is a vector whose components are the first order partial derivatives of  at .

It can be interpreted as the "direction and rate of fastest increase". In order to find the minimum of the target function, we take the negative direction of the gradient, which will

give us the max-rate descending direction.

Problems with Gradient Descent

Convergence Analysis

We examined why the gradient descent method may not converge quickly. We examined what can go wrong and cause poor convergence.
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Zig zagging

We examined how gradient descent can "zig zag" slowly towards an optimum along a flat curved valley in the objective function.

Does not work for linear programming

We examined whether or not the gradient descent method was a good option for solving linear programming problems.

Implementation

Implementation in AMPL

We tried to implement gradient descent to solve a convex quadratic problem in AMPL but found that there were no readily available solvers that did so.

Other options

We are working on modeling a convex quadratic programming problem in AMPL and then sourcing it to a gradient descent solver in python. There may not be any libraries

that use gradient descent in python so we may need to write our own.

We are also looking at using the CONOPT solver in AMPL that uses newton methods[1].

Newton methods

Difference between newton methods and gradient descent?

We looked at the difference between newton methods for optimization and gradient descent. We examined whether or not newton methods were typically a better option for

solving convex quadratic optimization problems. We also examined whether or not there were any available libraries that made use of newton methods.

Github and future work

Please see our Github repository.

https://github.com/GregoryMatesi/GradientDescent_MATH5593

References
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Graph Coloring Variants

From CU Denver Optimization Student Wiki

Welcome to Abigail Nix and Ari Holcombe Pomerance’s project page! In this project, we will explore list coloring, a common variant of vertex coloring of graphs. We begin

with an introduction to list coloring, with definitions and some examples. We then establish the list version of Brooks’ Theorem and show how this implies Brooks’ Theorem in

the standard vertex coloring setting. Finally, we introduce correspondence coloring as a way to generalize list coloring further.

Contents

1 Introduction
2 List Extension of Brooks’ Theorem
3 Correspondence Coloring
4 References
5 External links

Introduction

We start by defining list coloring, the setting we will discuss for most of the project. Just as in standard vertex coloring, we still require that any two adjacent vertices cannot

receive the same color. However, in this new setting, each vertex must be colored from some subset of the colors, rather than allowing any vertex to receive any color. We now

care about finding the minimum number of color options we need to provide to each vertex such that we can still color , regardless of what color options are given to each

vertex. We formally define list coloring and the list chromatic number below.

Definition 1.[1] For a graph , a list assignment  assigns each vertex  a set  of colors allowed at . An -coloring is a proper coloring  of  such that

 for all . A graph  is -choosable or list -colorable if it has an -coloring whenever  for all . The list chromatic number or choice

number or choosability  is the minimum  such that  is -choosable.

We can see that the standard formulation of vertex coloring is simply a special case of list coloring, where every vertex receives the same list of allowable colors. If every

vertex gets the same list in some graph , then as long as these lists are at least as large as ,  can be colored from this list assignment. This implies that

, since we know that for this particular list assignment where every vertex gets the same list, the lists must be of size at least . With this observation

that standard coloring is just a special case of list coloring, it may seem like list coloring should be easier than coloring, since we can have any colors in the lists of each vertex.

However, finding the list chromatic number of a graph is a fundamentally different problem than finding the chromatic number, because we must consider all possible list

assignments. In fact, by considering a particular list assignment, we can easily construct an example of a class of graphs where . We know that all bipartite

graphs are 2-colorable, since we can always assign one color to each part, but in our presentation we show that complete bipartite graphs  are not 2-choosable by

constructing a list assignment such that the graph is not colorable from these lists.

G

G L v ∈ V (G) L(v) v L ϕ G
ϕ(v) ∈ L(v) v G k k L |L(v)| ≥ k v

(G)χl k G k

G χ(G) G
(G) ≥ χ(G)χl χ(G)

(G) > χ(G)χl
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List Extension of Brooks’ Theorem

Recall that for standard coloring, we can use a greedy coloring of a graph  to get that . The same argument also implies that ,

since in a greedy list coloring with respect to some vertex order, each vertex will have at most  already colored neighbors. This result coming from greedy coloring can

also be strengthened by classifying which graphs meet this bound with equality.

Brooks’ Theorem (for standard coloring) states that , with equality if and only if  has  (or an odd cycle when ) as a

component. We will provide some results that enable us to establish a very similar result for list coloring. To prove this result, we first must establish a series of lemmas.

Lemma 1. (Vizing (1976)). Given a connected graph , let  be a list assignment such that  for all .

1. If  for some vertex , then  is -colorable.

2. If  is 2-connected and some two lists differ, then  is -colorable.

For the next lemma, we need the following definition.

Definition 2. A graph  is -choosable if it is -colorable whenever  for each vertex , where . The graph is degree-choosable if it is -

colorable whenever  for each vertex .

Lemma 2. If a connected graph  has a degree-choosable induced subgraph , then  is degree-choosable.

We will use Lemmas 1 and 2 to determine that a graph can be colored from its lists when each list is at least as large as the degree of the vertex. The next lemma is a structural

result that will be helpful in the proof of Theorem 1.

Lemma 3. (Erdős-Rubin-Taylor (1979)). Every 2-connected graph  that is not a complete graph or odd cycle has an even cycle with at most one chord.

These three lemmas can be used to prove the following Theorem 1.

Theorem 1. (Borodin (1977), Erdős-Rubin-Taylor (1979)). If graph  is not degree-choosable, then every block of  is a complete graph or an odd cycle.

Finally, in our presentation, we show how this theorem implies the following list extension of Brooks’ Theorem.

Corollary 1. If a connected graph  is not a complete graph or an odd cycle, then .

Since  for every graph , note that this statement implies Brooks’ Theorem. This corollary also classifies the types of connected graphs that have

 (complete graphs and odd cycles).

Correspondence Coloring
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List coloring is just one of the many variants of graph coloring. Here we define correspondence coloring, a further generalization of the concept of list coloring.

Correspondence coloring, or DP coloring (after Dvořák and Postle, 2016), was introduced as a way to allow for vertex identification. This is a common tool used in standard

graph coloring, but it cannot be used with list coloring, since any two vertices might not have the same list, so might not be able to receive the same color. With

correspondence coloring, we can make every list the same, which avoids this problem. In correspondence coloring, instead of two adjacent vertices not being able to receive

the same color, as in list coloring, we establish a correspondence between the lists of vertices to determine what colors are forbidden at each vertex. This is formally defined

below.

Definition 3.[2] A correspondence assignment for a graph  consists of a list assignment  and a function  that to every edge  assigns a partial matching

 between  and . An -coloring of  is a function  that assigns to each  a color  such that for every  the

vertices  and  are non-adjacent in . Now  is -colorable if such an -coloring exists. The correspondence chromatic number (or

DP chromatic number),  is the minimum  such that  is -colorable whenever  for all .

Note that if  for each vertex , we can find an equivalent correspondence where  for all . Essentially, this just means that we can relabel

the colors in the lists of each vertex, as long as the underlying correspondence stays the same. This is the powerful aspect of correspondence coloring that allows for vertex

identification to be used where it could not be for list coloring.

Just as we can have , we can also have . In the presentation for this project, we demonstrate this on the 4-cycle, where there is one

twist in the correspondence that makes the correspondence chromatic number strictly larger than 2.

References

1. ↑ Douglas B. West. Combinatorial Mathematics, 2021.
2. ↑ Daniel W. Cranston. Graph Coloring Methods, 2024.

External links

Our presentation slides can be found in the GitHub repository for this project (https://github.com/aripom/Graph-Coloring-Variants).
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Gregory Matesi

From CU Denver Optimization Student Wiki

I am a fourth year undergraduate in the Applied Math Program at CU Denver. I am originally from Sandwich, IL. After spending four years in the USMC I decided to move to

Denver.. After I graduate in December or 2019 I hope to continue at CU Denver in the MS in Statistics Program. I am currently working with Siyuan_Lin on a project

examining the gradient descent method for convex quadratic problems in AMPL: Gradient Descent Method in Solving Convex Quadratic Optimization Problems
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Hanbyul Lee

From CU Denver Optimization Student Wiki

About me

Hi, I am Hanbyul (Han) Lee, a first-year PhD student at CU Denver.

Projects

Spring 2025: Degree Sequence (for Applied Graph Theory [MATH 6406])

GitHub

Github (https://github.com/otter275)
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History Of Linear Programming

From CU Denver Optimization Student Wiki

<big>Computational LP Pioneers:

Fourier [1826] studies the properties of systems of linear inequalities, more complex than systems of equations.

De la Vall Poussin [1911] develops an iterative procedure for linear minimax estimation which can be adjusted to solve linear optimization problems.

As early as 1930, A.N. Tolstoı described a number of solution approaches for transportation problems.

Kantorovich [1939] proposes rudimentary algorithm for linear programming applied to production planning.

George Dantzig proposes the Simplex Method in 1947.

Early works by Leontief, von Neumann and Koopsman directly influenced the theoretical development of linear programming.

From Dantzig’s point of view: Not just a qualitative tool in the analysis of economic phenomena, but a method to compute actual answers.

Unfortunately, the 1975 Nobel Prize in Economics was awarded to Kantorovich and Koopsman, ignoring Dantzig’s contribution. </big>
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Hope Haygood

From CU Denver Optimization Student Wiki

Hello! My name is Elizabeth Hope Haygood & I am currently a PhD student in the Mathematical & Statistical Sciences Department at the University of Colorado Denver. I

obtained my Bachelor of Science in Mathematics with a focus in Professional Physics at the University of North Alabama in Florence, Alabama. When I am not enjoying

Math, you can find me playing with my toddler. We enjoy biking, strolling, & hiking. I also really enjoy my share of reality television such as the Bachelorette & Keeping up

with the Kardashians (so sad its cancelled!!).

During the Fall semester of 2020, Sandra Robles & I worked on Denver Fire Response Distances for a project in our Linear Programming class.
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Housing Assistance Program Allocation

From CU Denver Optimization Student Wiki

This project is by Courtney Franzen and Weston White

Abstract

In Colorado, many homeowners face the risk of foreclosure. Losing one's home can result in economic and psychological hardship. The greater number of foreclosures within

a neighborhood has rippling effects throughout our community in Denver. This project studies how housing assistance is offered throughout the Denver community and

identifies policy that can be implemented to prevent a greater number of homes from being foreclosed upon. Historically, Colorado has offered assistance on a first come first

served basis, which is oftentimes an inefficient and inequitable allocation of funds. To support our policy recommendations, we use a linear program that maximizes outreach

in order to minimize the number of homes facing foreclosure within neighborhoods in need. We identify neighborhoods in need as those that face the largest amount of

foreclosures. The number of homes that were foreclosed come from time series data that breaks down the demographics of individual neighborhoods in the Denver area. Our

policy recommendations focus on promoting the availability of housing assistance to neighborhoods that are likely to use the available funds offered by the government which

will assist them in paying their mortgages.

GitHub

Housing Assistance Awareness GitHub (https://github.com/WestonWhiteUCD/D2P_HAPA)

Click the link above to see the powerpoint slides and data/ampl files that were used during our project.
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Housing Distribution

From CU Denver Optimization Student Wiki

Suppose you are a developer in Denver. Building mansions may be the best way to make money, but selling all of them would be tough. On the other hand, you can fit more

people into studio apartments, but not everyone will want those either. Linear Programming can be used to plan the correct distribution of types of housing to build.

The basic idea behind the linear program is to assign a variable to each type of housing you can build. You would then want to maximize the profit from selling these types of

housing, subject to the constraints of what your budget is, what land is available to develop, and what people actually want to buy. We therefore end up with a linear program

like:

Where  is a set of the types of housing,  are the profit, cost, area, and demand for each type,  is the budget, and  is the land available.

Abstract

A housing developer has many different options for what to build. Apartments, or mansions? Condos, or family homes? The developer also has multiple constraints on what to

build, such as, budget, avail- able land, demand for the different types of housing, etc. We use linear programming to model a typical housing developer’s situation and

optimize the profit for the developer. In particular, we study how changing the constraints will change the developer’s optimal choices for housing. This will allow us to

suggest under what conditions af- fordable housing is most likely to be built.

Code and Poster

Here is a Github repository (https://github.com/eric-d-culver/D2P_Project) with the AMPL code I used for my project and a PDF of the poster.

Created by Eric Culver
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<inputbox> type=create width=100 break=no buttonlabel=Create new article default=(John McFarlane) Testing </inputbox>
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Hungry for Equality: Fighting Food Deserts

From CU Denver Optimization Student Wiki

The authors of this project are Drew Horton and Rebecca Robinson.

Contents

1 Abstract
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6 Results
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7 Future Work and Policy Suggestions

7.1 Healthy Food Financing Initiative
8 Links to Code and Slides
9 References

Abstract

Food deserts are a form of food insecurity related to a lack of access to healthy, fresh, and affordable food. The US Department of Agriculture (USDA) defines a food desert in

an urban area to be a region more than one mile away from a grocery store. According to the USDA, 13.7 million households in the U.S. experienced food insecurity in 2019,

and this burden disproportionately affects marginalized communities. This problem has only be exacerbated by the ongoing COVID-19 pandemic, with an unprecedented

number of people in extreme poverty, and many more at risk. To address the food insecurities in our community, we construct two integer programs that will produce an

optimal distribution of grocery store locations. The first program minimizes the average distance of residents to a grocery store. For the second program, we minimize over the

Kolm-Pollak EDE (Equally Distributed Equivalent), a measure of inequality. When we minimize the average distance, we ignore the worst off members in our communities,

whereas in minimizing the inequality, we are ensuring we address the marginalized populations. Through comparing the resulting distributions produced from each program,

we demonstrate the importance of assessing inequality within a community as a step towards addressing equity. Specifically, we hope to encourage policy makers to consider

intervention strategies that prioritize relief in disproportionately affected communities.
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Locations in the Denver area that are currently regarded as food

deserts.

Motivation

A food desert* in an urban area, as defined by the US Department of Agriculture, is a region more than one

mile away from the closest grocery store.[1] Those that live in food deserts do not have easy access to

health, fresh, and/or affordable food. In addition, those that require certain foods for cultural or health

reasons (i.e. kosher, halal, gluten-free, etc), have even less access to foods they need. In food deserts, it is

often cheaper for residents to purchase unhealthful foods. Between 1989 and 2005, the overall price of

fruits and vegetables in the US increased by almost 75% while the price of fatty foods dropped by more

than 26%. [2]. Because of this, food deserts have greater effects on those in poverty. In addition, studies

have show that "wealthy districts have three times as many supermarkets as poor ones do and white

neighborhoods contain an average of four times as many supermarkets as predominantly black ones do."[3]

The ongoing COVID-19 pandemic has had a great impact on food insecurity, including food deserts. In

fact, researchers found that there was a 32.3% increase in household food insecurity since the COVID-19

pandemic started, with 35.5% of food insecure households being considered as newly food insecure. [4] In

addition, CDC research suggests that higher rate of COVID-19 infections among those in the Latino and

Black populations could be influenced by the social determinants of food insecurity, and also by the lack of

nutritional quality of food in food deserts.[4]

We are motivated by these consequences of food deserts, both prior to the pandemic and during it, to try to

minimize the area considered to be in a food desert in our own community of Denver, Colorado.

*The term food desert refers solely to the proximity to food providers. We recognize that this term does not consider other factors such as racism, people being time poor or

cash poor, cost of living, etc. There are other terms, such as food oppression, that would be more accurate, but 'food desert' is the most widely used term, so we use it in this

project.

Data

We choose to use census block groups, as opposed to census blocks or census tracts when determining population centers. This is because there are too many census blocks to

run code efficiently, and census tracts cover too large of an area to be very meaningful in this context. Census block groups, however, provide a good middle ground. We use

the centroid of each of the census block groups to determine the distance to the closest grocery store.

We are attempting to find locations where grocery stores could be built in order to minimize the number of locations that are considered to be in a food desert. To do this, we

need several things. First, we need the current locations of grocery stores. Then, we need locations where a grocery store could be built at. Most grocery stores are between

20,000 and 60,000 square feet, so we compiled a list of warehouse spaces for sale or lease in the area that fit this square footage. These are the potential locations that we could

build grocery stores at. In our data set for our programs, we list the current grocery stores and the potential locations in the same list, with the first 64 entries of the list being

the current grocery store locations.
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Locations where buildings large enough for a

grocery store are located in relation to Denver

county.

In the current grocery store distribution, just under a quarter of, or 115 out of 480, census block group centroids are more

than one mile from the closest grocery store. We also recognize that this distance is "as the crow flies", and so is an

underestimate of the actual distance to the closest grocery store. Because of this, it is likely that there are many more than

just the 115 out of 480 census block centroids that are more than one mile from a grocery store.

The First Program

The variables used for the first program are displayed below.

In order to determine which store locations should be utilized, the first program minimizes the total (Manhattan) distance to the closest grocery store by each residential area

multiplied by the population of that residential area. In other words, we are minimizing , where  is the distance to the closest grocery store, or

.

Our constraints are as follows:

R :

S :

:pr

:drs

n :

:yrs

:zs

Residential Areas (Here, they are census block groups)

Stores

Population of residential area r

Distance from residential area r to store s

Number of stores

Indicator variable for if residential area r is assigned to stores

Indicator variable for if store s is used

 ∑r∈R xrpr xr
=xr ∑s∈S drsyrs
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Constraint (1) is the aforementioned shorthand for the distance traveled to the closest grocery store. Constraint (2) makes sure that we do not open more stores than we want to.

Constraint (3) ensures that a residential area is only assigned to a store if it is open. Constraint (4) gives that every residential area gets assigned exactly one store. In order to

make sure we use the current grocery stores we have, we use Constraint (5) to tell the program to utilize the first 64 stores. Lastly, Constraint (6) ensures integrality of the

decision variables. To see which stores would be in the optimal distribution, we would look at the values for .

For the second program, we utilize the Kolm-Pollak EDE, which is described in the next section.

The Kolm-Pollak EDE and The Second Program

The Kolm-Pollak EDE (Equally Distributed Equivalent) is a measure of inequality that is used in urban planning to rank distributions. For the second program, instead of

minimizing over population times distance, we minimize over the Kolm-Pollak EDE. Thus our objective function that is minimized is .

This program utilizes all of the same variables as the first program, with the addition of , which is the aversion parameter that represents how adverse a population is to

inequality. Here, we use  since a smaller distance is more favorable. The constraints for this second program are shown below.

(1)

(2)

(3)

(4)

(5)

(6)

= ∀ r ∈ Rxr ∑
s∈S

drsyrs

≤ n∑
s∈S

zs

≤ ∀ r ∈ R, s ∈ Syrs zs

= 1 ∀ r ∈ R∑
s∈S

yrs

= 64∑
s=1

64

zs

, ∈ {0, 1} ∀ r ∈ R, s ∈ Szs yrs

zs

min − ln[ ]1
κ

1

|R|
∑r∈R e−κxr

β
β < 0
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The optimal distribution given by both programs.

We can see that nearly all of the constraints are the same as the first program. However, Constraint (5) here does not appear in the first program. This constraint is an additional

shorthand for including the aversion to inequality in the objective function. As in the first program, to see the optimal distribution, we would look at the values for .

Results

We asked both programs to produce an optimal distribution of grocery stores with opening a certain

number. With our data set of potential grocery store locations, both programs gave the same optimal

distribution for both opening one store and opening two stores. For opening one grocery store, the optimal

location is at 9660 E Alameda Ave. If we were to open two grocery stores, the next optimal location is at

677 Alcott St. With these new added stores, 96 out of 480 of the census block group centroids would be

more than 1 mile away from a grocery store, 19 less than the current distribution. Again this is "as the crow

flies" distance. There could be several reasons why the two programs gave the same answer, but we suspect

it is because there is a small set of potential grocery store locations to choose from. An example where the

two programs gave different outputs is shown in the comparison section below.

Comparison Between the Two Programs

We ran both programs, instructing them to pick two stores for the entirety of Denver. The first program,

which minimizes over the weighted Manhattan distance, chose the store located at 1331 N Speed Blvd and

at 677 Alcott St. The second program, which minimizes over the Kolm-Pollak EDE, chose the store located

(1)

(2)

(3)

(4)

(5)

(6)

(7)

= ∀ r ∈ Rxr ∑
s∈S

drsyrs

≤ n∑
s∈S

zs

≤ ∀ r ∈ R, s ∈ Syrs zs

= 1 ∀ r ∈ R∑
s∈S

yrs

κ = β
∑r∈R xr

∑r∈R x2
r

= 64∑
s=1

64

zs

, ∈ {0, 1} ∀ r ∈ R, s ∈ Szs yrs

zs
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Visualizations of two stores for the two programs.

Chart showing the distance to the closest grocery

store over the different centroids.

at 18605 Green Valley Ranch Blvd and at 825 S Colorado Blvd. Visualizations of these locations are shown on the right.

We can see that the Kolm-Pollak EDE program picked a store that addresses those that would be worst off in the

distribution picked by the weighted Manhattan program.

On the left is a chart depicting the distance to the closest grocery store

(in the two store distribution discussed above) for each census block

group centroid, organized from smallest to largest distance. We can see

that the Kolm-Pollak EDE gives a 'flatter' curve, which indicates that it

is addressing those that were worst off when using the weighted

Manhattan program.

Future Work and Policy Suggestions

In the future, we hope to extend this work to other cities, such as

Houston and New Orleans, which have worse food access and where

food insecurity disproportionately affects marginalized populations. We

also hope to extend this to look at where other amenities, such as

schools, parks, libraries, etc., should be placed. Eventually, we hope to

examine multiple amenities at once, for example bus stops and grocery stores would be a combination that would give

valuable information for food deserts.

While the locations found through our programs are good locations to open grocery stores at, we can also use our programs

for the distribution of food pantries or community fridges. Denver Community Fridges is a mutual aid program that is

working to fight food insecurity in the Denver Metro area[5]. There are established community fridges in several locations

already in Denver. These community fridges are stocked with fresh fruits and vegetables and also packaged meals. We can use our programs to find the optimal locations for

additional Denver Community Fridges.

Healthy Food Financing Initiative

The Healthy Food Financing Initiative (HFFI) is a partnership that provides grants and loans to finance construction and development of grocery stores in underserved areas.

Between 2011 and 2015, it helped the development and support of over 1,000 grocery stores. Recently, it was reauthorized in the 2018 Farm Bill. Much of the Denver area is

considered to be eligible (based off 2010 Census data), including the area where the location of the first store the two programs suggested to open.[6] With this, there could be

grants and loans given to those that open a store in that location.

Links to Code and Slides

Our AMPL Model and Data files, as well as our final slide deck, can be accessed through GitHub here: https://github.com/rebrobin/HungryForEquality
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A home in Five Points

Identifying Gentrification

From CU Denver Optimization Student Wiki

This project is concerned with Identifying Gentrification. I will use structure age, income, and race data to inform a linear program to find out which areas are likely to be

gentrified, and make suggestions on what to do with that
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5 Conclusions and Future Work
6 Links

Abstract

In recent years, gentrification has become a major issue impacting low income families. This happens to neighborhoods which have older buildings, declining incomes, and

businesses moving out. We can identify at-risk neighborhoods by evaluating these conditions with data from the Denver Open Data Catalog. Once the neighborhoods are

identified, targeted policies can be informed with linear programming to help current residents continue to afford their homes.

At-risk Neighborhoods

Three things happen before gentrification takes place, income declines, businesses move out, and buildings grow older (no new development). The Denver Open Data Catalog

has structure age, and income over a few years, organized by neighborhood. We'll consider these together and find neighborhoods that are potentially at risk. Below are three

neighborhoods which stood out.
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How can we help?

One of many ways to combat gentrification is to push for more affordable housing. If we map these neighborhoods, along with all nearby affordable housing, there actually

seems to be something going on. In green are the at-risk neighborhoods, and the red square is Westwood.

Interestingly, has nearly identical income (not growth) to the surrounding neighborhoods, but seems to be facing nearly no risk of gentrification, with very different structure

age and income growth statistics. This certainly suggests that the affordable housing projects have something to with the neighborhoods potential to be gentrified.

Linear Programming

Our approach is to suggest areas which are far away from current housing projects in these areas as candidates for future housing projects. To this end, we'll maximize the

distance to the nearest project (to make it as far as possible), and stay within the bounding box of the neighborhoods. The program is as follows:

maximize 

subject to

mi d(x, )ni yy
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Clearly, this program is not linear, and there were quite a bit of struggles to get it to output something reasonable (as nonlinear programs are prone to do). Initial conditions

were attempted, though the program seemed to always gravitate towards the southern border of the region. Below, in red, are five outputs of the program.

Conclusions and Future Work

One thing that I would really like to see is a more comprehensive case study on the three at-risk neighborhoods and Westwood, to see what other potential differences there are

in those neighborhoods that could be causing such a drastic difference. Another thing I would have liked to do with the program is consider property prices and the budget for

affordable housing projects, something like this could have led to a much more interesting Linear Programming approach. Two other approaches I considered for maximizing

the minimum distance were the "Largest Empty Circle" algorithm, and doing some clustering algorithm, finding the least dense cluster, and adding to it, though neither seemed

to fit the Linear Program bill. One unfortunate thing about Denver County specifically is that we are running out of places to gentrify, currently there are more neighborhoods

with median incomes exceeding 100,000$ per year, than there are neighborhoods with less than 50,000$ a year.

Links

github (http://github.com/dmtburke/d2p-2018)
Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Identifying_Gentrification&oldid=1897"
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− 105.063312 ≤ ≤ −105.009367x1

39.653957 ≤ ≤ 39.732583x2
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Improving Denver Traffic

From CU Denver Optimization Student Wiki

Links

GitHub Repository (https://www.github.com/jakeat555/TrafficProject)

Abstract

In this project, Jacob Johns used linear regression techniques to determine the influence of one-way streets on traffic flow in Denver. Using this, a subset of streets in

downtown Denver was selected, and a linear programming model was run to model the potential traffic flow if those streets were converted into one-ways.
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Abstract

In this project, I explored the Out-Of-Kilter Algorithm for solving a minimum cost flow problem. This algorithm works by successively augmenting flow along shortest paths

in order to decrease the kilter numbers of each arc. At each iteration of the algorithm, the mass balance constraints are satisfied, and the algorithm incrementally increases and

optimality. We begin by establishing the background information on optimality conditions and node potentials necessary to understand the algorithm. Then, in the next section,

we introduce the algorithm itself, justify correctness, and analyze complexity.

Introduction

The Out-of-Kilter algorithm works by satisfying the mass balance constraints of the network in every iteration, but flow bounds and optimality conditions do not need to be

satisfied. However, in this project, we focus on a simplified version of the algorithm where flow bounds are respected, and we start with a feasible flow. Each iteration of the

algorithm decreases the kilter number of arcs in the network by updating node potentials and augmenting flow along some shortest path, and the algorithm terminates when

every arc is in-kilter. At this point, the flow found by the algorithm satisfies the complementary slackness optimality conditions, and is thus a minimum cost flow for the

network. The description of the algorithm in this project is based on [1], as well as a little from [2].

Before explaining exactly how the algorithm works, we will explain a couple optimality conditions that can be used as termination criterion for algorithms solving minimum

cost flow problems. Recall that for shortest path problems, we have the following optimality conditions:  for every edge  in the network. When

these conditions are satisfied, we know that the distance labels  define true shortest path distances. We can define different optimality conditions for the minimum cost flow

d(j) ≤ d(i) + cij (i, j)
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problem instead of the shortest path problem.

Optimality Conditions

The first optimality conditions we will introduce are the negative cycle optimality conditions. They are defined as follows:

Theorem: A feasible flow  is optimal for a minimum cost flow problem if and only if the residual network  contains no negative cycle.

Proof: We will not explicitly prove these optimality conditions, but instead will give the proof idea. The first direction is proven by contrapositive. If  contains a

negative cycle, then flow can be augmented along this negative cycle and decrease the overall objective function value, so the original flow  was not optimal. The other

direction starts with a suboptimal flow, and decomposes the difference between this and an optimal flow into cycles. This then implies that the original flow is optimal.

For the next optimality conditions we will describe, we first establish a few definitions.

Definition: Let , the node potential for node , be some real number associated with node .

Definition: For a given set of node potentials , we define the reduced cost of an arc  as .

With reduced costs defined, we note a couple properties that we will use to prove the reduced cost optimality conditions. First, consider a directed path  from node  to node

. Then, the reduced cost of the whole path forms a telescoping sum, so we can rewrite it as

For a directed cycle , using the same argument, the reduced cost of the cycle becomes

Using these properties, we can prove the following optimality conditions by showing that they are equivalent to the negative cycle optimality conditions.

Theorem: A feasible flow  is optimal for a minimum cost flow problem if and only if there exists a set of node potentials  that satisfy  for every arc  in the

residual network .

Proof:Again, we only give the proof idea. For the first direction, we assume the negative cycle optimality conditions, and find shortest path distances  between node 1 and

each node . Then, by defining , the shortest path optimality conditions imply the reduced cost optimality conditions. For the other direction, assume the reduced

cost optimality conditions, and let  be a directed cycle in the residual network. Then, since , the negative cycle optimality conditions hold.

x∗ G( )x∗

G(x)
x

π(i) i i

π (i, j) = − π(i) + π(j)cπij cij

P k
l

= ( − π(i) + π(j)) = − π(k) + π(l).∑
(i,j)∈P

cπij ∑
(i,j)∈P

cij
⎛

⎝
∑

(i,j)∈P

cij
⎞

⎠

C

= .∑
(i,j)∈C

cπij ∑
(i,j)∈C

cij

x∗ π ≥ 0cπij (i, j)

G( )x∗

d
k π = −d

C =∑(i,j)∈C cπij ∑(i,j)∈C cij
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The third and final optimality conditions that we will explore can be proven using the two sets of conditions we have already introduced. While the negative cycle and reduced

cost optimality conditions are good certificates to use to check if a solution is optimal, the Out-of-Kilter algorithm uses the complementary slackness conditions as its

termination criteria. In particular, the complementary slackness conditions define whether an arc is "in-kilter" or "out-of-kilter" for a given residual network.

The complementary slackness conditions are as follows:

Theorem: A feasible flow  is optimal for a minimum cost flow problem if and only if there exists a set of node potentials  such that:

If , then ,

If , then ,

If , then .

Proof: For the first direction, suppose  satisfies the reduced cost optimality conditions, i.e.  for all  in . Then consider the following three cases.

. In this case, suppose that arc  is in , i.e., . Then,

since . This is a contradiction, since . Thus, .

. Here, both arcs  and  are in . But, both  and . This implies that .

. Suppose arc , i.e., . Then, for this arc, since , the reduced cost optimality conditions do not hold. So,  cannot be in

, so we must have .

For the other direction of this proof, assume the complementary slackness conditions hold for . Let  and suppose for contradiction that . Then,

. However, this implies that , a contradiction. This finishes the proof.

In the next section, we will discuss the actual Out-of-Kilter algorithm, starting off by defining the kilter number of an arc using the complementary slackness optimality

conditions.

The Algorithm

As we have previously stated, the Out-of-Kilter algorithm iteratively augments flow in a network along shortest paths found in the current residual network. Each

augmentation's goal is to decrease the kilter number of some arc, which increases both the feasibility and optimality of the new flow. Throughout the algorithm, intermediate

flows may not satisfy the upper and lower arc flow bounds or the complementary slackness optimality conditions. However, at each step, mass balance constraints are

satisfied. Before displaying and explaining pseudocode for the algorithm, we describe what a kilter number for an arc is.

x∗ π

> 0cπij = 0x∗
ij

0 < <x∗
ij uij = 0cπij

< 0cπij =x∗
ij uij

x∗ ≥ 0cπij (i, j) G( )x∗

> 0cπij (j, i) G( )x∗ > 0x∗
ij

cπij = − π(i) + π(j)cij

= −(− + π(i) − π(j))cij

= −( − π(j) + π(i)) = − ≤ 0,cji cπji

≥ 0cπji > 0cπij = 0x∗
ij

0 < <xij uij (i, j) (j, i) G( )x∗ ≥ 0cπij = − ≥ 0cπji cπij = = 0cπij cπji
< 0cπij (i, j) ∈ G( )x∗ <x∗

ij uij < 0cπij (i, j)

G( )x∗ =x∗
ij uij

(x,π) (i, j) ∈ G(x) < 0cπij
=xij uij (i, j) ∉ G(x)
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Kilter Numbers

Essentially, the kilter number of an arc measures how suboptimal that arc flow is. The complementary slackness optimality conditions are used to define the kilter number of

an arc, and to form its kilter diagram, shown below.

The kilter diagram tells you which  pair corresponds to the arc being "in-kilter" or "out-of-kilter". A point that is on the thick line in the diagram corresponds to an

in-kilter arc, i.e., it satisfies the complementary slackness optimality conditions, while a point anywhere else on the grid corresponds to an out-of-kilter arc. As a reminder, the

complementary slackness optimality conditions are:

If , then ,

If , then ,

If , then .

From the kilter diagram, we can see each of these three conditions. The first condition corresponds to the leftmost line segment, where  and . The second

condition corresponds to the center line segment, where  and . Finally, the third condition corresponds to the rightmost line segment, where 

and . Using this diagram, we can define the kilter number of an arc.

Definition: The kilter number of an arc , denoted , with current flow  and reduced cost , is defined as how much  needs to be changed without changing 

in order to make  in-kilter. In the diagram this is just how far the point would need to move in the  direction in order to be on an in-kilter line segment.

Note that the kilter number can also be described based on where the point  lies:

If , then .

If  and and , then . If  and , then .

( , )xij cπij

> 0cπij = 0x∗
ij

0 < <x∗
ij uij = 0cπij

< 0cπij =x∗
ij uij

> 0cπij = 0xij
= 0cπij 0 < <xij uij < 0cπij

=xij uij

(i, j) kij xij cπ
ij

xij cπ
ij

(i, j) xij

( , )xij cπij

> 0cπij = | |kij xij
0 < <x∗

ij uij < 0xij = −kij xij = 0cπij >xij uij = −kij xij uijTypesetting math: 100%
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If , then .

Note we can also define the kilter number using residual capacities in , . This is useful since the Out-of-Kilter algorithm works on residual networks.

This definition is as follows:

With the kilter numbers defined, we can describe the Out-of-Kilter algorithm.

Pseudocode

The Out-of-Kilter algorithm starts with  for every node , and a feasible flow, and then iteratively chooses an out-of-kilter arc  in the current residual

network. In each iteration, the algorithm updates the node potentials  and augments flow along a shortest path from  to  if  is still an out-of-kilter arc ( ).

This process does not increase the kilter number of any arc, and strictly decreases the kilter number of . Once all kilter numbers are zero, the current flow satisfies the

complementary slackness optimality conditions, and thus, is optimal for the minimum cost flow problem. We provide pseudocode below.

< 0cπij = | − |kij uij xij

G(x) = −rij uij xij

= {kij
0

rij

if ≥ 0cπij

if < 0.cπij

π(i) = 0 i (p, q)
π q p (p, q) < 0cπ

′

pq

(p, q)
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Correctness and Complexity

The correctness of the Out-of-Kilter algorithm relies on the following two lemmas about the two parts of the algorithm where the kilter number of some arc could change:

when updating node potentials or when augmenting flow.

Lemma: Updating node potentials, i.e., setting  for all nodes , does not increase the kilter number of any arc in .

Proof: Consistent with notation in the algorithm, let  be the node potentials before updating, and  be the updated node potentials. Suppose for contradiction that this

update increases the kilter number of some arc . Since changing  does not change , the final definition of kilter number implies that the only way this can

happen is if  and . Note that since , and , we have . Recall that in the algorithm, we defined  as shortest path distances,

(i) := π(i) − d(i)π ′ i G(x)

π π ′

(i, j) ∈ G(x) π rij
≥ 0cπij < 0cπ

′

ij < 0cπpq ≥ 0cπij (p, q) ≠ (i, j) d
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with edge lengths . Therefore,  satisfies the shortest path optimality constraints, so

since . Thus,

This is a contradiction, so updating node potentials does not increase the kilter number of any arc.

Lemma: Augmenting flow along  does not increase the kilter number of any arc in , and strictly decreases , the kilter number of arc .

Proof: Since we only augment flow along , the only arcs whose kilter numbers can change are those along this cycle (or their reversed arcs). Since  is a shortest path with

arc lengths , then for ,

We defined , so we have

Now, since we augment flow along  by  units, the new flow does not go over the upper bound on any arc. Thus, if , the kilter

number of arc  stays 0, and if , then  will decrease because  decreases when the flow on that arc  increases. Also note that augmenting flow along

 may introduce the arc  into the new residual network, but since , then , meaning , and  is in-kilter.

Finally, consider the arc . Note that we only augment flow along this arc if . Since , we know that . Thus, increasing the flow value on this

arc strictly decreases its kilter number because it decreases the arc's residual capacity. Note that , so  is an in-kilter arc.

Therefore, the flow augmentation step of the algorithm does not increase the kilter number of any arc, strictly decreases the kilter number of , and only adds in-kilter

arcs to the updated residual network.

With these two lemmas proven, we can show both correctness and finite termination of this algorithm. By our final definition of the kilter number, the maximum possible kilter

number is . So, the sum of the kilter numbers at the start of the algorithm is at most , where  is the number of arcs in the network. As proven in the

previous two lemmas, each iteration of the algorithm does not increase the kilter number of any arc, and strictly decreases the kilter number of one arc (by at least 1). Thus, the

algorithm takes at most  iterations. In each iteration, the main operation is solving a shortest path problem. Using Dijkstra's algorithm, this takes , but the running

time depends on the algorithm used. So, the Out-of-Kilter algorithm takes at most  time, i.e., runs in pseudopolynomial time.

max{0, }cπij d

d(j) ≤ d(i) + max{0, } = d(i) + ,cπij cπij

≥ 0cπij

= − (π(i) − d(i)) + (π(j) − d(j)) = + d(i) − d(j) ≥ 0.cπ
′

ij
cij cπ

ij

W = P ∪ {(q,p)} G(x) kpq (p, q)

W P
max{0, }cπij (i, j) ∈ P

d(j) = d(i) + max{0, } ≥ d(i) + .cπij cπij

= π − dπ ′

= − (π(i) − d(i)) + (π(j) − d(j)) = + d(i) − d(j) ≤ 0.cπ
′

ij cij cπij

W δ = min{ : (i, j) ∈ W}rij = 0cπ
′

ij

(i, j) < 0cπ
′

ij kij rij (i, j)

(i, j) (j, i) ≤ 0cπ
′

ij ≥ 0cπ
′

ji = 0kji (j, i)

(p, q) < 0cπ
′

pq < 0cπ
′

pq =kpq rpq
= − > 0cπ

′

qp cπ
′

pq (q,p)

(p, q)

U = max{ }uij mU m

mU O( )n2

O(mU )n2
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Note that in this project, we focus on a simpler version of the Out-of-Kilter algorithm, where we start off with a feasible flow. However, this algorithm can start with a flow of

, and in this case, feasibility is not maintained at each step. Here, we form the residual network arcs differently for arcs that have flow below the lower bound or above

the upper bound. More information on this form of the algorithm can be found in [3].

GitHub

In the following GitHub link, both the slide deck for this presentation, as well as a LaTeX version of this write up, can be found.

https://github.com/abigail-nix/In-N-Out-Of-Kilter
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Increasing Network Robustness

From CU Denver Optimization Student Wiki

Network Robustness is a measurement of how fault tolerant a network is. Research in this area focuses on making a network more tolerant to perturbations. It is a very active

area of research mainly focusing on making network more robust against various failure patterns. The patterns come from removing nodes or arcs and when the removal is

targeted it starts being classified as an attack. This project is focused on cascading failures, which is when a single failure causes other nodes and arcs to fail which means that

no matter how small the initial issue was, the damage is magnified by the fact this single failure of a node or arc affected more than just the one arc or node in the network.

Contents

1 Problem Set Up
2 Evaluating Robustness
3 Methods

3.1 High Betweenness Linking Strategy
3.2 Low Polarization Linking Strategy
3.3 Real World Issues

4 Wrapping Up
5 References

Problem Set Up

The motivation for this is installing Sensors on a network. There are two problems that need to be solved here. The first is how the sensors are deployed, and this will not be

focused on here. The other is making the systems of sensors fault tolerant.

Deploying the sensors effectively becomes picking a starting point and intelligently growing the network of sensors from there that can take advantage of position of location

on the system to validate sensor input and correct configuration. While interesting this becomes finding a minimum spanning tree and is covered extensively elsewhere on this

wiki.

Since they are deployed with the network hardware if a sensor fails or no longer functions, it is difficult to access it quickly and replace the dead sensor. The robustness of the

sensor coverage becomes paramount to avoid any gaps in coverage or blind spots on the network in the event of a sensor failure. Failure of the network being monitored is a

real possibility but outside the scope of this project, and we instead focus on ensuring enough redundancy that a single sensor failing will not create blind spots in our coverage

while the hardware is being fixed.

Network details will not be included in this project since it is not important to the problem itself, so we will be using a simplified network to illustrate the problem. In the

illustration each node represents some grouping of users or machines. We assume that each arc has a high capacity and the number of arcs connected to a note can represent

how important that node is to the network and can represent how much traffic that node can generate.Typesetting math: 100%



Our representative network

Evaluating Robustness

With the basic minimum spanning tree there is just a single sensor covering each node, so the traffic between each node has two sensors

covering it, but any traffic internal to the node is lost and the validation of the data for each sensor's nput is also gone for data between those

paths. This sort of failure drives how we can compute the robustness of a network. This is called the Critical Node Method[1]. Here the critical

node method serves as a way to make sure that any arc added to to produce redundancy in our network actually makes our network harder to

disrupt.

This can be treated as a linear program formulated in the following way

The equation is attempting to minimize the size of the connected components that remain after some number of nodes are removed from the network. Solving this when the

network has added arcs and comparing the solution shows if the arc addition matters because if the solution has changed then the arc affected the robustness of the network.

Each arc probably will not require additional nodes to be removed, but changing which nodes are removed show that the arc changed the structure of the network. Though as

the network gets denser it is suspected that the number of nodes that have to fail to break the graph will also increase, which was not a focus of this project, but could warrant

further study.

Methods

The most common focus that was found reviewing the literature for cascading failures was a focus on betweenenss[2]. Betweeneness is a measurement of much traffic passes

between two nodes. If you recall our basic map above Each nodes was adjacent to the nodes it talked to more frequently is an assumption, but it is reasonable to expect that

each node communicates with every other node to some degree.

Betweeneness itself is computed by determining how many shortest paths a node is involved in. the formula looks something like this for some node v

High Betweenness Linking Strategy

The first method that really uses this method is called the high betweenness linking strategy[3], and the method is to just go through pairs of arcs and compute the traffic

between them, and if they are not already adjacent in the network connect the two of them with an arc. For our problem this means that the two sensors will be set up to

receive the traffic from both nodes as a primary and a back up so in case the primary fails the traffic will go to the back up and still be analyzed by the system and this heavily

paired traffic will be analyzed by a single system.

min ( )∑
Ci

| |Ci

2

b(v) = ∑
s≠v≠t

(v)σst

σst
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This methodology is very good are reinforcing more heavily used components in a network, however it can unintentionally isolate labs and team specific infrastructure to a

small subset of heavily connected components which could lead to very underutilized hardware depending on team activity and usage patterns.

The reinforcing of specific labs with themselves does not seem like a bad thing, but some labs are so isolated or so specialized that most of their traffic can be ignored for

sensor usage so the sensors will be very underutilized.

Low Polarization Linking Strategy

The low polarization linking strategy attempts to homogenize the network[4]. This makes a great deal of sense from a network load perspective because if a high traffic node

goes down its back ups will be hit by all that traffic and it is possible for back ups to be overwhelmed by the traffic they were already handling when combined when the new

network data from the failed node which leads to a cascading failure because the new traffic amount will definitely cause the next back up node to fail.

However, if the sensor network is homogenized it means that each sensor handles roughly the same amount of traffic, so all primaries and back up settings equals the same

values. The way we can homogenize the network is to first compute the polarity of a network by taking the maximum betweenness of the network and the average

betweenness of the network to compute the polarity and then balance the traffic between sensors to get the polarity value as low as possible.

Polarization of a network is also relatively easy to compute with the formula being

This may sound like the ideal case, but it does run into some real world issues, the network we are placing sensors on is not very uniform is the betweenness of the nodes

which means that it will be hard to balance traffic between the various sensors. Next, traffic patterns change over time to reflect funding and growth. This sensor rollout is

actually part of some future proofing upgrades, so eventually the traffic of the system will exceed how much traffic the sensors can properly handle.

Real World Issues

After looking at these methods betweenness appears to be a great way to balance a network effectively, even with the drawbacks pointed out about both algorithms. However,

an assumption made in both of these is that the person running the analysis on the network owns all the nodes. This causes an issue for the sensor rollout because a large

portion of the network traffic leaves the owned nodes through a small subset of nodes on the network this skews out betweenenss values since all network with a destination

outside the owned network goes through these nodes and also means that a small subset of nodes see a large percentage of the traffic.

Currently the sensors have a great deal of capacity to keep pace with traffic within the nodes and between nodes, but while a network can be expanded relatively easily by

adding more hardware each sensor has a very finite capacity and once it is exceeded the sensor falls behind during periods of high traffic and has to clear its buffer slowing

down analysis. This state of affairs is tolerable in bursts, but being permanently behind is not good. Especially since filling the buffer could cause issues and cause a sensor

outage on its own. This wil fall under issues to be future proofed against, but it is reasonable to expect that sensor capacity will go up over time much like how network

capacity will go up.

p =
−bmax bavg

bavg
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Wrapping Up

Network robustness is still an active area of research, currently there is no best way to solve these types of problems and real world applications do not always line up with the

assumptions necessary to make these algorithms work. Similar to irrational capacities in a network flow operate the problem is avoidable from a practical standpoint, but is an

important theoretical construct. Both of the methods discussed can provide reasonable solutions that will operate well, but both have issues with the longevity of the solutions

provided and struggle with the network set up that exists currently with how to measure betweenness on the controlled network.

With those limitations in mind these algorithms can help to develop deployment and installation guidelines the help with set up and maintenance patterns that can help with the

problem that this paper started with. Time just has to be budgeted and people with relevant experience should provide feedback to ensure that any solution that these

algorithms reach is relevant and meets the needs of the teams involved.

Finally, the analysis being performed would also be improved over time, so the network should be reanalyzed on a somewhat regular schedule to make sure that the solutions

that were found are still reasonable with the growth and changes the network expierenced, but time should also be spent doing another literature search to see if better tools

have been developed to tackle this problem.
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Irrational Input to Integer Programs

From CU Denver Optimization Student Wiki

Let . The Fundamental Theorem of Integer Programming requires rational matrices A and b in the formulation of the polyhedron P in order to

guarantee that if , conv(S) will be a polyhedron. Suppose this requirement is relaxed, such as in the following set of inequalities.

The integer hull for this set of inequalities is not a polyhedron. To see this, first note that the first equation gives

Any integer value of  with therefore satisfy , so the inequality can be rewritten in terms of  only.

The first number in this sum must be an irrational number; noting that  is excluded by another inequality, , times a positive integer, , results in an irrational

number. Therefore the sum with another integer can never equal zero exactly, making the inequality strict. This inequality is the primary cause of the integer hull not being

polyhedral, as we will see.

Contents

1 Forming the Integer Hull
2 Optimization
3 Rational Requirement of b
4 Matlab Code

4.1 Sources

P = {x ∈ : Ax ≤ b}R
n

S = P ∩ { × }Z
p

R
n−p

− +2√ x1 x2

x1

x2

≤ 0
≥ 1
≥ 0

≤ .x2 2√ x1

x2 ≤ ⌊ ⌋x2 2√ x1 x1

− + ⌊ ⌋ ≤ 0.2√ x1 2√ x1

= 0x1 2√ x1

− + ⌊ ⌋ < 02√ x1 2√ x1
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Original Polyhedron

Initial step of constructing the

integer hull

Integer Hull

Forming the Integer Hull

When forming the integer hull, it is only the top face of the original P that needs adjusted. For this specific polyhedron, we can work from the

left along the  axis. For each , we need only consider the integer point with the largest  value. We can form a valid inequality by

connecting the point with the current maximum  to the next integer point to its right that is closer to the strict inequality. So for the

first step, we do not connect (1,1) to (2, 3), but instead to (3,4). Since the slope between (1,1) and (3,4) is greater than , this is guaranteed

not to cut off any other integer points, and will also exit P where further inequalities are required.

This process resumes from the right point on the segment, (3,4), which we can see connects to (5,7). There is not a specific pattern to detect

where the next connection will occur; However, by a density argument, there will always be another integer point that is closer to the

inequality than the current point. This leads to an infinite number of inequalities defining the upper boundary of this integer hull, and the

conclusion that the integer hull is not polyhedral, as any polyhedron can be finitely generated.

The first ten vertices on these segments are:

distance

1 1 0.414213562373

3 4 0.242640687119

5 7 0.071067811865

17 24 0.041630560343

29 41 0.012193308820

99 140 0.007142674936

169 239 0.002092041053

577 816 0.001225489276

985 1393 0.000358937499

3363 4756 0.000210260719

Optimization

Attempting to optimize over this can lead to no optimal value even when bounded in the optimal direction. For instance, allow the inequality

to directly translate to the objective:

x1 x1 x2
( , )x1 x2

2√

x1 x2
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With the only integer solution to  excluded by the other inequalities, there is no optimal objective value.

Rational Requirement of b

For Mixed Integer Linear Programs, similar issues happen when b is allowed to be irrational. But in the case of Pure Integer Programs, only A is required to be rational. To see

this, let . Scale  so that A is integer. Choose a row  where  is irrational. Then for ,  is integer, so  is a valid

inequality for conv(S). Repeat for all irrational . (Essentially, just round all right hand sides).

Matlab Code

%This code generates figures and tables for the polyhedron

%-1*sqrt(2)*x_1+x_2 <= 0, x_1 >= 1, x_2 >= 0, examining the integer hull

clear all;

close all;

%Adjustable input

x = [0:8];%will need to adjust axis in figures if changing this

maxnum = 10;%How many vertices to find along the upper side of the polyhedron

%maxnum-1 is the number of segments drawn in the final figure

%Declarations

n = length(x);

A = zeros(n^2,2);%This will store all integer points

%n^2 is not true size, overshoots (55 vs. 64).

%Will not access extra 0's

%Actual number of integer points is n + sum_j=1^n floor(sqrt(2)*j)

ymax = zeros(maxnum,3); 

currentrow = 1;

maxfound = 1;

for i = 2:length(x)

    ytemp = 0;

    while ytemp < sqrt(2)*x(i) %generate all integer points, roughly O(n^2)

        A(currentrow,1) = x(i);

        A(currentrow,2) = ytemp;

        ytemp = ytemp+1;

        currentrow = currentrow+1;

    end

%One way to calculate vertices

%    if i == 2

maximize − +2√ x1 x2

subject to: 

− +2√ x1 x2

x1

x2

≤ 0
≥ 1
≥ 0

− + ≤ 02√ x1 x2

S = P ∩ Z
n Ax ≤ b x ≤aT

i bi bi x ∈ S xaT
i x ≤ ⌊ ⌋aT

i bi

bi
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%        ymax(maxnum,2) = A(currentrow-1,2);

%        ymax(maxnum,1) = A(currentrow-1,1);

%        ymax(maxnum,3) = sqrt(2)*x(i)-A(currentrow-1,2);

%    else 

%        if (sqrt(2)*x(i)-A(currentrow-1,2) < ymax(maxnum,3))

%            maxnum = maxnum+1;

%            ymax(maxnum,2) = A(currentrow-1,2);

%            ymax(maxnum,3) = sqrt(2)*x(i)-A(currentrow-1,2);

%            ymax(maxnum,1) = A(currentrow-1,1);

%        end

%    end

end

%size(A)

%ymax

%Separate way to find vertices

tempx = 2;

olddist = sqrt(2) - floor(sqrt(2));

ymax(1,1) = 1;

ymax(1,2) = floor(sqrt(2));

ymax(1,3) = olddist;

while maxfound < maxnum

   newdist = sqrt(2)*tempx - floor(sqrt(2)*tempx);

   if newdist < olddist

       maxfound = maxfound+1;

       ymax(maxfound,1) = tempx;

       ymax(maxfound,2) = floor(sqrt(2)*tempx);

       ymax(maxfound,3) = newdist;

       olddist = newdist;

   end

   tempx = tempx+1;

end

disp(ymax);

%break;%If you don't want the figures

figure(1)

hold on;

plot(x,sqrt(2)*x, 'r', 'LineWidth', 3)

plot([1 1], [0 sqrt(2)], 'r', 'LineWidth', 2);

plot([1 8], [0 0], 'r', 'LineWidth', 2);

axis([1 8 0 ceil(8*sqrt(2))]);

plot(A(1:currentrow-1,1), A(1:currentrow-1,2), 'ks','markerfacecolor','k')

xlabel('x1');

ylabel('x2');

hold off;

for i = 2:maxnum  

figure(i)

hold on;

plot(x,sqrt(2)*x, 'r', 'LineWidth', 3)

plot([1 1], [0 sqrt(2)], 'r', 'LineWidth', 2);

plot([1 8], [0 0], 'r', 'LineWidth', 2);

axis([1 8 0 ceil(8*sqrt(2))]);

plot(A(1:currentrow-1,1), A(1:currentrow-1,2), 'ks','markerfacecolor','k')

plot(ymax(1:i,1), ymax(1:i,2), 'LineWidth', 4);

xlabel('x1');

ylabel('x2');

hold off;

    if ymax(i,1)>8
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        fignum = i+1;

        break;

    end

end

figure(fignum)

hold on;

%plot(x,sqrt(2)*x, 'r', 'LineWidth', 3)

plot([1 1], [0 sqrt(2)], 'r', 'LineWidth', 2);

plot([1 ymax(maxnum,1)], [0 0], 'r', 'LineWidth', 2);

axis([1 ymax(maxnum,1) 0 ceil(ymax(maxnum,1)*sqrt(2))]);

%plot(A(1:currentrow-1,1), A(1:currentrow-1,2), 'ks','markerfacecolor','k')

plot(ymax(:,1), ymax(:,2), 'LineWidth', 2);

xlabel('x1');

ylabel('x2');

plot(ymax(:,1), ymax(:,2), 'ks','markerfacecolor','k' ); 

Sources

Sven O. Krumke. Integer Programming: Polyhedra and Algorithms. Technische Universität Kaiserslautern. November 16, 2016. Integer Programmming Lecture Notes

(http://www.mathematik.uni-kl.de/fileadmin/AGs/opt/Lehre/WS1617/ip_ws1617/IP1-3.pdf)
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Contact Links

Email (mailto:jaocb.2.dunham@ucdenver.edu)

Early Life and Background

Jacob Dunham was born in Bakersfield, California.

Education

1. California State University Bakersfield, BS applied mathematics 2017
2. University of South Alabama, MS applied mathematics 2020
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Professional Life

Career

Triage Specialist - TuSimple(2020-2022)

Programming Languages/Experience

Python
SageMath
C++
SQL
JQL

Publications

Metrizability of Mahavier Products Indexed by Partial Orders (http://topology.nipissingu.ca/tp/reprints/v62/tp62002p1.pdf)

Projects

Clustering Neighborhoods in Order to Analyze Policy Needs

(http://math.ucdenver.edu/~sborgwardt/wiki/index.php/Clustering_Neighborhoods_in_Order_to_Analyze_Policy_Needs)

Preflow-Push Algorithm (https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Preflow-Push_Algorithm)

Github repositories

Preflow-Push Project Repository (https://github.com/JacobDun/Preflow-Push-alg)
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Contact Links

Email (mailto:jacob.johns@ucdenver.edu)
LinkedIn (https://www.linkedin.com/in/jacob-j-6a2a12136/)
GitHub (https://github.com/jakeat555)

Early Life and Background

Jacob Johns was born in Denver, Colorado. He is the 4th of 6 children. At the age of 13 he took 126th place in the 2013 Colorado State MathCounts competition. After

relegation, he learned how to solve a Dodecahedron Rubik's Cube; a skill he no longer maintains.

Education

1. Utah State University, B.S. in Computational Mathematics with a minor in Psychology

Professional Life

Career

Office Cleaner - Weatherstone Captial Mangement
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Swim Instructor Aid - Westminster Recreation Center
Tile Installer - Interior Resource Group
Facility Attendant - Thornton Recreation Center
Dive Instructor - Logan Recreation Center
Shelf Stocker - Walmart
College Algebra Grader - Utah State University
Window Well Technician - Mountainland Covers
Barista - USU Dining Services
Sales Associate - DEFY
Missionary - Church of Jesus Christ of Latter-Day Saints
IT Intern - Schreiber
Graduate Teaching Assistant - University of Colorado Denver

Programming Languages/Experience

Java
C++
C
Matlab
Python
R

Projects

In the fall of 2020 for Linear Programming, he worked on One-way: To Improve Denver Traffic. In this project, we used linear regression techniques to determine the

influence of one-way streets on traffic flow in Denver. Using this, a subset of streets in downtown Denver was selected, and a linear programming model was run to model the

potential traffic flow if those streets were converted into one-ways.
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John McFarlane
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I am a Electrical Engineering Master's student specializing in Communications at CU Denver. I am taking linear programming because it applies directly to optimization

problems in communications. My project partner is Sajjad Nassirpour. Our project this semester is based on an IEEE-published paper entitled "A New Wireless Multicast

Queuing Design Using Network Coding and Data-Flow Model" by Nadieh Moghadam and Hongxiang Li.

My contribution: Queue-Based Strategy to Achieve Maximum Stable Rate in Multi-user Network
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Contact Links

Email (mailto:johnathan.rhyne@ucdenver.edu)
Github (https://github.com/jprhyne)

About Me

Hey y'all, I am Johnathan Rhyne, and I am pursuing a PhD in Applied Mathematics here at CU Denver. My research interests are in Numerical Linear Algebra and general

Math Software.

My personal interests are in open source software, solving puzzles, and general tinkering with computers.

Programming Languages

1. Java
2. C/C++
3. Python

Education

1. NC State, B.S. In Mathematics with minors in Computer Programming, Statistics, and Political Science

mailto:johnathan.rhyne@ucdenver.edu
https://github.com/jprhyne


Projects

1. In Spring of 2023, I worked on a project for using AMPL from inside C as a part of the Integer Programming course Embedding AMPL In C
2. In Spring of 2023, I worked on a project showing the equitability of fire hydrant distribution in the city of Denver and some surrounding areas

Equitable_Fire_Hydrant_Placement
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Jordan Perr-Sauer

From CU Denver Optimization Student Wiki
Jordan Perr-Sauer graduated with a bachelors in Mathematics, magna cum laude - with distinction, from the University of Colorado, Denver
in 2017. Jordan completed his honors project and directed research with professor Steffen Borgwardt on the topic of elementary cellular
automata. He also installed, managed, and provided user support for this wiki.
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Kathleen Gatliffe

From CU Denver Optimization Student Wiki

Kathleen Gatliffe is a graduate student at the University of Colorado Denver. She holds bachelor's degrees in both electrical and mechanical

engineering from CU Denver as well. She is passionate about mathematical communication and exploring social issues through statistics. Her

master's project will be in service to the CU Denver learning assistants program.

She currently works as a mathematics and physics tutor for the Community College of Denver. In her free time she is an accomplished

enamelist and metalsmith and is known for her skill as a cat whisperer.

She is scheduled to teach MATH 2411-004, Calculus II, in the spring.

Contributions

In Fall 2018, Kathleen contributed to the wiki with her project for MATH 5593: Linear Programming, Location Fluctuations in Denver Area

Bias Motivated Crime Explored Through Linear Programming. In addition, she created two general interest pages documenting interesting aspects of her project, Data

Visualization Using QGIS and Denver Government Coordinate Systems.
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Keegan Schmitt

From CU Denver Optimization Student Wiki

Keegan Schmitt is an undergraduate student at the University of Colorado Denver. He has studied business and engineering and holds an associates in business from Arapahoe

Community College. He was working on a bachelors in mechanical engineering with a focus in motorsports engineering when he fell in love with pure and applied

mathematics. He is now pursuing a bachelors degree in applied mathematics. He tutors all levels of mathematics from middle school pre-algebra to college calculus and is

passionate about furthering mathematics and science education in any way he can. When he isn't staring at a whiteboard or typesetting a document in LaTex, he can be found

trail running in the Rocky Mountains or at any local gym picking up heavy things and then putting them back down. His favorite color is orange and favorite variable is 

because he thinks it is fun to say.

Here are Keegan's contributions to the Optimization Wiki:
Linear Programming
Duality: Bounding the Primal
Duality: Economic Example
Shadow price
Complementary slackness
Programming Files
Computing Using Mathematical Programs
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Kevin Bloom

From CU Denver Optimization Student Wiki

After growing up in Houston, TX, Kevin earned his Bachelor of Science degree in Applied and Computational Mathematics from the University of Southern California in Los

Angeles, CA. After graduating, he continued his mathematics education by completing 3 Society of Actuary Exams and fulfilled the Validation by Educational Experience

requirements in Economics, Corporate Finance, Time Series, and Regression Analysis while owning and operating a music production company.

After getting burnt out on the Los Angeles music scene, he relocated to Denver and earned an Alternative License to teach high school mathematics. Most recently, he began

studying for a Master of Science degree in Applied Mathematics with a concentration in Operations Research from University of Colorado, Denver.

Kevin created the A Multi-Objective Linear Program for Nutrition wiki page.
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Knapsack Problem Algorithms

From CU Denver Optimization Student Wiki

The Knapsack Problem is a classic combinatorial optimization problem that has been studied for over a century. The premise of the problem is simple: given a set

 of  objects, where each object  has an integer size  and profit , we wish to pack a knapsack with capacity  in such a way that the profit

of the packed items is maximized without violating the knapsack's capacity. By introducing a binary variable  for each  that indicates whether or not

object  should be included in the knapsack, we can formulate this problem as an integer program:

This is a relatively simple integer program: it requires only a single constraint other than the domain restriction . However, the Knapsack Problem is an example

of an NP-hard optimization problem, which means we do not have a polynomial time algorithm that finds a solution. However, several algorithms have been developed which

approximate the optimal objective  in polynomial time, and others even find an optimal solution in pseudo-polynomial time.
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Variations

The Knapsack Problem as formulated above, where each individual object is either included in the knapsack or left out of the knapsack, is known as the 0-1 Knapsack

Problem. However, several variations of the problem have also been formulated. For instance, in the Bounded Knapsack Problem, we assume that there are multiple copies of

each object in , and up to  copies of each object may be included in the knapsack. In the Unbounded Knapsack Problem, we again have copies for each object, but

there are no restrictions on the number of copies that may be placed in the knapsack. Even more complicated variations include the Multiple Knapsack Problem, in which we

have  different knapsacks that we are trying to fill with elements of  in order to maximize profit. Nevertheless, the simple 0-1 Knapsack Problem has been studied the

most and appears most frequently in practice, so it will be the variation we refer to throughout the remainder of this page.

Applications

Other than preparing for a backpacking trip, when might the Knapsack Problem be useful? This combinatorial optimization problem actually comes up quite frequently in

various resource allocation situations. For instance, an investor may wish to determine which assets to purchase given some maximum budget, or a computer program may

need to determine how to allocate memory for segments of data with varying sizes. In fact, in a 1998 study of the Stony Brook University Algorithm Repository, the Knapsack

Problem was the fourth most needed out of 75 algorithmic problems.

Furthermore, the Knapsack Problem often appears as a subproblem or a special case of other important optimization problems such as the Cutting Stock Problem or the Bin

Packing Problem. Therefore, efficient algorithms for the Knapsack Problem allow for effective algorithms for a variety of other problems.

S c ∈ Z

m S
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Approximation Schemes

The Knapsack Problem is an NP-Hard optimization problem, which means it is unlikely that a polynomial time algorithm exists that will solve any instance of the problem.

However, algorithms known as approximation schemes offer a viable alternative. Such an algorithm is guaranteed to provide a solution whose corresponding objective value is

within a certain percentage of the optimal objective value. In other words, if  is the optimal objective value, then given an error parameter , an approximation

scheme results in an objective value that is at least . (If we were concerned with a minimization problem rather than a maximization problem, the resulting

objective value would be at most .)

If the run time of such an algorithm is bounded by a polynomial in , the size of the problem, then we say it is a Polynomial Time Approximation Scheme (PTAS). However,

this allows for the possibility that the run time is exponential in the error term , which means the algorithm may not be a viable choice if we desire a very small error.

To avoid this issue, we may desire a Fully Polynomial Time Approximation Scheme (FPTAS): an approximation scheme whose run time is bounded polynomially in both 

and .

PTAS for Knapsack

A Polynomial Time Approximation Scheme for the Knapsack Problem can be achieved by extending partial, small-size solutions via a greedy algorithm.

Greedy Approximation Algorithm

A heuristic technique proposed by George Dantzig is a naive but fast approach to the Knapsack Problem. First, sort the objects of  in decreasing order according to their

unit profit , which can be done in  time. Next, examine the objects in this order, adding the current object to the knapsack if and only if there is room for it.

The run time of this algorithm is bounded polynomially in  as it terminates after only  operations. Unfortunately, a solution obtained via

this algorithm may be arbitrarily bad compared to an optimal solution. Nevertheless, we can modify this algorithm to obtain a PTAS.

The PTAS Algorithm

The PTAS described here is an exhaustive search that employs the previously described greedy algorithm. Let some constant  be given. For each subset

 that has size at most , place the objects of  in the knapsack (if they fit) and use the Greedy Approximation Scheme to fill up the remainder of the knapsack in

 time. After this has been repeated for all such subsets , keep the most profitable solution.

There are  subsets of  with size at most , so the algorithm will terminate in  time. Furthermore, it is guaranteed to produce an objective value at least

, which means it is a PTAS! However, the run time is still exponential in , so this algorithm is not ideal if a high level of accuracy is required.
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Pseudo-polynomial Time Algorithm

Although we do not have a polynomial time algorithm for the Knapsack Problem, we do have an algorithm that uses dynamic programming in order to find an optimal solution

in pseudo-polynomial time.

Dynamic Programming

Dynamic programming is a computational technique for optimization problems that recursively breaks down the original problem into many subproblems. The smallest such

subproblems are easy to solve, and their solutions are then used to solve the second stage of subproblems. Next, the solutions of these subproblems can be used to solve the

third stage of subproblems. This process is continued until an optimal solution to the original problem can be obtained. This technique can be memory intensive due to a

potentially large number of subproblems, but by storing the solutions of these subproblems, the computation time needed to solve the next stage of subproblems is minimal.

Dynamic Programming for Knapsack

Dynamic programming offers an efficient approach to the Knapsack Problem. Let  denote the maximum profit across all objects of ; that is, .

Then the optimal objective value of the problem is clearly bounded above by . Next, for each  and , let  denote a subset of

 (the first  objects of ) whose profit is precisely  and whose size  is as small as possible. Finally, let  denote the size of  if such

a subset exists; otherwise let . Based on these definitions, an optimal solution to the original Knapsack Problem is the set  for which  is maximized and

.

We can determine the values  via dynamic programming in which the different values of  correspond to different stages of subproblems. The first stage of

subproblems is to determine to values of all . Clearly, the only way to do this is to set  and then  for all .

To solve subsequent stages of subproblems, we use the following recursive definition for each :

where  is defined to be 0 for each . In other words, depending on the values of  and , either  can be formed by adding the object

 to the set , or it must hold that  (in which case  and ).

Since each of the  stages of subproblems involves evaluating  values , this algorithm terminates after  operations. Therefore, this dynamic programming

method is a viable pseudo-polynomial time algorithm for the Knapsack Problem. The following pseudocode gives a basic description of the algorithm:

1. // Input:

2. // Number of objects (n)

3. // Profits (stored in array p)

P S P = { }maxi∈{1,...,n} pi

nP i ∈ {1, . . . , n} p ∈ {1, . . . , nP } Si,p

{ , . . . , }a1 ai i S p ( )∑ ∈aj Si,p
sj A(i, p) Si,p

A(i, p) = ∞ Sn,p p
A(i, p) ≤ B

A(i, p) i
A(1, p) A(1, ) =p1 s1 A(1, p) = ∞ p ≠ p1

p ∈ {1, . . . , nP }

A(i + 1, p) = {
min{A(i, p), + A(i, p − )}si+1 pi+1

A(i, p)

 if ≤ ppi+1

 if > p,pi+1

A(i, 0) i ∈ {1, . . . , n} pi+1 si+1 Si+1,p

ai+1 Si,p−pi+1
∉ai+1 Si+1,p =Si+1,p Si,p =Ai+1,p Ai,p

n nP A(i, p) O( Pn2
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4. // Sizes (stored in array s)

5. // Knapsack capacity (B)

6. // Maximum Profit (P)

7. //

8. // Output: 

9. // Optimal profit (Z)

10.  

11. for i from 1 to n do:

12.     A[i, 0] := 0

13.  

14. //solve first stage subproblems

15. for p from 1 to n*P do:

16.     if p == p[1] then:

17.         A[1, p] = p[1]

18.     else:

19.         A[1, p] = infty

20.  

21. //solve subsequent subproblems

22. for i from 2 to n do:

23.     for p from 1 to n*P do:

24.         if p[i] <= p then:

25.             A[i, p] = min( A[i-1, p], s[i] + A[i-1, p-p[i]] )

26.         else:

27.             A[i, p] = A[i-1, p]

28.  

29. //return optimal objective

30. Z = 0

31. for p from 1 to n*P do:

32.     if A[n, p] <= B then:

33.         Z = p

34. return Z

FPTAS for Knapsack

From the previously described dynamic programming algorithm, if the the profits of the objects in  are polynomially bounded in , we have a polynomial time algorithm

that solves the Knapsack Problem. However, we must still consider cases in which the profits can be arbitrarily large. In these situations, we may employ an adjusted form of

the dynamic programming algorithm as a Fully Polynomial Time Approximation Scheme.

As before, let  denote the maximum profit over all objects in . Then for any , we scale down the profits by a factor of , where . Specifically, we

introduce adjusted profits  by setting  for all . Using these adjusted profits, we can apply the dynamic programming algorithm to obtain a

solution whose objective is at least . Furthermore, this algorithm completes in  time, which is polynomially bounded in both  and

. Therefore, we have a FPTAS for the Knapsack Problem.
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Proof of Approximation

To see why the solution returned by the adjusted price dynamic programming algorithm has an objective value of at least , note that due to the scaling and

rounding down of the profits, each adjusted profit  satisfies . Hence, if  denotes an optimal set for the original problem, we have since

 that:

Therefore, if  denotes an optimal set for the adjusted profit problem, we must have

Implementation and Experimentation

Implementations of dynamic programming for knapsack and FPTAS for knapsack can be found on the Code for Knapsack Problem Algorithms page. The KnapsackTest

program can be run to randomly generate and solve/approximate an instance of the Knapsack Problem with a specified number of objects and a maximum profit. Otherwise,

"hard" instances of the problem generated by David Pisinger can be tested. The .csv files for these instances may be downloaded from

http://www.diku.dk/~pisinger/codes.html.

It may be noticed that in most typical instances of the Knapsack Problem where neither  nor  is very large, the dynamic programming algorithm finds an optimal solution

very quickly and FPTAS for Knapsack is not needed. In fact, since the approximation scheme is only useful when the scaling factor  is greater than 1, FPTAS for Knapsack

should only considered as an option when . In these situations, although the dynamic programming algorithm may still have a satisfactory run time, it must allocate

a very large portion of memory for the subproblem arrays. Hence, the approximation scheme is a desirable alternative since it not only reduces run time but also drastically

reduces the amount of memory required. Additionally, it is not uncommon for FPTAS for Knapsack to find an optimal solution to the problem instead of just a -

approximation. In other words, if a solution optimizes the modified problem with scaled profits, it is likely to optimize the original problem as well. Of course, there is no

guarantee that this will happen, but it further suggests that the approximation scheme is a viable option whenever the profits are simply too large for the dynamic programming

algorithm to perform adequately.
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Conclusions

The Knapsack Problem is a frequently encountered combinatorial optimization problem, and although it is NP-hard, several efficient algorithms have been developed to find

or approximate an optimal solution. The combinatorial structure of this problem permits a pseudo-polynomial time dynamic programming algorithm that efficiently solves

nearly every reasonable instance of the problem. Furthermore, in the rare cases where the profits of the objects are exponentially large, a fully polynomial time approximation

scheme may be used. However, an approximation is generally not necessary. In his article "Where are the hard knapsack problems," David Pisinger explains that as a result of

decades of algorithmic improvement, virtually all instances of the Knapsack Problem encountered in practice can be efficiently solved. Nevertheless, the algorithms presented

here to solve the Knapsack Problem demonstrate that seemingly difficult problems may often be approached using pseudo-polynomial time algorithms or polynomial time

approximations.
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Kushmakar Baral
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I am a first year graduate student at CU Denver. I received my undergraduate degree in Mathematics here in CU Denver. I am currently teaching at Community College of

Denver & Front Range Community College (Westminster). When I have spare time, I spend my time watching all sorts of documentaries. I fluently speak four different

languages excluding English. I often go for hiking, that is one of the best part of living in Colorado. I am working with Dongdong Lu.The link to the project page is: Crime &

Temperature: Scheduling Awareness Programs
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This is a master's project on Tutorial on calling optimization solvers in five different programming languages: C++, AMPL, Python, MATLAB, and R : Optimization Solvers

in Five Different Programming Languages
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Lagrange Multipliers

From CU Denver Optimization Student Wiki

The Lagrange Multipliers are a powerful solving method for a certain class of optimization problems. But if we look beyond a solving technique we can see that Lagrange

Multipliers (and solving the Lagrangian Dual problem itself) yields information not readily available through solving the original optimization problem alone.

In general, given a program:

 where  is the domain of definition for .

If  and  follow the "rules" of The General Lagrange Multiplier Theorem (see below), then to find an optimal solution to the program we can consider the gradient of

 in relation to the gradient of any constraints that may be active (i.e. the constraints that have a direct affect on our program at a certain point). We do this by considering

any  such that . A point at which the objective function's gradient and the active 's gradients are pointed in the same direction indicates an optimal

solution . So we seek to solve the equation  for . But these gradient vectors are not typically of equal magnitude, so in addition to solving for

, we would also like to solve for  to study how much we can scale the gradient vectors in relation to each other. These scaling factors, , are called Lagrange

Multipliers. The theory behind the Lagrange Multipliers solving method comes from a fascinating field of study in optimization research called Lagrangian Duality.

The value of  will yield one of the following pieces of information about the original program:

Note: Lagrangian Multipliers are also known as shadow prices and offer a rich economic interpretation of mathematical programming.

Contents

1 The General Lagrange Multiplier Theorem [1]

2 Corollary to the Lagrange Multiplier Theorem [1]

3 Examples
3.1 Example 1
3.2 Example 2

  optimize f(x)
  s. t.   (x) i =  1, 2, . . . , kgi

     x ∈ X

      X x

f(x) g(x)
f(x)

(x)gi (x) =  0gi (x)gi

x∗ ∇f(x) =  ∇ (x)λi gi x∗

x
∗ λi λi

λi

⟹

⎡

⎣

⎢⎢

 =  0λi

 >  0λi

 <  0λi

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

violated constraint (x)gi

active constraint (x)gi

constraint (x) not a binding in the original programgi

⎤

⎦

⎥⎥
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4 References

The General Lagrange Multiplier Theorem [1]

 Let  be an open subset of .

 Suppose that the function  is continuously differentiable.

 Let  such that .

 Suppose that the mapping  is continuously differentiable.

 Define .

 Suppose that  is an extrema of the function .

 Suppose that the  matrix  has full row rank.

 Where  is the Jacobian (or derivative matrix) of  at the point .

Then 

such that .

While the Theorem is quite technical, the rules are as follows:

1)  and  are continuously differentiable for .

2) We only consider equality constraints, that is any  such that .

3) The derivative matrix  is defined to be the matrix .

The matrix  has to be of full row rank, meaning that the  is square and consistent. If  is not of full row rank, we can often

eliminate trivial constraints to obtain a sub-matrix that does have full row rank.

So given some strict assumptions, we can solve the system resulting from the equation  to find optimal solutions to our original

system.

The following corollary is for the case that there is only one constraint.

O R
n

f  :  O →  R

k ∈ N k < n

G :  O → R
k

S =  {x ∈ O :  G =  0}
∈ Sx

∗ f  :  S → R

k × n DG( )x∗

DG( )x
∗

G ∈x
∗

R
n

∃ , ,  . . .  , ∈ Rλ1 λ2 λk

∇f( ) =  ∇ ( )x∗ ∑k
i=1 λi gi x∗

f(x) (x)gi ∀ i = 1, 2, . . . , k

(x)gi (x) =  0gi

DG( )x
∗

⎡

⎣

⎢⎢⎢⎢

∂g1

∂x1

⋮
∂gk

∂x1

∂g1

∂x2

⋮
∂gk

∂x2

⋯

⋱

⋯

∂g1

∂xn

⋮
∂gk

∂xn

⎤

⎦

⎥⎥⎥⎥

DG( )x
∗ DG( )x

∗ DG( )x
∗

∇f( ) =  ∇ ( )x
∗ ∑k

i=1 λi gi x
∗
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Corollary to the Lagrange Multiplier Theorem [1]

 Let  be an open subset of .

 Suppose that the functions  and  are both continuously differentiable.

 Define .

 Suppose that  is an extrema of the function .

 Suppose that .

Then 

such that .

 Note that for both the General Lagrange Multiplier theorem and the Corollary, .

Examples

Example 1

Consider the primal program, P, from the Lagrangian Duality example:

Let 

Let 

Then to minimize  subject to  we can use the equation  to solve for  and 

So we seek to solve the system:

O R
n

f  :  O →  R g :  O →  R

S =  {x ∈ O :  g(x) =  0}
∈ Sx

∗ f  :  S → R

∇g( ) ≠  xx∗

∃ λ ∈ R

∇f( ) =  ∇g( )x
∗ λi x

∗

(x) =  0gi

min +x2
1 x2

2
s. t.  − − + 4 ≤  0x1 x2

,  ≥  0x1 x2

f(x) =  +x2
1 x2

2
g(x) =  − − + 4x1 x2

f(x) g(x) =  0 ∇f(x) =  λ∇g(x) λ,  ,x1 x2

∇f(x) =  λ∇g(x) ⟹  [ ] =  λ[ ]
2x1

2x2

−1
−1
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Now we have two equations and three unknowns.

To solve this system we incorporate another equation we have had all along, . (Recall that the Lagrangian Multiplier Theorem requires

).

So we solve the system:

This is not a hard system to solve.

Solving the system gives us the values  and .

Example 2

Consider the program:

Let 

Let 

Then to minimize  subject to  we can use the equation  to solve for  and .

So we seek to solve the system:

Now, again we have less equations than unknowns, so we must incorporate an equation that has already been given to us, .

(Recall that the theorem requires ).

So our new system to solve becomes:

2  =  − λx1

2  =  − λx2

g(x) =  0
g(x) =  0

    2  =  − λx1

    2  =  − λx2

 − − + 4 =  0x1 x2

λ =  − 4,   =   =  2 ⟹  = [ ]x1 x2 x∗ 2
2

f( ) =  8x∗

min + + 2x1 x2 x3

s. t.  + + ≤  1x2
1 x2

2 x2
3

f(x) =  + + 2x1 x2 x3

g(x) =  + + − 1 =  0x2
1 x2

2 x2
3

f(x) g(x) =  0 ∇f(x) =  λ∇g(x) λ,  ,x1 x2

∇f(x) =  λ∇g(x) ⟹   =  λ
⎡

⎣

1
1
2

⎤

⎦

⎡

⎣

2x1

2x2

2x3

⎤

⎦

2λ  =  1x1

2λ  =  1x2

2λ  =  2x3

+ + − 1 =  0x2
1 x2

2 x2
3

g(x) =  0
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Optimizing a plane subject to a sphere

Where we solve for  and 

And again, this is not a hard system to solve.

Our resulting optimal solution for minimizing , occurs at 

and our minimum value is 
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2λ  =  1x1

2λ  =  1x2

2λ  =  2x3

 + + − 1 =  0x2
1 x2

2 x2
3

λ,  ,  ,x1 x2  x3

f(x)  =  x∗

⎡

⎣

⎢⎢⎢⎢

− 6√
6

− 6√
6

− 6√
3

⎤

⎦

⎥⎥⎥⎥

f( ) =  −x
∗ 6√
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Lagrangian Duality

From CU Denver Optimization Student Wiki

Among the various dual program formulations, the Lagrangian Dual formulation in particular lends to a rich understanding of Duality Theory in Optimization Research. The

general idea is that with the right multipliers, the Lagrangian is an auxiliary function that penalizes constraint violations linearly [1]. The original program to solve can be

linear, nonlinear, quadratic, etc., and can often be quite messy. But using the Lagrangian allows for us to take messy, hard to handle, constraints and treat them as variables in a

newly formed unconstrained problem. As mentioned, we incorporate non-negative multipliers, called Lagrange Multipliers, that (from the perspective of the formulating the

Lagrangian itself) penalize violated constraints linearly. If we can find a solution such that none of the constraints are violated, the Lagrangian will yield a feasible solution to

our original program. Since the form of the program requires minimization (see definitions below), we consider the minimum value of the Lagrangian in what is called the

Lagrangian Primal problem. We can also consider the Lagrangian Dual problem that, like all Dual programs, is a closely related problem that uses the same information as the

primal program but in different ways to solve an optimization problem. Since the Lagrangian Primal problem seeks to minimize, and we know form Calculus that

, the Lagrangian Dual seeks to maximize the minimum value of the Lagrangian Primal. Formulating the Lagrangian Dual introduces the

constraint that some of the Lagrange Multipliers must be non-negative, this allows us to not only solve for an optimal value, but also allows us to solve for the Lagrange

Multipliers themselves which gives us an opportunity to study the structure and behavior of the original program. The Lagrange Multipliers are a powerful solving method for

a certain class of optimization problems, but if we look beyond a solving technique we can see that Lagrange Multipliers and solving the Lagrangian Dual problem itself yields

information not readily available through solving the Lagrangian Primal problem alone. Solving the Lagrangian Dual problem also illuminates new areas of study and offers

theory behind rich topics like like complementary slackness conditions, step sizes, and the boundaries of the feasible region.

Contents

1 Lagrangian Duality in Nonlinear Programming
1.1 Geometric Interpretation

1.1.1 Geometric Interpretation Example [3]

1.2 Duality Gap
2 Lagrangian Duality in Linear Programming
3 Notes and Additional Methods
4 References

Lagrangian Duality in Nonlinear Programming

Understanding the Lagrangian Dual Problem for nonlinear programming is the foundation for understanding the theory behind Duality in Optimization Research and the ways

that the dual program can be used to find optimal solutions to the primal program. Lagrangian Duality for nonlinear programming leads to a discussion of other types of

programs, including linear programs and quadratic programs.

Given the primal program P:

MaxMin ≤  MinMax
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 where  is the domain of definition for .

 * The  is defined to be:

 * The , , is defined to be:

 * And the  to solve is defined to be:

Note: The Lagrangian Dual function  may assume the value of  for some vector .

Note: If you are unfamiliar with the concept of the "inf" in the  function, you can consider  to be

 In this case, please look into the concept of an infimum, but for now consider  in terms of a minimum.

Consider the example:
Given the primal program, P  :

  min f(x)

  s. t.   (x) ≤ 0 i =  1, 2, . . . ,kgi
   (x) = 0 i =  1, 2, . . . , lhi

     x ∈ X

      X x

Lagrangian
− −−−−−−−−−

L(x, u, v) := f(x) + (x) + (x)∑
i=1

k

uigi ∑
i=1

l

vihi

Lagrangian Dual function
− −−−−−−−−−−−−−−−−−−−−

θ

θ(u, v) := inf{f(x) + (x) + (x) : x ∈ X}∑
i=1

k

uigi ∑
i=1

l

vihi

Lagrangian Dual Problem
− −−−−−−−−−−−−−−−−−−−−

max θ(u, v)
∀u ≥ 0

 θ −∞ (u, v)

θ(u, v) θ(u, v)

min{f(x) + (x) + (x) : x ∈ X}∑k
i=1 uigi ∑l

i=1 vihi
θ
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The Lagrangian is 

The Lagrangian Dual function is 

 Therefore the Lagrangian Dual Problem is:

The variables  and  of the Lagrangian Dual function, , are what incorporate the primal constraints,  and  into the dual program. The variables  and 

are know as Lagrange Multipliers, and are often represented as . In general, the punchline of the Lagrangian Dual Problem is finding non negative values of the

Lagrange Multipliers,  and , such that , but the theory behind the equation offers a rich understanding of the theory of Duality.

Geometric Interpretation

To better understand Lagrangian Duality, consider a simple program with one inequality constraint and no equality constraints.

Consider the primal problem, P:

The Lagrangian is 

The Lagrangian function is 

  min + 4 + + 9x2
1 x2

2

x1

2
x2

  s. t  g( , ) := − − 3 + 24 ≤ 0x1 x2 x1 x2

     ,  ≥ 0x1 x2

L( , ,u) := + 4 + + 9 + u(− − 3 + 24)x1 x2 x2
1 x2

2
x1

2
x2 x1 x2

θ(u) := inf{ + 4 + + 9 + u(− − 3 + 24) : , ≥ 0}x2
1 x2

2
x1

2
x2 x1 x2 x1 x2

   

    max θ(u)

     ∀u ≥ 0

u v  θ(u, v) g(x) h(x) u v

λ or α

ui vi ∇f(x) =  ∇g(x) + ∇h(x)uT vT

min f(x)

s. t.  g(x) ≤ 0

L(x,u) :=  f(x) +  ug(x)

θ(u) :=  inf{f(x) +  ug(x)}
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The dual problem is 

Suppose that  is given.

Let  for .

Let  be the image of  under the  map.

Then  for some 

Note that  is just the equation of a line with  and .

So to minimize  we just want to "move" the line  down, parallel to itself, until it supports . That is, until the line is underneath  and is just touching

it.

The dual problem is equivalent to finding the slope of the supporting hyperplane such that the  is maximized.

max θ(u)

u ≥ 0

= g(x), = f(x)z1 z2 x ∈ X
G := X (g,f)
G = {( , ) : = g(x), = f(x)z1 z2 z1 z2 x ∈ X}.

+ u  =  αz2 z1 slope =  − u  intercept =  αz2

f(x) + u  =  αz2 z1 G G

 intercept z2
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Geometric Interpretation Example [3]

Consider the primal program P:

min +x2
1 x2

2

s. t.  − − + 4 ≤  0x1 x2Typesetting math: 100%
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Note that the optimal solution occurs at  which gives an optimal value of 

 Let 

 Let 

The dual function is:

 Note that the infimum is achieved at 

 This implies that 

Note that  is a concave function, and that  occurs at 

Now let's consider the problem in the  plane.

 Let  and 

 We want to find  where,

,  ≥  0x1 x2

 =  (2, 2)x∗ f( ) =  8x∗

g(x) =  − − + 4x1 x2

X =  {( , ) :  , ≥  0}x1 x2 x1 x2

θ(u) = inf{ + + u(− − + 4) :  , ≥  0}x2
1 x2

2 x1 x2 x1 x2

θ(u) = inf{ − u  :  ≥  0} +  inf{ − u  :  ≥  0} +  4ux2
1 x1 x1 x2

2 x1 x2

{
 =   =    if  u ≥  0x1 x2

u

2

 =   =  0  if u <  0x1 x2

θ(u) =  {
− + 4u  if  u ≥  0u2

2

4u  if u <  0

θ(u) max u ≥  0 = 4 ⟹  θ( ) =  8ū ū

( , )z1 z2

 =  g(x)z1  =  f(x)z2

GTypesetting math: 100%



.

 And to do this, we derive explicit expressions for the lower and upper envelopes of 

 Let 

 Let 

Note that given  are the optimal objective values of the problems  and  respectively:

 Note:  which implies that  such that 

 corresponds directly to  because .

The optimal dual solution  is the negative slope of the supporting hyperplane.

 And the optimal dual objective value is .

 Recall that .

G :=  the image of  X = {( , ) :  , ≥  0} under the (g,f) mapx1 x2 x1 x2

G

α =  lower envelope of  G

β =  upper envelope of  G

= g(x),  α( ) and β( )z1 z1 z1 P1 P2

Problem : Problem :P1 P2

min +   max +x2
1 x2

2 x2
1 x2

2

s. t.  − − + 4 =      s. t.  − − + 4 =  x1 x2 z1 x1 x2 z1

,  ≥  0 ,  ≥  0x1 x2 x1 x2

∴  α( ) = ∴  β( ) = (4 −z1
(4−z1)2

2
z1 z1)2

for ≤ 4 for ≤ 4z1 z1

x ∈ X  ,  ≥  0x1 x2 − − + 4 ≤  4x1 x2

∴ ∀x ∈ X ≤ 4z1 g(x) ≤ 4

 =  4 ū

α(0) = 8

f( ) =  8x∗

Typesetting math: 100%



Duality Gap

Because of the  properties of the Lagrangian Primal and the Lagrangian Dual, the optimal value of the primal program will be less than or

equal to the optimal value of the dual program. If the values are strictly different (that is they are not equal) then a  is said to exist. This result is known as

. But under certain assumptions regarding convexity, the primal and dual problems have equal objective values, thus solving the dual problem solves the

MaxMin ≤  MinMax 

Duality Gap
− −−−−−−−−−

Weak Duality
− −−−−−−−−−−
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primal problem indirectly. When these values are equal, and no Duality Gap exists, the result is known as . The concepts of Weak Duality and Strong

Duality are elaborated in the section on Lagrangian Duality in Linear Programming.

Lagrangian Duality in Linear Programming

Given the linear program (LP for short):

We can consider the LP component-wisely and rewrite the LP as:

 .

Then the  is:

Translating this back to a set of linear inequalities (where the summation of the linear constraints is implied),

the  is:

.

And this equation can be rearranged as follows:

Strong Duality
− −−−−−−−−−−−

  min xcT

  s. t.   Ax ≤  b

   x ≥  0

  min xcT

  s. t.    −   ≤  0bi aixi      i = 1, 2, . . . ,n

   x ≥  0

Lagrangian formulation
− −−−−−−−−−−−−−−−−−−−

L(x, y) :=  x +  (  −  )cT ∑
i=1

n

yi bi aixi

Lagrangian formulation
− −−−−−−−−−−−−−−−−−−−

L(x, y) := x +  (b −  Ax)cT yT
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.

So for , we want . That is, for , we want , where we seek to maximize .

Therefore, the  is:

Note: In linear programming, the dual program does not involve the primal variables. And the dual problem is itself a linear program, and the dual of the dual is the primal.

And as the Lagrangian is an auxiliary function that bounds the set of feasible solutions of the primal program linearly, we can see that the formulation of the Lagrangian Dual

program leads to the following result:

.

.

This result is known as 

Furthermore, for a finite optimal solution to the primal LP, , with optimal value , the dual LP has a finite optimal solution  with an optimum value ,

and these values are equal!

That is, .

This result is known as .

Given that for a finite optimal solution, , we can obtain:

x +  (b −  Ax) =  x +  b −  AxcT y
T cT y

T
y
T

  =  x +  −  Ax +  bcT yT yT

  =  (  −  A)x +  bcT yT yT

  =  − ( A −  )x +  byT cT yT

x ≥  0 A −  c ≤  0yT x ≥  0 y ≤  cA
T

byT

Lagrangian Dual Problem
− −−−−−−−−−−−−−−−−−−−−

max byT

s. t.  y ≤  cAT

y ≥  0

minimum of primal LP ≥  maximum of dual LP

     min x ≥  max bcT yT

Weak Duality
− −−−−−−−−−−

x̄ z =  cT x̄ ȳ  w =  bȳT

z =  w ⟹   =  bcT x̄ ȳT

Strong Duality
− −−−−−−−−−−−

x =  bcT yT

Typesetting math: 100%



Therefore, component wise,  and .

These two results together are known as , and offer a rich interpretation of the behavior of the constraints in both the primal

and dual programs.

Considering the linear primal program, P, and linear dual program, D, as presented above, one of the following mutually exclusive cases will occur:[3]

1) P admits a feasible solution, but has an unbounded optimal value.
 D is infeasible.

2) D admits a feasible solution, but has an unbounded optimal solution.
 P is infeasible.

3) P and D admit feasible solutions

 both P and D have optimal solutions  respectively.

4) P and D are both infeasible.

Notes and Additional Methods

In general, to find an optimal solution to our primal program, P, we can consider the gradient of our primal objective function, , in relation to the gradient of any

constraints that may be active. A point at which the objective function's and the active constraints' gradients are pointed in the same direction indicates an optimal solution .

So we seek to solve the equation  for  and . But the gradient vectors are not typically of equal magnitude, so in addition to

solving our original system, we would like to study how much we can scale the gradient vectors. The scaling factors associated with the active constraints of each of the

systems P and D, are known as Lagrange Multipliers and are sometimes referred to as shadow prices. The economic interpretation of Lagrange Multipliers as shadow prices

lends to a rich economic application of the relationship between the primal and dual programs.
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x =  bcT yT

x =  ycT bT

   0 =  x −  ycT bT

   0 =  x −  Ax +  Ax −  ycT yT yT bT

   0 =  (  −  A)x +  (Ax −  )cT yT yT bT

(  −  A  ≠  0 ⟹   =  0 cT yT )i xi  (Ax −   ≠  0 ⟹   = 0bT )j yj

Complementary Slackness Conditions
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⟹

⟹

⟹  and  such that  =  b and (  −  A)  =  0x̄ ȳ cT x̄ ȳT cT ȳT x̄

f(x)
x∗

∇f(x) =  u∇g(x) + v∇h(x) ,  u,x∗ v
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A Stochastic Approach to the Burrito Problem - with Abigail Nix
Data to Policy Symposium 2023 - Optimizing SAR Paths in the Rocky Mountain Region with Nicholas Rogers and Matthew Knodell
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Previous and Current Research Topics and Experience

In 2022 I was exposed to my first research experience at the Markov Chains REU at the University of Connecticut, run by Iddo Ben-Ari. I presented the results from this

program at the 2023 Joint Mathematics Meetings with colleague Bram Silbert. From there I focused quite a lot on social and opinion dynamics, more specifically the voter

model, but also explored a bit of the work done by Mason Porter on the bounded confidence model.

Most recently, I've been working closely with Emily Speakman on a number of projects. We're currently wrapping up my work with her on computing volume formulae (the

results for this were presented at a poster session at JMM and in a talk at FRAMSC), and are shifting gears into studying Stochastic Programming and its applications,

specifically in relation to water storage and allocation.
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Linear Algebra

From CU Denver Optimization Student Wiki

Basic Definitions

A vector is a magnitude with a direction. In general, a vector is given by the directional components. For example, a 2-dimensional vector in the cartesian plane that goes 3

units in the x direction and 4 units in the y direction is denoted as . A 3-dimensional vector in with the same components and no height in the z direction looks like

. It is important to note that even though these vectors appear to be the same, they are not. They operate in different vector spaces. A vector space is a collection of

vectors of the same dimension. A vector space is closed under addition and scalar multiplication. That is to say, the addition of any vectors in the vector space with any other

vectors in the space, will result in a vector in the space. Similarly, the scaling of any vector by a constant will result in a vector in the space. A matrix is a collection of vectors

that form a vector space. Entries in a matrix M are denoted by , which is the  row. The main diagonal entries in a matrix are all of the entries 

such that i = j.

Basic Operations

A matrix transpose, denoted  is a matrix that has been "flipped" along the main diagonal. For example, . A symmetric matrix is a matrix

. In other words, . The conjugate transpose of a matrix, denoted M*, with complex number entries is obtained by taking the

transpose of the matrix and then taking the complex conjugate of each entry. A Hermitian matrix is a matrix such that M = M*.

Products

An inner product of two vectors is a scalar quantity relating the two vectors. For any vectors  and scalar , the following hold for inner products:

Conjugate symmetry: The vector product of two vectors is equal to the conjugate of their inverse product . When dealing with the reals, this reduces to

symmetry .

Linearity in the first argument: The first argument is closed under addition and scalar multiplication. 
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And positive-definiteness: 

The dot product of two vectors is a special case of the inner product where the domain is real-valued vectors.

Matrix multiplication:
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Introduction

In 2017, the American Cancer Society estimates nearly 1.7 million new instances of cancer in the United States [1]. There are five different types of cancer treatment, one of
which is radiation therapy. Linear programming methods for radiation therapy treatment planning is a fascinating and practical application of optimization research and given
changing technologies in the field of radiation oncology, the linear programming methods continue to grow and the application can be extended to other medical fields. We
will explore here the foundations of the application including the procedure, the treatment area, the initial linear program formulation, it's components, and the dual program.

Radiation Therapy

There are three types of radiation therapy: the use of radioactive drugs (either ingested or administered through an IV), internal beam
radiation therapy (where a radioactive source is placed inside of the patient's body near the cancerous cite), and external beam

radiation therapy. We explore here external beam radiation therapy, where prescribed amounts of radiation (decided by a physician)

are delivered to the patient by a machine called a linear accelerator. The patient lies on a treatment bed, and the linear accelerator [2]

moves around the patient delivering beams of radiation with different intensities from various angles to target the cancerous cite, called
a tumor. There are multiple methods for external beam radiation therapy, but here we consider what is know as "pencil beam radiation

therapy" [3] in that the beams of radiation delivered to the patient are of uniform width and shape.
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Treatment Area

To formulate a linear program for radiation therapy treatment planning, we first need to understand the treatment area and translate information about physical tissue into

mathematical terms. The treatment area [4] under consideration consists of normal tissue, target tissue (the tumor), and possibly critical tissue (like
tissue of the spinal chord or an organ where dosages of radiation can be especially harmful). We impose a two or three dimensional grid over the
treatment area and classify the corresponding pixels or voxels as belonging to one of the sets:

 is the normal tissue, consisting of  pixels/voxels.

 is the critical tissue, consisting of  pixels/voxels.

 is the target tissue, consisting of  pixels/voxels.

Thus, the entire treatment area under consideration is .

For the discussion of a foundational and simple linear program formulation, we consider any pixel/voxel to belong to

only one of the sets . There are more advanced linear programs that accommodate for a pixel/voxel

belonging to two sets at the same time, say  and , though we do not explore those programs here. In fact, to
understand the simplest model, we consider critical tissue to belong to  and only consider the sets

 of "non-target" area voxels. We can accommodate for dosage restrictions on critical

tissue in the constraints of our model.

Dose Matrix

Now that we have established a way to classify physical tissue mathematically, we can translate this information into matrix notation. Recall that in external beam radiation
therapy, a linear accelerator delivers prescribed dosages of radiation to the tumor via beams of radiation with different intensities. We call the intensity of each beam at a
particular pixel/voxel, it's weight. The total sum of the beam weights to any given pixel/voxel is called the dosage.

We construct a dose matrix, , such that each entry in the matrix corresponds to the dosage delivered to a single voxel in the set .

And we consider  as the submatrix whose nonzero entries correspond to only the target voxels, and likewise

 as the submatrix whose nonzero entries correspond to the "non-target" voxels, and .

The examples given here are very small compared to how large the dose matrix is in practice. A typical dose

matrix ranges from a dimension of 16 to a dimension of 96 [5].

N  := nN

C := nC

T  := nT

S := N ∪ C ∪ T

N , C,  or T
T C

N
T  of target area voxels, and N

A S

AT

AN  +   =  AAT AN
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Linear Program Formulation

Define:

 vector of beam weights

 vector of dosage to target voxels

 vector of dosage to normal voxels

 cost vector of dosage to normal voxels, whose components are beam weights

And consider the submatrices  as defined above.

Thus we can formulate the following linear program [6] for treatment planning:

The beam weights are the decision variables in our linear program, and we seek to minimize the dosage delivered to the non-target tissue subject to lower and upper

constraints on dosages on the target voxels,  respectively, and upper dosage restrictions, , on the voxels of the non-target area. Through understanding the

components of this linear programming and it's formulation, we have gained insight into the foundations of all linear programming methods in radiation therapy treatment
planning. Now that we have an understanding of the basic linear program, we can move forward and look at a few variations including the dual.

Simplified Program

The initial linear program can be simplified using substitution and basic linear algebra to obtain:

 

w  :=

  :=xT

  :=xN

  :=cN

 and AT AN

min  cT
NxN

s. t.     = wxT AT

  = wxN AN

  ≤xN xU
N

   ≤ ≤xL
T xT xU

T

    w ≥ 0

 and xL
T

xU
T

xU
N

min   wcT
NAN

s. t.     w ≤AN xU
N

  ≤ wxL
T AT

   w ≤AT xU
T

   w ≥ 0
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And can be rewritten to obtain the form:

The simplified linear program is often less computationally expensive to solve than the original, but much of the information pertaining to the treatment area and dosage
prescription are lost, and thus it is harder to translate the results back to the physician.

Dual Program Formulation

We know from duality theory in linear programming,

 

So given the simplified program:

The Dual can be formulated as:

min  ( wAT
NcN)T

s. t.     − w ≥ −AN xU
N

w ≥AT xL
T

   − w ≥ −AT xU
T

   w ≥ 0

If the primal is of the form: 

min  xcT

s. t.    Ax ≥ b

  x ≥ 0

The Dual takes the form: 

max  ybT

s. t.    y ≤ cA
T

  y ≥ 0

min  ( wA
T
N cN )T

s. t.    − w ≥ −AN xU
N

    w ≥AT xL
T

  − w ≥ −AT xU
T

   w ≥ 0
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The theory of duality in linear programming is a rich topic that allows us to interpret the model in various ways. For a more in depth look at how to compute and interpret the
dual of a linear program please see: Duality: Bounding the Primal, Shadow Prices, Duality: Economic Example, and Lagrangian Duality. For our simplified linear program for
radiation therapy, we can interpret the dual as a new mathematical program that considers the bounds on the dosage constraints. Unlike in the original program that explicitly
describes dosage to the target and non-target voxels, in the dual we are describing the boundaries on the dosage restrictions. So, we discuss the upper and lower dosage

boundaries on the target voxels with the vectors  and define . In our original program we considered upper dosage restrictions on the normal

voxels, so we define the vector  corresponding to the upper bounds of dosage to the normal region. But given that in our original program the objective function minimizes
the total amount of radiation delivered to the normal voxels, we consider  corresponding to the lower bounds of dosage to the normal voxels and thus we define

 to describe the bounds on the dosage delivered to the normal tissue.

Simplified Dual Program

And we can further simplify the Dual to the form:

The simplified dual is not only compact, it also displays more clearly that we are discussing the bounds of dosage requirements on the target tissue relative to the bounds on
the dosage restrictions for the non-target tissues.

Conclusions

There is a vast amount of research done on the topic of linear programming methods in radiation therapy treatment planning. The technologies in radiation oncology and the
math itself are constantly developing to improve and introduce new models for cancer treatment. The linear programs presented here serve as an introduction to the topic, and
are in no way comprehensive of the models being used in practice. The models discussed here each have multiple variations, even in their simple forms, and serve as the
foundations for understanding more complicated and more advanced linear programming methods in radiation therapy treatment planning.
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An Unhealthy America: A High Need for Accurate Nutrition

Given that almost 3 out of 4 Americans are overweight, 1.3 out of 3 Americans are obese, 1 in 5 men (women) 45 (55) years and older will have some kind of cardiac

disease/dysfunction and that the United States of America is one of the most medicated countries in the world[1], there is a very high need for better nutrition.

The Inadequacies of Other Diets

Given that there are so many diets in the world, but there seems to be so much controversy and risks with many of these diets, if not all of them. Many of these diets may have

the person lose weight too fast only to gain it back just as fast. Some diets may have the person eat too much protein which can also cause increased uric levels and negatively

affect your kidneys in the long run. Many of these diets may have the person lose weight, but they end up losing the wrong kind of weight (For example if they lost 40 lbs, but

37 lbs of this weight loss was muscle mass and only 3 lbs of fat). A lot of these diets are also 'a one size fits all' and they don't consider your unique basal metabolic rate

(BMR), daily lifestyle and the amount of your physical activity/inactivity. There are other flaws in some of these diets such as the Weight Watchers Diet have you eat anything

you want but you just eat smaller portions. This may not be necessarily a bad thing, however, this diet does not consider if you are still getting all of your essential vitamins

and minerals as you can eat foods with the same amount of calories but their nutrient density is lacking.
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A Review On Linear Program Diets

There are only several articles and publications with Linear Programs that consider the cost of these diets. In 2002, Darmon and Ferguson discussed when introducing a cost

constraint during the selection of foods that it reduced the proportion of energy contributed by fruits and vegetables, meat and dairy products and increased the proportion from

cereals, sweets and added fats, a pattern similar to that observed among low socioeconomic groups[6]. This implied that less nutrient dense foods having the same amount of

calories were associated with lower socioeconomic groups and that in order for our diets to be better, our economy will have to be better.

In 2015, Drewnowski found that many diets that consider calories with nutrient dense food can be more expensive compared to foods that are high in calories but have less

nutrient density. He also found out there are still foods that are not as expensive and they do have the right caloric amount combined with having high nutrient density and that

coming up with a less expensive diet is quite feasible[7]. He also noted that many of these diets can also be pleasing to one's palate while still considering 'social norms'

acceptance.

There were many other good and relevant publications regarding Linear Programming and Nutrition. Some considered high contaminants in nutrient dense foods[4] or

minimizing cost for malnutrition-ed children in Africa using therapeutic type foods[5] whilst others considered that food choices for high nutrient dense foods given the right

amount of caloric intake were correlated with people who were categorized to be in an above average socioeconomic class. However, none of these articles considered the

person's daily activities (caloric expenditure), occupation, lifestyle and BMR combined with their age, sex, height, and type of build (mesomorph, endomorph, and ectomorph).

Summary of all present Diets (LP and non LP Related)

These diets may have some good points, but they are lacking and not considering many important factors (as mentioned above) that can positively negate our health and well

being. They might possibly be a step up from the person's regular regime, but they are still most likely to be considered the lesser of two evils, which is nowhere close to being

OPTIMAL.

Proposed Linear Program for our Functional Diet: A Multi-Objective Linear Program

We are hoping to design a LP functional diet based on one’s age, sex, body weight, type of build, BMR, Lifestyle and physical activity/inactivity that will then prescribe the

correct daily amount of carbohydrates(50%), fats(20%) and proteins(30%) while minimizing cost and maximizing profit given all of the appropriate constraints. A Multi-

Objective program is a LP with more than one objective function. This LP solves how to minimize cost (based on the dollar value of meals) and maximize profit (based on the

grams of protein) while meeting specific requirements for both the consumer and supplier. This multi-objective LP will ultimately be developed by combining the separate

objectives. In order to execute this program, we will need a Test Subject and a Meal Plan.

Test Subject (Client)

We will consider a Male who is 45 years old, and he is a Computer Programmer (A very sedentary job). He works out three times a week with moderate intensity and each

work out he is estimated to burn about 500 calories per workout (350 carbohydrate and 150 fat calories). His basal metabolic rate is 1765 (We used the Harrison Benedict

Formula for men to equate this) calories per day. Other than working out three times a week (This is an additional 1500 calories in one week.) and being a Computer

Programmer and walking his dog every day about 15 to 20 minutes per day at about 3 miles per hour (This is about 100 calories per day which is equated into his BMR as the

Benedict Formula can overestimate Caloric BMR by about 5 to 10%), the rest of his lifestyle is sedentary. He is 6 feet tall, 175 lbs heavy (mesomorph) and would like to

maintain his present physical status but he is worried about if his diet contains the correct amount of nutrients combined with the correct prescription of carbohydrates, proteins

and fats, especially as he is getting older. Given his lifestyle, he would like to eat at the most optimal level to ensure good health and well being with minimal cost.
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Meal Plan with 2 Options and Additional Recommendations:

Meal 1: Price: Shrimp Paella $10.00, 260 calories, protein: 20g, carbs: 24g, fats: 10g

Meal 2: Price: Spicy Dan Noodles $7.00 , 430 calories, protein: 9g, carbs: 58g, fats: 19g

Meal 3:Price: Turkey Chili with beans, $5.50, 290 calories, protein: 29g, carbs: 16g, fats: 13g

Meal 4: Price: Supreme Pasta, $8.50, 340 calories, protein: 23g, carbs: 30g, fats: 17g

Meal 5: Price: Over Easy Burger with Sweet Potato, $10.00, 470 calories, protein: 27g, carbs: 31g, fats: 26g

Meal 6: Price: Sweet Chili Glazed Salmon, $13.00, 360 Calories, protein: 11g, carbs: 48g, fats: 15g

Meal 7: Price: Tex Mex Chicken Bowl, $9.50, 340 Calories, protein: 32g, carbs: 21g, fats: 16g

Meal 8: Price: Ab&J Oatmeal Bowl. $7.00, 420 Calories, protein: 14g, carbs:40g, fats: 24g

Meal 9: Price: B Platter. $9.00, 410 Calories, protein: 34g, carbs: 9g, fats: 27g

Meal 10: Price: Buffalo Style Chicken Bowl. $9.50, 430 Calories, protein: 32g, carbs: 41g, fats: 16g

Meal 11: Price: Chicken Teriyaki with Rice. $8.50, 360 Calories, protein: 11g, carbs: 48g, fats: 15g

Meal 12: Price: Turkey Meat Loaf, $8.00, 330 calories, protein: 43g, carbs: 31g, fats: 4.5g

We will also give the client two options of choosing the most economical meal plan which will have less variety, and the most economical meal plan which will have

more variety.

We are also recommending our client to do the following with this diet: Drink 2 to 4 Liters of water per day, depending on one’s activities and the condition of the external

environment Don’t drink a gallon of water or a very large amount all at once (Water Intoxication) Eat Higher Carbohydrate meals in the morning and about 2 hours before

working out Eat Higher Protein meals after working out (Ideally 30 to 40 minutes after working out) and closer to the end of the day (Evening Time).
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Multi-Objective Linear Program for a Functional Diet

Dictionary of Variables

xj

βj

μj

cj

aij

ζi

ηi

pj

γ

∈ (0, 1]λ1

∈ (0, 1]λ2

number of  meal type j purchased in a week

minimum number of  meal type j purchased in a week

maximum number of  meal type j purchased in a week

cost of  meal type j

amount of  nutrient type i in meal j

minimum number of  nutrient type i needed in a week

maximum number of  nutrient type i needed in a week

amount of  protein in meal j

the maximum number of  meals made in a week

scalar weight of  minimize cost objective

scalar weight of  maximize profit objective
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Meal Codes

Objective Function 1: Minimize Cost

The nutritional data to minimize the cost of a week's worth of meals was designed for a male, 45 years old, 6 ft tall, 175 lbs heavy and of mesomorphic build. We calculated

his Basal Metabolic Rage to be 1765 calories per day (This included him walking his dog for 15-20 minutes every day) and his expected expenditure of 1500 calories per week

(A total of 3 workouts, burning about 500 calories per workout.). It is therefore prescribed that the consumer has a minimum weekly nutritional intake ( ) of the following:

12355 calories, 1239 grams of protein, 1393 grams of carbohydrates, and 203 grams of fat. To promote variety in the diet, each meal must be consumed at least once and may

not be consumed more than 5 times (i.e. ). Based on the cost and nutritional information of each of the meals, the objective function can be

written as:

SP

SDN

TC

PAS

OEB

SCS

TMC

OAT

BP

BSC

CT

TML

Shrimp Paella

Spicy Dan Noodles

Turkey Chili with Beans

Supreme Pasta

Over Easy Burger

Sweet Chili Glazed Salmon

Tex Mex Chicken Bowl

ABJ  Oatmeal Bowl

B.  Platter

Buffalo Style Chicken Bowl

Chicken Teriyaki with Rice

Turkey Meat Loaf

ζi

1 = ≤  ≤  = 5βj xj μj

Typesetting math: 100%



Interpretation of Results

The optimal solution is $354, which can be interpreted as the minimum cost to buy a weeks worth of food while meeting all nutritional requirements and sufficiently varying

the meals. The meals that were least expensive but was higher in nutrient density were purchased in higher quantities. The following diet is the optimal number of each meal

that should be purchased:

It is important to note that B. Platter (BP), Over-Easy Burger (OEB), Shrimp Paella (SP), and Tex-Mex Chicken Bowl (TMC) have the least nutritional benefits for this diet per

dollar.

min

s. t.

⋅∑
j=1

m

cj xj

≤ min ⋅ ≤ζi ∑
j=1

m

aij xj ηi

i = 1, 2, . . .n
j = 1, 2, . . .m

BP

BSC

CT

OAT

OEB

PAS

SCS

SDN

SP

TC

TMC

TML

1
5
5
5
1
5
3
5
1
4
1
5
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Objective Function 2: Maximize Profit

The definition of profit in this model is to sell as much protein as possible. Each meal may only be made 5 (i.e. ) times to promote variety, and

only 50 meals may be made in a given week (i.e. ) . The objective function for this model can be written as:

Interpretation of Results

The optimal solution is 1325 grams of protein. The results of this objective function are intuitive -- make 5 of the meal with the most protein and then move on the to the meal

with the next most protein. The following is the optimal number of each meal that should be purchased:

It is important to note that Spicy Dan Noodles (SDN) and Chicken Teriyaki (CT) have the least amount of protein, so neither were made. It is preferred to make 5 of each of

the other 10 meals.
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Multi-Objective Function: The Difference of Minimizing Cost and Maximizing Profit

Combining the two previous objective functions to create the multi-objective linear program entails using the same data as from the single objective functions and writing one

minimization objective function. Since previously the objective was to maximize profit, I can achieve this by subtracting the maximization of the profit from the minimization

of cost. Utilizing  and  to weight each of the objective functions, the multi-objective function can therefore be written as:

Interpretation of Results

The interpretation of the multi-objective optimal solution is difficult since units of the minimization of cost objective function (dollars) is different than units of the

maximization of profits objective function (grams of protein). The value of the objective function is of little significance. It is more important to examine how many of each

meal satisfies the multi-objective function. Below are 3 cases where each separate objective function is weighted:

Case 1 ( )

The optimal solution is -868.06. When each part of the mutli-objective function receives equal weight, maximizing grams of protein is greater than minimizing dollars, which

results in a negative optimal solution. The following is the optimal number of each meal that should be purchased:

λ1 λ2

min

s. t.

( ⋅ − ⋅ ) ⋅λ1 ∑
j=1

m

cj λ2 ∑
j=1

m

pj xj

≤ min ⋅ ≤ζi ∑
j=1

m

aij xj ηi

≤ γ∑
j=1

m

xj

i = 1, 2, . . .n
j = 1, 2, . . .m

= = 1λ1 λ2
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Case 2 ( )

The optimal solution is 344.68. When significantly more weight is given to the minimization of cost objective function, the resulting optimal solution becomes positive. Again,

it is important to examine how many of each meal should be purchased to achieve the optimal solution:

Case 3 ( )

The optimal solution is 167.72. Even though less weight was given to the minimization of cost objective function compared to Case 2, the optimal solution decreased but
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remained positive. It is interesting to note that although the optimal solution was lower in Case 3 than Case 2, the number of each meal that should be purchased to achieve the

optimal solution is the same as in Case 2:
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Linear Programming

From CU Denver Optimization Student Wiki

A linear program is a special type of mathematical program where all of the functions are linear, and should be familiar to anyone that has taken linear algebra. They are

programs with the set of  constraints and  variables defined by an  matrix. A linear optimization problem takes the form:

With  as the objective function, or the thing that being optimized.  is the constraint matrix, which consists of all the bounds for the problem.  is the set of right hand

side values for the constraint matrix. The final line are bounds on . Linear programs were the first type of mathematical program and were developed for the U.S. Army in the

1960's to resolve scheduling and transportation issues. Linear programs are the simplest type of mathematical program in that they are defined by a coefficient matrix, instead

of a set of functions.
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Linear Regression as Linear Programming

From CU Denver Optimization Student Wiki

This page was created by Eric Olberding.

Linear regression is one of the most commonly used statistical modelling methods. In linear regression, we model the dependent variable as a linear function of the

independent variables. The model's parameters should be chosen to minimize the discrepancy between the dependent variable predicted by the model and the observed

dependent variable. In essence, one's parameters should minimize some "lack of fit" function. In this project we show that, when using the Least Absolute Deviations (LAD)

lack of fit function, linear regression can be formulated as a linear program. We demonstrate this by constructing two examples in AMPL. The mtcars and iris default datasets

from R are used. The code for this project can be found at: https://github.com/eric072891/LinProg

Contents

1 Model Formulation
2 Lack of Fit Functions

2.1 Ordinary Least Squares (OLS)
2.2 Least Absolute Deviations(LAD)

3 Least Absolute Deviations as a Linear Program
4 Uses of Linear Regression

Model Formulation

In linear regression, we model some response (or dependent) variable  as a linear combination of predictor (or independent) variables  plus some random error . A

statistical unit is a set of measurements for a single object. Suppose we study  such objects and the jth object has measurements . Note that we have

measured  different properties per object (including the response/dependent variable). We use this information to write our model as:

Here the  are the constants we must find that minimize our lack of fit function. The figure on the right shows the case when .

Often these  equations are stacked together and written in matrix notation as

y xi ϵ
n , , . . . ,yj xj,1 xj,m

m + 1

= + + +. . . + + ; j = 1, . . . , nyj β0 β1xj,1 β2xj,2 βmxj,m ϵj

βi m = 1

n

y = Xβ + ε,
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In linear regression, the

observations  (red) are

assumed to be the result of

random deviations  (green)

from an underlying

relationship 

(blue) between a dependent

variable  and an independent

variable .

where

Note that  are the response values predicted by our model and that  are the observed response values. Also note that the error can be

written 

We have more than one choice for how to minimize this error vector. We describe two such methods below.

Lack of Fit Functions

In order to reduce the error as much as possible. We want to choose  to minimize a lack of fit function. This function somehow captures the magnitude of the overall error.

Ordinary Least Squares (OLS)

The most commonly used lack of fit function is the mean squared error.
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This is just the magnitude of a vector. This is a quadratic positive function, so there exists a unique  that attains a global minimum for the loss function.

Least Absolute Deviations(LAD)

The loss function for LAD regression is very similar to that of OLS. The only difference is that we no longer square the absolute values.

LAD regression tends to be more robust to outliers. This means that the estimation  is not as heavily influenced by outliers. For OLS, if the predicted response is far away

from the observed response, then that large error is squared. This isn't the case for LAD.

Figure A

However, LAD may have multiple solutions, unlike for OLS. One known case in which multiple solutions exist is a set of points symmetric about a horizontal line, as shown

in Figure B below.

L(β) = ||Xβ − Y | = − −|2 ∑
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n
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m

xijβj
∣∣
2

β
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Figure B: A set of data points with reflection symmetry and

multiple least absolute deviations solutions. The “solution area” is

shown in green. The vertical blue lines represent the absolute

errors from the pink line to each data point. The pink line is one of

infinitely many solutions within the green area.

To understand why there are multiple solutions in the case shown in Figure B, consider the pink line in the green region. Its sum of absolute errors is some value S. If one were

to tilt the line upward slightly, while still keeping it within the green region, the sum of errors would still be S. It would not change because the distance from each point to the

line grows on one side of the line, while the distance to each point on the opposite side of the line diminishes by exactly the same amount. Thus the sum of absolute errors

remains the same. Also, since one can tilt the line in infinitely small increments, this also shows that if there is more than one solution, there are infinitely many solutions.

Least Absolute Deviations as a Linear Program

We formulate LAD in terms of linear optimization. We need the fact that  if and only if . In the context of our problem we use

We can see that minimizing  minimizes the loss function since

This means that we can formulate LAD regression in terms of the following linear program in AMPL.
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In this LP we try to find an optimal .

Uses of Linear Regression

A fitted linear regression model can be used both predict new values and find which of the independent variables impacts the dependent variable the most.

Suppose we have the model

and that we find the coefficient vector to be . This gives us the fitted model

Where  are the response variable values predicted by our fitted model. In this example it's likely that  has no impact on  since its corresponding coefficient is .

This model can also be used to predict new response values, given new independent variable values. Suppose we are given , but we do not know what  is.

We can predict y as
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Livvi Bechtold

From CU Denver Optimization Student Wiki

I am a first year phd student and Teaching Assistant at University of Colorado Denver. My mathematical interests are Number Theory, Cryptography, Graph Theory, and

Optimization. At the University of Nebraska at Omaha, where I received my Masters in Education with an emphasis in mathematics, I spent much of my research time focused

on making mathematics more accessible to students. While working on a Masters in Mathematics I received a Kerrigan Grant for my work on the bicycle rebalancing project

for b-cycle of Omaha. Currently my education research focus is writing in the undergraduate mathematics classroom to help students develop mathematical language and be

able to communicate their thoughts, successes and struggles with mathematics to others. In the world of optimization my current focus is derivative free optimization and its

applications. When I am not at school, I spend much of my free time with fiber arts. I am an accomplished quilter, weaver, and spinner. I also love knitting, crochet, and

needlepoint just to name a few. Over the past few years while working on my computer programming skills, I have been developing small programs that help determine how

much warp and weft are needed for weaving projects and am currently developing a program that will optimize production of various items by combining say a set of hand

towels and washcloths to have less waste and more sellable products after each warping of a loom. My goal is to complete the programs as apps that might help smaller cottage

industry to take advantage of the same optimization algorithms used by larger factories while maintaining the unique individual feel of their product.

Multi-commodity Flow
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Number of hate crimes reported nationally and

in Denver, by year, 2010-2017.

Denver Hate Crime Mapping: Visualizing Fluctuations through Linear

Programming

From CU Denver Optimization Student Wiki
(Redirected from Location Fluctuations in Denver Area Bias Motivated Crime Explored Through Linear Programming)
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Abstract

Bias-motivated crime--criminal acts galvanized by prejudice--showed an uptick in the year 2017 after holding relatively

steady in the United States for over a decade. This surge in domestic extremism has awakened concerns about public safety.

These crimes are of special interest to the Federal Bureau of Investigation and thus many police departments, including

Denver, collect information on the bias-motivated crimes committed within their communities and share it with the national

database. This data is available from 2010 to 2018 and is updated frequently. The number of bias-motivated crimes reported in

Denver also increased in 2017, similar to the national trend, while the crimes reported to date for 2018 suggest that this year will be equally high. In this project, linear

optimization techniques were applied to the data released to the public by the Denver Police Department. This research detected patterns of interest, some matching national

trends and others in opposition.

Introduction to Bias Motivated Crime

Bias motivated crime, commonly called hate crime, are acts committed against a person or persons in an attempt to victimize an entire group of people.

In Colorado, protected categories include: disability, ethnicity, gender identity, race, religion, and sexual orientation. The Federal Bureau of Investigation also considers hate

crimes by gender, but these are tracked in Denver.Typesetting math: 100%
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Percentage of various types of hate crime in Denver, by year, 2010-

2017.

National statistics are gathered monthly by the FBI as part of their Uniform Crime Reporting (UCR)

program and summary data is released in a yearly report. Several Colorado agencies contribute, including

the Denver Police Department.

Reported hate crimes in Denver tend to follow national trends, but due to the relatively small number of

reported crimes, fluctuations can appear magnified. In addition, hate crime is tends to be underreported

meaning that increases in reported crime may reflect growing awareness of the issue on the part of the

public and not an escalation in bias motivated crime.

Bias motivated crime was high at the beginning of the decade, but declined over the next few years, only to

surge again in 2016-2018. Since 2010, the percentage of crimes motivated by race and religion bias in

Denver tends to be much lower than the national average. Denver tends to report a higher percentage of

crimes related to sexual orientation than the national average. Crimes related to ethnicity (primarily crimes

against the Latino community) have increased in Denver, exceeding the national average, especially in

recent years. Denver has also seen a dramatic increase in crimes related to gender identity in the past two

years, far beyond the national average.

Methods

This project used a linear sum assignment problem to connect crimes committed in one year to another. While assignment problems tend to be used to connect people and jobs,

or resources and plants, they can also be used to show spatial shifts.

The mathematics is relatively simple. Choose two years. Let  denote the crimes in the earlier year, and  be the crimes in the following year. Define the Euclidean distance

between locations to be  and let  be a Boolean variable that is true is there is a connection between  and , and false otherwise . We choose our objective function

to be the minimization of the summation of all distances.

We have two classes of constraints. Without loss of generality, we set the assignments emerging from each origin equal to one,

 for all 

Since there tend to be a different number of origin  and destination  crimes, the destination constraint is that the assignments to each destination are equal to the ratio

between the number of origins and destinations,

i j
ij)c( ij)x( i j

min( )∑
i∈S

∑
j∈D

cijxij

= 1∑
i∈S

xij i ∈ S

nS nD
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Bias motivated crime in Denver for the years 2011 and 2014, linked by

assignment.Yellow dots depict reported crimes 2011 and orange dots depict crimes in

2014.

 for all 

Analysis and Results

Case Study: 2011-2014

In this project two assignments were analyzed. Since there were major changes between

2010 and 2018, three years were chosen, 2011, 2014, and 2017, three years apart.

Between 2011 and 2014, reported hate crimes decreased in Denver.

Reported hate crimes were scattered throughout the city in 2011, often occurring near major

roadways.

BY 2014, we see hate crime condensing into downtown with isolated incidents in less

travelled areas. Hate crimes in Five Points and North Capitol Hill moved from major roads

onto side streets.

Case Study: 2014-2017

From 2014 to 2018 there was a dramatic increase in hate crimes in the city.

By 2017 the reported numbers were equal to where they were in 2010. New hot spots

developed in 2017, including Hampden and the neighborhoods near Ruby Hill Denver

University also was a target with numerous reports of anti-Jewish activities. Numerous hate

crimes remain in Downtown, but now center on the Union Station transit center and Arapahoe.

The increase in 2017 seems to be primarily driven by increased reports of criminal mischief, and may not indicate increased aggression and danger.

Discussion

The use of an assignment problem creates an new tool for visualizing changes in criminal activity. Coupled with the associated statistics, the linear sum assignment model can

provide new information on crime location.
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Bias motivated crime in Denver for the years 2014 and 2017, linked by

assignment.Yellow dots depict reported crimes in 2014 and orange dots depict crimes

in 2017.
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Motivation

This is Kathleen Gatliffe's Fall 2018 project for MATH 5593: Linear Programming taught

by Steffen Borgwardt (http://math.ucdenver.edu/~sborgwardt/). This project uses the Hate

Crimes (https://www.denvergov.org/opendata/dataset/hate-crimes) database from the

Denver Open Data Catalog (https://www.denvergov.org/opendata/).

This project was performed in AMPL (https://ampl.com/), R (https://www.r-project.org/),

and QGIS (https://www.qgis.org/en/site/). This project will be presented at the Auraria

Library's Data to Policy (https://library.auraria.edu/d2pproject) event on the 30th of

November, 2018.

Resources

The code (https://github.com/Kgatliffe/DenverBiasMotivatedCrimes) and other files

produced for this project.

Project data (https://www.denvergov.org/opendata/dataset/hate-crimes), last collected 10 October, 2018.

National yearly statistics summaries (https://www.fbi.gov/investigate/civil-rights/hate-crimes#Hate-Crime%20Statistics) from the Federal Bureau of Investigation.

Additional information on methods can be found at Data Visualization Using QGIS and Denver Government Coordinate Systems
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Makayla Cowles

From CU Denver Optimization Student Wiki

Hello! I am currently a PhD student in the Mathematical and Statistical Sciences Department at the University of Colorado, Denver. I received my Bachelor's of Science in

Mathematics at the University of Arkansas, Pine Bluff, and completed a Post-Baccalaureate at Iowa State University. Outside of school, I enjoy outdoor activities such as

playing soccer, snowboarding, and camping. I also enjoy my fair share of indoor activities, including puzzles, playing board games, and watching a variety of T.V. shows.

During the Fall of 2020, I worked with Drew Horton and Michael Burgher on Making Voting More Accessible.
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Figure 1:Census Track Centroids

Abstract

As a result of the civil rights movement of the 1960's, the US congress enacted the Voting Rights Act of 1965 to ensure that Americans who were eligible to vote were not

prevented from doing so. In 2013, the US Supreme Court ruled section 4(b) of the Voting Rights Act unconstitutional in the case Shelby County v. Holden [1] because it was

based on outdated data. Section 4(b) was a coverage formula that defined which states would need federal approval to enact laws regarding voting or make changes to

elections. Since the US Supreme Court’s ruling on Shelby County v. Holden more than 1688 polling places across 13 states have closed [2]. Our goal is to create a coverage

formula that can be used by congress to replace the outdated formula in section 4(b) that was overruled in Shelby County v. Holden.

We created a linear program that assigns each census tract in a given county to a reasonable polling location based on the distance between the centroid of the census block and

all potential polling locations. This will create an optimal distribution of polling places, which we will then compare to the current locations of polling places. Our program

will run using data collected from Denver County, and because of the accessibility of voting locations in Denver, it is expected that our results will only have minor differences

from the current polling locations. However, we will be able to use our program to identify other states and counties whose current polling locations greatly differ from the

optimal distribution. The overall results of our project could serve as a model for fair placement of voting locations elsewhere and help provide a new coverage formula based

on current data.

Data

For our project we needed a list of potential polling locations, the current polling locations, and census data. Much of this data was easily accessible for the County of Denver.

Census tracts data [3] is provided by the County of Denver. For our program we needed the centroids of these census tracts, which is not directly given from the above link. We

were able to compute the centroids of the census tracts using QGIS (a free and open source geographical information system).

For the 2020 presidential election, Denver provided maps of the locations of in person

polling locations and drop off boxes (Figure 2).To find possible polling locations in Denver

County, the national conference of state legislatures website gives restrictions for polling

locations for each state [4]. The potential polling locations given are public buildings,

libraries [5], recreation centers [6], fire stations [7], K-12 schools, universities and colleges,

senior centers, and churches [8]. Due to growing safety concerns of K-12 students, we opted

out of using K-12 schools in our list of potential polling locations. Open Refine was used to

clean up our data, while QGIS was used to visualize our data.
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Figure 2:In-Person Polling locations (blue) and Drop-Off Boxes

(red)

Code

The first step is to input the data. This included single-valued parameters for the maximum amount of people that can be assigned to a polling location and the maximum

amount of locations that can be used. This program also inputs data for 515 possible polling locations (PPL) and 144 census tracts (CB). Data for the possible polling locations

include the latitude and longitude coordinates and an address. Data for the census tracts include the latitude and longitude coordinates of the centroid as well as the population.

To help define a function to optimize, we created a variable matrix called loc_used (location used) with the rows corresponding to possible polling locations and the columns

corresponding to census tracts. This matrix will show which tracts are assigned to which polling locations. The matrix will contain binary entries such that the  entry of

this matrix will contain a 1 if the  tract is assigned to the  polling location and a 0 otherwise.

In general, we are trying to minimize the total amount of time people will need to spend getting to the polls. For our algorithm,  is the  entry of loc_used,  is the

population in the  census tract,  and  are the latitude and longitude coordinates for the polling locations and centroids of tracts. Below is our objective function

We multiply each term by the population of the corresponding district and by the distance between the centroid of that district and the corresponding polling location. We

multiply by the entries in loc_used so that we only count terms where districts are assigned to locations. We multiply by the population to weight this so that outliers

(especially populations of 0) do not affect the results too much. Future thought could be given to raising the population to a power (perhaps 0.5). The distance calculated is the

square of the Euclidean distance. A different power could be considered in the future to let outliers have a different weight.

We then have the following three constraints:

(i, j)th

jth ith

lij (i, j)th
pi

ith a b

min : ( ∗ ∗ (( − + ( − )));∑
i

515

∑
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144
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 1. Assignment: For each of the 144 Census tracts, 

Each district must be assigned to a location, so for each column, the sum of all column entries must be 1.

 2. Max People: For each of the 515 locations, 

Each district has a maximum amount of people it can handle so for each row, there is an upper bound on the sum of all row entries times corresponding populations.

 3. Max Number of Location: No more than 50 polling locations can have tracts assigned to them, 

There is an upper limit on the number of locations that can be used. The number of unused locations correspond to the number of rows containing entirely zeros. The can be

counted with this following sum over each row. For each row, count the product of 1 minus each row entry. This product will be 0 if there is a 1 in the row and 1 if the row

contains entirely zeros. We set the upper bound of this sum as the number of polling locations we can use (50 in this case). It should also be noted that this third restraint is the

reason we used tracts instead of blocks. There were over 11,000 blocks making our matrix have over 5 million variables! This was too much for AMPL to handle on our

laptops.

The locations selected by the program are outputted onto a map of Denver.

Results

Figure 3 shows the optimal location of polling places in Denver County.       Figure 4 shows the optimal polling locations compared with the current polling locations for

the 2020 presidential election.

= 1∑515
i lij

∗ ≤ 15000.∑144
j lij pj

(1 − ) ≥ 515 − 50.∑515
i ∏144

j lij
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Figure 3:Optimal Solution
Figure 4:Optimal Solution vs Current in-person polling locations (black), drop off box locations

(white), hand in to person locations (yellow)

Notice that the solution gives a reasonable distribution of polling locations in Denver County. Also, it is seen that there a few optimal polling locations that are in close

proximity to current in person locations.

The following table indicates which locations are included in our optimal solution for Denver County. The Bolded locations are those that were used as in person polling

locations for the 2020 presidential election.
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Libraries Churches Senior Living Facilities
Fire

Stations
Recreation Centers

Central Christ Community Springbrooke Retirement FS-29
Southwest Recreation
Center

Athmar Park Branch Church in Denver Sunrise at Pinehurst FS-2

Ross-Barnum Branch Church in South Denver Balfour at Stapleton

Bear Valley Branch Greater Harvest Church of God Brookdale University Park

Blair-Caldwell African American
Research

Greater St John Baptist Broodale Parkplace

Ross-Broadway Branch Park Hill Congregational Rosemark at Mayfair Park

Byers Branch Sacred Heart Modena Cherry Creek

Ross-Cherry Creek Branch St Barnabas Episcopal Jerusalem

Decker Branch St Patricks Catholic Our House II Inc

Eugene Field Branch True Light Baptist
Volunteers of America Casa De
Rosal

Ford-Warren Branch
Templo Emmanuel Centro Cristiano de Alabanza
Asambleas de Dios

Quincy Place

Green Valley Ranch Branch Denver North Park Foursquare

Hadley Branch New Beginnings Congregation

Hampden Branch

Montbello Branch

Park Hill Branch

Rodolfo "Corky" Gonzalez Branch

Schlessman Family Branch

Smiley Branch

Ross-University Hills Branch

Valdez-Perry Branch

Virginia Village Branch

Westwood Branch

Woodbury Branch
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Future Work

In the future we hope to expand this program in many different ways. We hope to gather data from every state, especially those that have historically disenfranchised voters of

color. We would like to compute an optimal distribution with the given number of current polling places in each of the states and compare it with the current locations of

polling places.

Some other immediate ideas are to give further discussion to raising the population and distance in the constraints to a different power. This would affect how big or little of a

role the outliers will play.

More long-term goals would include thinking more about resources at polling locations. Including , but not limited to, the number of volunteers for a given jurisdiction, the

number of voting machines, and the number of potential polling places. This could take the form of a program that assigns voting machines, workers, and ballots to locations.

Presentation

Presentation slides and code ran can be found at the following link.

https://github.com/MichaelBurgher/Linear-Programing_Project-Drew-Makayla/find/main
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systems and their continuous models. My favorite past projects include modeling and altering the mammalian circadian rhythm using Python, classifying neuronal bursting

patterns using bifurcation analyses, and exploring oscillatory behaviors in glycolytic pathways.

During my studies at CU Denver, I plan to take courses in PDEs, linear algebra, and statistics to prepare myself for a career in mathematical modeling and analysis.

My passions outside of mathematics include strength training and critical analyses of high level, high octane first-person-shooter video games.
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Unclustered accident data for

Denver, CO 2017-2018

Mapping Accident Prone Intersections

From CU Denver Optimization Student Wiki

The following is an entry on a project completed by Lauren Hearn in Fall, 2018

Traffic flow patterns and accidents are a concern that anyone in a city encounters every day. Clustering methods are an important tool when analyzing traffic accidents, as

these methods are able to identify groups of road users and segments which could be suitable targets for countermeasures. Ideally, cluster analysis is a statistical technique that

can be used to group items together on the basis of similarities or dissimilarities.[1]

Contents

1 Inspiration and Method
2 Model Overview

2.1 Data
3 Results
4 Goals & Future Work
5 References

Inspiration and Method

Denver, CO has a reputation for bad drivers, with varying opinions on which intersections are more prone to accidents and why. Using accurate city data, I wanted to explore

the different "accident densities" when splitting the city into various sized sub-areas.

Originally, the project involved using K-Means Clustering,[2][3] however, it was eventually decided to take a Linear Programming approach, modifying the LP model

discussed in the paper, "An LP-based k-means algorithm for balancing weighted point sets".[4]

A combination of AMPL (student version),[5] Python (version 2.7), [6] and the AMPL API, which can be easily accessed through the opensource amplpy[7] package was used,

initially. This presented challenges in data formatting (a common problem), which lead to a change of tools. The Pyomo[8][9] optimization tools package for python was then

used to code the model. Like AMPL, Pyomo does not come with native solvers, so the glpk[10] solver was chosen, predominately due to its being opensource as well as

utilized in many online examples of Pyomo models.

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Accidentdata.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:Accidentdata.png
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Lauren_Hearn


Accident data clustered with

K-Means Algorithm

Model Overview

All relevant code for the model can be easily accessed on github (https://github.com/mandlebrot/traffic-accidents). this oncludes the original

AMPL .mod file, as well as the altered Python script, Traffic.py.

Data

Using data available at denvergov.org/opendata and common optimization tools in Python, a linear program was written to assist in looking

for various “hot-spots” of traffic accidents. In order to accomplish this, the data was partitioned into clusters using geolocation data and

cluster size bounds to compare the density of accidents per partition.

Results

Goals & Future Work

The goal of this project is to better understand what areas are especially prone to accidents, and why. Analyzing and comparing this data along with other factors, including

one-way roadways, traffic signals, and high-use thoroughfares should supply a pathway for both the city administration and the police force to better plan updates to

infrastructure and presence, respectively.
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Denver, CO 2017-2018

Accident data clustered with

K-Means Algorithm

Mapping Accident Prone Regions

From CU Denver Optimization Student Wiki

The following is an entry on a project completed by Lauren Hearn in Fall, 2018

Traffic flow patterns and accidents are a concern that anyone in a city encounters every day. Clustering methods are an important tool when analyzing traffic accidents, as

these methods are able to identify groups of road users and segments which could be suitable targets for countermeasures. Ideally, cluster analysis is a statistical technique that

can be used to group items together on the basis of similarities or dissimilarities.[1]

Contents
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5 References

Motivation and Method

Denver, CO has a reputation for bad drivers, with varying opinions on which intersections are more prone to accidents and why. Using

accurate city data, I wanted to explore the different "accident densities" when splitting the city into various sized sub-areas.

Originally, the project involved using K-Means Clustering,[2][3] for which there are common packages in Python available. However, this

approach simply clusters data by geolocation, and for this particular project it was decided to choose clusters with an equal number of data

points. The K-means approach was then modified to a Linear Program using the LP model discussed in the paper, "An LP-based k-means

algorithm for balancing weighted point sets"[4] and setting all weights equal, as the problem does not benefit from weighting at this stage.

A combination of AMPL (student version),[5] Python (version 2.7), [6] and the AMPL API, which can be easily accessed through the

opensource amplpy[7] package was used, initially. This presented challenges in data formatting (a common problem), which lead to a change

of tools. The Pyomo[8][9] optimization tools package for python was then used to code the model. Like AMPL, Pyomo does not come with

native solvers, so the glpk[10] solver was chosen, predominately due to its being opensource as well as utilized in many online examples of

Pyomo models.
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Clustered accident data with

modified algorithm

Model Overview

The Linear Program used is as follows:

 Limits cluster size

 Each point is assigned to exactly one cluster

Where y is an assignment variable, s is the chosen site or "centroid" that the data is clustered around, and x is the location vector.

All relevant code for the model can be easily accessed on github (https://github.com/mandlebrot/traffic-accidents). this includes the original AMPL .mod file, as well as the

altered Python script, Traffic.py. In addition, a poster presented at the 2018 Data to Policy Symposium can be found on this github page.

Data

Using the “Traffic Accidents” dataset from the Denver Open Data Catalog (https://www.denvergov.org/opendata/) and common optimization tools in Python, a linear program

was written to assist in looking for various “hot-spots” of traffic accidents. In order to accomplish this, the data was partitioned into clusters using geolocation data and cluster

size bounds to compare the density of accidents per partition.

Results

With the limited computing power available, clear results were attainable by limiting data to smaller time periods.

Cursory visual analysis reveals an unsurprising trend. We see higher densities of accidents in centrally-located downtown neighborhoods,

while seeing more spread-out clusters (lower accident density) as you move further from the city-center.

Goals & Future Work

The goal of this project is to better understand what areas are especially prone to accidents, and why. Analyzing and comparing this data along

with other factors, including one-way roadways, traffic signals, and high-use thoroughfares should supply a pathway for both the city

administration and the police force to better plan updates to infrastructure and presence, respectively.

Future work to do:
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Narrow data to smaller areas to observe specific intersection accident density
Get code to iterate and improve centroid locations automatically

Run with CPLEX[11] solver (more efficient for Mixed-Integer LPs)
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Marie Terry

From CU Denver Optimization Student Wiki

Marie Terry is a graduate student studying Applied Mathematics at the University of Colorado Denver. She received her undergraduate degree from the University of

Wyoming majoring concurrently in Secondary Education Mathematics and Mathematics. She hopes to teach at a junior college when she finishes her degree. Marie is

currently an adjunct instructor at Arapahoe Community College. When not studying or working, Marie enjoys knitting, hiking, and spending every waking minute with her

husband and amazing twin boys.

Marie's contribution to the wiki:

Column Generation
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This is a page where we can put example markdown (wiki) code. Please create a new section for each category of codes.

Contents

1 Citations
1.1 Inline citation
1.2 References List

2 Source Code

Citations

Inline citation

Here is a citation. [1] It is important to put a references list tag at the bottom of the page.

References List

1. ↑ Great Citation. www.citation.com. 2009. Pearson

Source Code

You must use the "source" tag. The code looks like this:

a = "hello world"

print(a)
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Maryam Khazaei

From CU Denver Optimization Student Wiki

I am a graduate PHD student at the University of California Merced. I got my Master Degree in Applied Math (PDE) from UC Denver and my undergraduate degree in

Applied Mathematics from IUST that I was honored with the Outstanding Student Award in my Bachelor's degree.

I have always believed that application of mathematics and Computer Science are one of the important factor in life. During university years, I could devote many years of

intensive academic focus to this field which provided me the strong foundation in all subjects and exposure to practical industrial applications through field studies. My

research interests are in the Applied Mathematics, Computer Graphic, Max Flow Problem and Robotics.

I worked on “ Spline collocation method for solution of higher order linear boundary value problems” (http://www.twmsj.az/Files/Contents%20V.6,%20N.1,%202015/pp38-

47.pdf) and "Numerical solution of two dimensional coupled viscous Burgers equation using modified cubic B-spline differential quadrature method" as my master thesis at

University of Colorado Denver. Currently I work on Multi Agent Path finding, Robotics and application of Max Flow Problems at UC Merced.

My contribution to this wiki: Minimum Spanning Tree: specifically Kruskal’s algorithm, Prim’s algorithm and Boruvka algorithm.
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Matching in General Graphs
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2 Abstract
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Project Contributions

This project was completed by Micah Grip.

Abstract

In this project we explore the topic of matching in general graphs by first discussing the difficulties with such matching problems. In order to show Hall’s Condition does not

provide an equivalent condition for the existence of a perfect matching in general graphs, we discuss  as an example of a general graph satisfying Hall’s Condition which

has no perfect matching. Prior to presenting a proof of Tutte’s Theorem, we introduce the necessary terminology for such a discussion which includes -factors of a graph,

Tutte’s Condition, the deficiency of a vertex set, and a Tutte set. During the introduction of new terminology, examples of  and  factors are presented, and efforts are made

to draw similarities between matching in general and bipartite graphs. The proof of Tutte’s Theorem establishes Tutte’s Condition as a necessary and sufficient condition for

the existence of a  factor in a general graph. Similarly to how Ore’s Defect formula provides the size of a maximum matching in a bipartite graph, we prove the Berge-Tutte

formula which provides the size of a maximum matching in a general graph. Two lemmas, which serve as stepping-stones to the proof of the Berge-Tutte formula, are

presented with one being proved and the other being only stated.

Github

In the Github repository linked below, the slide deck for the project presentation can be found. The slide deck contains definitions, examples, and detailed proof outlines for

the theorems mentioned above.

Matching in General Graphs (https://github.com/MicahGrip751/Matching-in-General-Graphs/tree/main)

C3

k

1 3

1

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Micah_Grip
https://github.com/MicahGrip751/Matching-in-General-Graphs/tree/main


Bibliography

West, D. B. (2021). Combinatorial mathematics. Cambridge University Press.
Diestel, Reinhard. Graph Theory. Springer, 2025.

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Matching_in_General_Graphs&oldid=4992"

This page was last modified on 3 May 2025, at 15:42.
This page has been accessed 24 times.

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Matching_in_General_Graphs&oldid=4992


Matesi Gregory
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I am a fourth year undergraduate in the Applied Math Program at CU Denver. I am originally from Sandwich, IL. After spending four years in the USMC I decided to move to

Denver.. After I graduate in December or 2019 I hope to continue at CU Denver in the MS in Statistics Program. I am currently working with Siyuan_Lin on a project

examining the gradient descent method for convex quadratic problems in AMPL: Gradient Descent Method in Solving Convex Quadratic Optimization Problems
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About Me

Hello! My name is Matthew Knodell. I am an Applied Math PhD student at UC Denver. I am interested in applications of mathematics to machine learning and optimization.

Education

I received my Bachelor's in Mathematics and my Bachelor's in Physics from St. Mary's University in May of 2018. From there, I received my Master's in Mathematics from

UT Dallas in December 2021.

Projects

Fall 23 - Optimizing SAR Paths in the Rocky Mountain Region, project with Lillian makhoul and Nicholas Rogers.
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Megan Duff

From CU Denver Optimization Student Wiki

I started my statistics PhD at CU Denver in the Fall of 2018 after graduating from Willamette University in Salem, OR with a BA in Mathematics. When I am not in the

classroom, I enjoy doing aerial dance, yoga, and going to the movies.

For my project, I will be working with Rebecca Robinson on presenting An Integer Linear Programming Approach to Graph Coloring.
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About Me

I am currently a first-year graduate student. I did my undergrad at CU Denver and returned for graduate school after taking a gap year. I like to spend my free time reading.  

Projects

Spring 2025 (Applied Graph Theory Final Project) - Matching in General Graphs
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About Me

I am PhD student a CU Denver. I am interested in graph theory. In my free time I like to play video games, and bool.

Projects

Applied Graph Theory, Spring 2025

Alex Semyonov and I created a project on the B.E.S.T theorem (van Aardenne-Ehrenfest, de Bruijin, Tutte-Smith) on how to count Eulerian cycles in digraphs. [1]

(https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Counting_Eulerian_Cycles_in_Graphs)

Contact information

If you would like to contact me, please email me at michael.boyce@cudenver.edu
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Michael Burgher
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This is the page for Michael Burgher!!!

I am currently working on a project for Topics in Optimization (Fall 2021) that considers a Greedy Algorithm to find the largest stable set in a graph. The goal of the project is

to determine whether or not the algorithm utilizes circuit walks. The name of the project is Circuit Walks and Stable Sets.

Sandra Robles, Collin Powell and I all worked on a project to optimize herd immunity through effective Vaccine Distribution (Spring 2021).

Makayla Cowles, Drew Horton and I all worked on fighting voter suppression through our project Making Voting More Accessible. (Fall 2020)
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Michael Phillips
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After spending his childhood in Montana and his adolescent years in Michigan, Michael studied Mathematics at Grand Valley State University in Allendale, Michigan before

moving back West for his graduate studies. He accepted a Teaching Assistantship at the University of Montana in Missoula where he focused on Extremal Graph Theory under

the advisement of Dr. Cory Palmer. After completing his M.A. in Mathematics, he accepted another Teaching Assistantship at the University of Colorado Denver where he

now studies Graph Theory, Probability and Statistics.

Current projects include modeling familial structure in criminal history databases with Dr. Stephanie Santorico, flag algebras and cycle inducibility with Dr. Florian Pfender,

and zero-forcing polynomials with collaborators at GRWC 2017.

One peek into his office will tell you most everything you need to know about him: he reads too much, cares too much about Marvel and DC comic book characters, and could

stand to straighten up his workspace a bit. What was that line about a cluttered desk and a cluttered mind?
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5 Converting Disused Lots to Housing: Equitable locations for new housing

Contact Links

Email (mailto:michael.t.schmidt@ucdenver.edu)

About Me

Howdy, I am Mike (Michael) Schmidt, and I am a Ph.D. student at the University of Colorado Denver in the Applied Mathematics Department. I have a BA in Math and an

MS in Physics from the University of Colorado at Boulder. My research interests are focused on MCMC and uncertainty-quantification. In addition to my graduate studies, I

work for the company Redpoll (https://redpoll.ai/) for which I am engaged with several DARPA grants; specifically SAIL-ON (https://www.darpa.mil/news-events/2019-02-

14) and ECoSystemic (https://sam.gov/opp/4a697296778a4d96aaca850679f67059/view).

Education

1. CU Boulder, MS in Physics
2. CU Boulder, BA in Math & Physics

Projects

Finding Optimal Shared Streets in Denver

Together with Evan Shapiro and Em Gibbs, we investigated which roads the city could convert within the city to pedestrian walkways and how those closures would change

the maximum flow of traffic around the closure. To learn more, see the project page: Finding Optimal Shared Streets in Denver.

mailto:michael.t.schmidt@ucdenver.edu
https://redpoll.ai/
https://www.darpa.mil/news-events/2019-02-14
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Converting Disused Lots to Housing: Equitable locations for new housing

Denver has thousands of acres of disused and vacant land that could be used for housing. This project seeks to discover which plots of land are the best candidates for

conversion with considerations to equity.
Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Michael_Schmidt&oldid=4324"

Category: Contributors

This page was last modified on 28 April 2023, at 21:53.
This page has been accessed 390 times.

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Converting_Disused_Lots_to_Housing:_Equitable_locations_for_new_housing
https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Michael_Schmidt&oldid=4324
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Special:Categories
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Category:Contributors


Min-Mean Cycle Cancelling Algorithm

From CU Denver Optimization Student Wiki

Abstract

Files and Presentation

Presentation slides and code ran can be found at the following link. [1] (https://github.com/pgmath/Min-Mean-Cycle-Cancelling-Algorithm)

Contributors

Paul Guidas
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Min-mean Cycle Cancelling Algorithm and It's Applications

From CU Denver Optimization Student Wiki
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7 References And Powerpoint

Abstract

The min-mean cycle canceling algorithm is an algorithm that improves upon the general cycle canceling algorithm. The idea of the min-mean cycle is that the algorithm places

preference on cycle that are shorter in length. There are several application of the min-mean cycle canceling algorithm, including min-cost flow and maximum flow problems.

Ideally, we would be able to pick a cycle that improves our solution the most. Solving this type of problem is NP-complete, which means it is computationally difficult to find

this cycle. The running time of the min-mean cycle canceling algorithm is much more efficient. We concluded this project by showing that the min-mean cycle canceling

algorithm runs in weakly polynomial time. Specifically, it runs in  time.

Introduction

Cycle Cancelling Algorithms are used to improve feasible solutions. It does this by sending the flow on a negative cycle in the residual network, and thus, improves the

feasible solution. If we iterate the algorithm enough times, we are guaranteed to get a feasible solution. Now, there are several ways for us to pick which cycles to cancel. A

generic cycle cancelling algorithm finds any negative cycle and send flow through it. Ideally, we would pick the negative cycle that improves our feasible solution the most.

Unfortunately, finding this cycle is NP-Complete, a call of problems that tends to be quite difficult to solve. The min-mean cycle cancelling algorithm provides a method to

pick a cycle that is a way to improve open the generic cycle cancelling algorithm, but isn't quite as computationally difficult to find.

The min-mean cycle canceling algorithm places emphasis on cycles that have fewer amounts of arcs. For example, If there are two negative cycles A and B that have a total

cost of -12. Let cycle A have 4 arcs, and cycle B with 3 arcs. The min-mean cycle cancelling algorithm will choose to send flow through cycle B over cycle A.

O( log(nC)n2m2

Typesetting math: 100%



Figure 1: Feasible Solution

Figure 2: Feasible Solution

Figure 3: Feasible Solution

Figure 4: Feasible Solution

Figure 1-3 show a more specific example. Figure 1 displays a feasible of length 40. Figure 2 shows what a generic cycle cancelling algorithm produce after sending flow

through the cycle nodes 2, 3, 7, and 8. This new feasible solution now has a total cost of 23. Figure 3 shows what would happen if we applied the min-mean cycle cancelling

algorithm.

Applications

The main type of problem that the cycle canceling algorithm can be applied to is the min-cost flow problem. Problems that fall into the min-

cost flow include the matching problem, the transportation problem, and the traveling salesmen problem. For some of this problems we might

have to alter the network on which these problems exist in order for it to be possible for us to find negative cycles. Matching problems tend to

be formed on bipartite networks, which, by definition, contain no cycles. In order to allow the network to have cycles, we can include a

source node that connects to one side of the bipartite graph and and a sink nodes that connects to the other side of the bipartite graph, and then

connecting the sink node to the source node. This creates a network that can now contain cycles, for which we can apply our cycle cancelling

algorithm to.

The traveling salesman problem is a problem that usually involves a complete network. This type of problem is a perfect candidate for the

cycle cancelling algorithm, as a complete graph contains the most cycles of any type of simple graph. To see how a cycle could improve a

feasible solution in a TSP, see Figures 4-6. Figure 4 shows a feasible solution, Figure 5 shows a potential negative cycle that could be

cancelled. Figure 6 shows the new feasible after applying flow to the feasible cycle.

Additionally, cycle canceling can be applied to max-flow problems. We use the exact same process that we would on the min-cost flow

problems, except instead of trying to find negative costs, we try to find positive costs. If we find a positive cost cycle on a network, we send

flow through this cycle and we are able to increase the flow on our feasible solution. Thus, we improve our solution.

There are several applications that involve finding a maximum flow on a network. These examples include finding a system of distinct

representative and the matrix rounding problem. It is worth mentioning that in order to find a cycle in either of these applications, there needs

to be alterations made to the original network. These alterations are fairly simple and although the optimal solution to the new network will be

different from the optimal solution in the original network, the arcs in the original network will be the same arcs that are found in the optimal

solution of the new network.

Overview of Algorithm

The algorithm is based on the optimality condition that given some feasible flow, the flow is optimal if and only if there are no negative

cycles in the residual network. This is because otherwise we could send flow through this cycle (without changing the feasibility of the flow)

while decreasing the total cost. A generic cycle cancelling algorithm then finds a negative cycle, updates the network, and repeats until there

are no negative cycles. This runs in  time, where  is the maximum cost of any edge, and  is the maximum capacity of any

edge, assuming integer costs and capacities. The run time comes from a time of  to find a cycle and  iterations. This is a

good algorithm if we have constant integer costs and capacities, however, we can improve this generic algorithm to actually give a strongly

polynomial time algorithm.

O(mnCU) C U
O(mn) O(CU)
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Figure 5: Cycle

Figure 6: New Feasible

Solution

The idea of the MMCC algorithm is that rather than finding any negative cycle, we find a minimum mean cycle. This can be done in

 time, that is (asymptotically) no different than finding an arbitrary negative cycle. This the number of iterations then needed for

minimum mean cycles is then . We give full proofs of both of these in the two preceding sections. It has actually been

shown recently that we can improve the number of iteration of the algorithm to  in [1] . We do not give a detailed version of the

proof, but the idea is to reuse as much information as possible each time you find a minimum mean cycle.

Finding Minimum-Mean Cycles

In this section we give a  time algorithm which finds a minimum mean cycle. First, arbitrarily fix some node . Begin by iteratively

creating , which represents the distance to  using exactly  edges. Let  denote that shortest path from  to  (not using any

cycles). Now, any path of length  to  must be the shortest of path of length  which goes to some vertex , plus the edge between 

and . Therefore if we calculate  in increasing order of  we can take the minimum such  which gives us the recurrence relation:

. This then gives a  dynamic program to find all of these 's for , as

for each  we consider each arc exactly once.

Let . We claim that if  then there is no negative cycle and the algorithm can terminate, and if

 then there is a negative cycle with minimum mean cost  and that we can easily (  time) find a cycle with said minimum mean

cost.

First consider when . Note that by the pigeonhole principle, the path associated with  must contain at least one cycle for any

. If this cycle has length  then we know that  because a path to  could always use the  edges not

used in the cycle (note that it could possibly be even smaller, but this does not change the fact the quantity is positive). Since we are

maximizing over  this means that .

Now consider when . We first show that  gives the correct value. Note that we may assume that the minimum mean cycle length is  and show that . To see this

take some negative mean cycle with average edge cost  and update the network by adding  to every edge. Then we increased every edge the same amount, and so the mean

of any cycle increases by . Therefore the new network only has non-zero mean cycles, and the cycle with minimum mean cost now has cost . Now, let  be our cycle of

zero length. Assume that  is some vertex at the end of a shortest path between  to . We claim that if  and  is the cost to reach  from  along that cycle, that

. To see this note that  as a path from  to  could possibly pass through  and then around the cycle. Furthermore

 as a shortest path from  to  could possibly go to  and then through the cycle to , which has  cost, as the mean cycle length, and therefore the

cycle length, is zero. Now let  be the vertex for which if we went from  to  and then around the cycle enough times to have  edge in our walk, we would end at . Note

that we must go around the cycle at least once, as the shortest path from  to  has less than  edges as it doesn't go around any cycles, and if it hit  in a sooner place

we would just take that vertex. Therefore, combining this with with the result above we know that  meaning that . However, we also

know that  and so we get the desired result.
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To find the actual minimum mean cycle, we can slightly modify the algorithm to include the predecessor for  that is the vertex  such that .

Then we can see from our description above, that for the correct vertex  contains a minimum mean cycle, so we can simply walk through the predecessors to get the

cycle.

Number of Iterations

One of the main benefits to the Minimum Mean Cycle Cancelling Algorithm is that it gives a strongly polynomial time algorithm for the min cost flow problem, meaning that

it can be run with irrational data, and the edge capacities and costs could grow very quickly with respect to the number of edges and vertices. We follow the order and structure

of the proof found in the book, [2], although ideas were also used from [1] as they also had a nice explanation of this algorithms running time. To complete the proof, we have

three different sections. First, we prove structural results about reduced costs, and how that compares to the minimum mean cycle. Then we prove that after some number of

steps ( ) we lower the upper bound on the cost of the minimum mean cycle by some constant factor ( ), which then gives a weakly-polynomial time algorithm

incidentally as a by product. Then we utilize the idea of "fixing an edge" after some number of steps, that is we show that after some number of steps ( ) that at

least one edge will no longer be in any minimum mean cycles, which gives us our strongly polynomial time algorithm.

Structural Properties

For some set of node potentials  and some flow  let  be the minimum reduced cost in the network, that is, . Furthermore, let

. Big picture, we wish to show how quickly our minimum mean cycle cost goes to zero, which will initially give us our weakly polynomial time.

However, analyzing all cycles (and their mean cost) in the graph is difficult, so instead we will relate  to the minimum mean cost cycle for flow , which we will denote

as . This then allows us to analyze the behavior of  by looking at the reduced costs, rather than any cycles. One additional thing to note is that for any fixed node

potential  the network with reduced costs has the same minimum mean cycle with the same mean cost. This is because

 as the second to last sum is telescoping.

Lemma: For any nonoptimal flow .

Proof: We first show that . Take some minimum mean cycle, then some edge must have at least the value  as otherwise the average could not possibly

be . Since we know that the minimum mean cycle cost does not change if we use reduced costs, this means that for any set of node potentials  there must be some edge

with value at least , and so therefore .

Now we show that . This will use a similar technique to showing the running time of finding the minimum mean cycle, where we will convert the network to

one with no negative cycles. In particular, what that will allow us to do is use shortest path labels as our node potentials. Specifically for any edge  let

. Then select some arbitrary node  and set . It then suffices to show that  for any edge . The shortest path optimality

condition gives us this instantly however as .

Lemma: For any nonoptimal flow  there exists some set of node potentials  such that the reduced costs along some minimum mean cycle are the same, that is 

for all .
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Proof: The almost follows directly from the previous lemma, take the same graph transformations and same potentials. Then our minimum mean cycle has zero mean cost, and

every edge has a non-negative cost, which means that every edge has zero cost. Then converting back to our original network in the same way proves the lemma.

Weakly Polynomial Time Algorithm

From now on, using the results of the structural properties, we will deal with the convergence of  to  rather than the size of the minimum mean cycle. We show that the

value of  must be strictly decreasing in blocks of steps (where the block sizes are constant sizes). This then gives our weakly polynomial time algorithm, and will be used

in the strongly polynomial time algorithm to bound time until edges are fixed (see the next section).

Lemma:  is (not strictly) decreasing.

Proof: Since at each step we are augmenting only around the minimum mean cycle, these are the only edges that change from one step to the next. From the previous section,

take  to be such that all edges around our minimum mean cycle take value . Then after we augment flow around the cycle to give  we either do not introduce any

additional edges, or only introduce edges with cost , so . Since  is taken as the minimum over all node potentials, we have the desired result.

Lemma: After  steps  decreases by a factor of at least .

Proof: Let  be node potentials such that  for any edge . We will consider all costs as reduced costs. Note that each time we augment flow through some

minimum mean cycle we flip at least one edge, as we are sending the maximum amount of flow through. So either we augment flow around  cycles all with negative

reduced cost, and we are done as all reduced costs are non-negative, which certainly gives an improvement of at least , or every  steps we augment flow around a

cycle with some positive reduced cost. We claim doing this decreases  by a factor of at least .

We know from the previous lemma that the minimum mean cycle cost is increasing. Let  be the flow one step before augmenting around the cycle with the positive reduced

cost edge, and let  be the flow on the step after that. The minimum mean cycle  has mean weight at most . This is because  is decreasing

so each edge except one around  has cost at least cost , and one has cost . So .

Theorem: The minimum mean cycle cancelling algorithm runs in  time with integer costs and .

Proof: The bottleneck for each step is finding the minimum mean cycle, which as we have previously proved runs in  time. Now if at some step  then

we have an optimal flow as our minimum mean cycle would have cost more than  but as we know we preserve integrality of (not reduced) costs, this means that the cycle

has flow at least  and we are done. Therefore combining this with the previous lemma, it suffices to show that  for  as we

may start with cost (and therefore ) of at most . Solving for  gives , so we just have to show that . We know that

 as desired.
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Strongly Polynomial Time Algorithm

To create a strongly polynomial time algorithm, we have to consider a slightly different strategy from the previous two subsections. We can't just consider how quickly

individual arc edges go to positive reduced cost as this depends on the value of . Instead we show that after so many steps edges will become 'fixed', that is they will never

appear in another minimum mean cycle. Then we just have to go through  groups of these steps as then there aren't any edges that could possibly be used by the algorithm.

Lemma: For some given set of flow  let  be such that . Then if  then edge  is fixed in all future iterations of the algorithm.

Proof: We first consider when . Assume towards a contradiction at some future step we send flow along that arc. Then as  is decreasing, this cycle has

cost at least , a contradiction as the algorithm would have already terminated. So now assume that , this however

cannot happen by our definition of .

Theorem: The minimum mean cycle cancelling algorithm runs in  time.

Proof: It suffices to show that after  steps at least one additional edge is fixed, as we know that we can find minimum mean cycles in  time, and

we can fix at most  edges. Let  be the flow before our set of steps, and  be the flow afterwards, and let  be the sets of node potentials which give the best  for 

and  respectively. We can modify the algebra in the proof of the weakly polynomial theorem to show that  for some fixed constant . This

means that . However, with flow  there is at least one edge  in the minimum mean cycle with reduced cost , which we send the maximum

amount of flow through (we can deal with  instead  as the cost of the minimum mean cycle does not change with the node potentials). Then we get  and

so by our our previous lemma, we know that it is fixed.

References And Powerpoint

You can access the powerpoint of our presentation here: https://github.com/toadhkjl/Min-Mean

Jean Bertrand Gauthier, Jacques Desrosiers, Marco Lübbecke. About the minimum mean cycle-canceling algorithm.

1. ↑ 1.0 1.1 J. Bertrand Gauthier, J. Desrosiers, M. E. Lübbecke; About the Minimum Mean Cycle-Canceling Algorithm, Discrete Applied Mathematics, (2013).

2. ↑ Ravinda K. Ahuja, Thomas L. Magnanti, James B. Orlin. Network Flows. 1993.
Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Min-mean_Cycle_Cancelling_Algorithm_and_It%27s_Applications&oldid=2806"

This page was last modified on 5 May 2020, at 02:23.
This page has been accessed 4,287 times.
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Abstract

The Minimum Cost-to-Time Ratio Cycle Problem is a min-cost flow problem concerned with finding the smallest ratio between cost and traversal time of the cycle. We first

discuss the problem setup, then bounds and algorithms for finding the optimal value. We end by discussing the Minimum Mean Cycle, a special case of this problem.

Introduction

The Minimum Cost-to-Time Ratio Cycle Problem is a type of min-cost flow problem derived from an application referred to as the 'tramp steamer problem'. Information about

this problem can be found in [1]. In the tramp steamer problem, a boat is moving between ports, generating profit as it moves. Each trip takes  units of time and generates

 units of profit. The goal is to find the maximum profit that can be generated by traveling to ports in a directed cycle. We do this by finding the maximum ratio of profit

divided by travel time along the cycle. In other words, we want to maximize the ratio

,

where  is the value of the ratio.

This problem is framed as a maximization problem, but by defining , we can treat it as a minimization problem instead. We also assume all data is integral,

 for all arcs (i,j), and that  for all directed cycles W in G.

τij
pij

μ(W) =
∑(i,j)∈W cij

∑(i,j)∈W τij

μ

= −cij pij
≥ 0τij > 0∑(i,j)∈W τij
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Finding the Optimal Value

There are several ways to find the optimal value . The first two methods revolve around detecting negative cycles. We start with an initial guess for our optimal solution,

call it . We then define the length of each arc as . Then we look for a negative cycle W in our graph G. This subtraction produces three cases.

Our first case is that G contains a negative cycle W. In this case, . From this, we get that . Since this is the

case, our chosen value of  is too large, and thus  is a strict upper bound on .

Our second case is that G contains no negative cycle and contains a cycle of length zero . In this case, since there is no negative cycle, we get that

 for every directed cycle W. This means that the value of  is less than or equal to the value of the ratio of every directed cycle

in W, or . Since a zero cycle exists, we know . These two conditions together imply that , and that  is a minimum cost-to-time

ratio cycle.

The last case is that G contains only positive-length directed cycles. In this case, . From this, we get that .

Since this is the case, our chosen value of  is too small, and thus  is a strict lower bound on .

Using these guidelines, there are two algorithms that can be used to find the optimal value : the sequential search algorithm, and the binary search algorithm.

Algorithms

The sequential search algorithm starts with , a known upper bound on . We then compute  and look for cycles. Since  is a strict upper bound on ,

this will either result in a zero-length cycle or a negative cycle. If we have a zero-length cycle, we are done. If we have a negative cycle, we let  and repeat

the process. This algorithm can be shown to run in pseudo-polynomial time.

The binary search algorithm starts with an interval  that contains the optimal solution . An easy interval to start with is [-C, C], where C is the largest arc cost in G.

At each iteration, we let  and look for a negative cycle using the arc lengths . If a negative cycle exists, then we know  is a strict upper bound

on , so we let  and repeat this process. During each iteration, we halve the length of the interval. It is clear that the algorithm will eventually converge to a small

enough interval such that there is a unique solution. This algorithm runs in O(log( C)) iterations, where  is the largest traversal time of any arc in G.
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Special Case: The Minimum Mean Cycle Problem

While the previous two algorithms will work for any minimum cost-to-time ratio problem, we can use an O(nm) implementation for the special case where  for all

arcs in G. This setup is called the minimum mean cycle problem.

For the minimum mean cycle problem, we are now trying to find the minimum ratio  among directed cycles in G. In addition to the previous assumption

(integrality of data, etc), we also assume that the graph is strongly connected. If it is not strongly connected, we can add arcs where they are missing with sufficiently large

cost. These arcs will not be contained in the minimum mean cycle unless the graph is acyclic.

To find the minimum mean cycle, we start by finding  for 1  n, where  denotes the shortest path with respect to arc costs  from a designated starting

node to another node j that contains exactly k arcs. We set  and then compute  for all j. This takes O(m) time, and since we do

this for all nodes, the entire computation takes O(nm) time.

We will use the following theorem to find the optimal value:

Theorem: 

This can be proven in two cases. The first case is that . In this case, the network contains a zero cycle and no negative cycle. For each node j, we compute the shortest

path distance from a defined node s to node j. We denote this d(j). We then replace each arc cost  with the reduced arc costs . After this

transformation, all arc costs are nonnegative, and the arcs on the cycle W have cost zero, each arc on the shortest path from s to t has cost zero, and lastly, the shortest path

distances  differ by a constant amount from their values pre-transformation.

Now, we let  denote the length of the shortest walk from node s to j using the reduced cost arcs . Since all arc costs are nonnegative and differ by a constant amount,

we get that  . We know this is true because the shortest path length will be 0, and  will be at least as large.

From here, we find the shortest path from node s to a node j that is in our zero cost cycle W. That path will have length of at most n-1, so we continue to walk from node j

along W. This creates a walk from node s to another node p that is on W. All arcs on W and all arcs in the shortest path from s to j have zero cost, so we now have a walk from

s to p with zero cost. We also know that the walk must contain one or more directed cycles because it contains n arcs. So, when we remove the directed cycle from W, we end

up with a walk of length  from s to p. We have shown that , satisfying the first case of our theorem.

If , then we simply adjust the cost of each arc by a number chosen to change  to zero. We then apply the results of case 1, which completes case 2.

The last step is to take the minimum of these differences. Since all path lengths will be greater than or equal to 0, we know that the minimum difference will be 0. Thus, the

theorem is proven.
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If we suppose that  for all  and  are available, then by simply calculating  and then taking the minimum, we can

get the minimum mean cycle. This takes O(nm) time to get the shortest path pairs, and then takes  time to get the minimum of these maxima. The proof of this

algorithm can be read about here [2].
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Minimum Planar Crossing Number

From CU Denver Optimization Student Wiki

Finding the minimum crossing number of a graph is a problem that is easy to state but notoriously difficult to solve. It can be stated simply as given a Graph .

What is the minimum number of edge crossing over all possible drawings in the Euclidean plane. In graph theory the minimum crossing number is often stated simply as the

crossing number of a graph and is denoted as cr(G). Determining the crossing number of a graph is still a very active problem in research, due to it's importance in many fields.

Studies have shown people find graphs with few edge crossing to be easier to understand. The python package graphviz (https://pypi.python.org/pypi/graphviz) uses different

approximation methods to the problem to draw the graphs you see below. The crossing number of a graph also plays a role in VLSI design (computer chips). To avoid trying to

build optimal integrated circuits I will present a Integer Programming formulation to a simplified version of the problem. The minimum single crossing number denoted as

crs(G). The single crossing number of a graph is a restriction of the general problem in that it requires that any edge may only cross a single other edge. This will allow use to

build an integer programming formulation for the problem.

Contents

1 Planarity of a Graph
2 Building a Integer Programming Formulation

2.1 Realizability Problem
2.2 Kuratowski constraints
2.3 IP for the crs(G)

3 Finding the Kuratowski subdivsions
3.1 Sources

Planarity of a Graph

Graph planarity is a well studied and well understood problem, there are many known linear time algorithms for testing a graph for planarity

(https://en.wikipedia.org/wiki/Planarity_testing). Many of which extract a forbidden sub graph when they return a non-planar determination. The forbidden sub graphs that

can't exist in any planar graph were classified by Kazimierz Kuratowski which is stated in a theorem named after him. Kuratowski's Theorem states that a finite graph is planar

if and only if it does not contain a subgraph that is a subdivision of  (the complete graph on five vertices) or of  (complete bipartite graph on six vertices, three of

which connect to each of the other three, also known as the utility graph).

G(V, E)

K5 K3,3
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Utility Graph   drawn with a single crossing 

A subdivision of a graph is when you can add vertices along any edge between any two vertices(Example Below). From here on I will refer to a Kuratowski subgraph  of a

graph  as collection of edges that form a subdivision of  or . Example below.

K5

H
G K5 K3,3
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Simple sub division of K5  Kuratowski subgraph. 

We will rely heavily on this theorem for are formulation.
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Building a Integer Programming Formulation

We will begin are formulation by introducing a set of variables. We will define a set of {0,1} variables which will represent the crossing of edge i and j  if edge i

crosses edge j else . I will refer to this set of integer variables as  from here on out and the set of edges as . To simplify the problem we will restrict the problem

again to simple graphs (http://mathworld.wolfram.com/SimpleGraph.html). Which we will use to define are variables.  no loops. Also if  then ,

undirected graph. This leads to a linear time why to check if a solution does in fact result in a planar graph. We can place a new vertex at the each edge crossing and we could

then use any of the known planarity testing algorithms to see if the resulting graph is planar.

Example of placing a new vertex in K5 at the intersection draw in the graph above 

The Integer Program can now be informally stated as:

= 1xij

= 0xij E2 E
= 0xii = 1xij = 1xji
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The first set of constraints forces the condition for the minimum single crossing number. The second set most now be constructed to assure that the graph resulting from

placing degree 4 vertices at the edge intersections will be planar. If we consider dropping the first set of constraints we would not end up with a Integer Program for the general

problem. If we were to solve this problem with out the first set of constraints we would be left with another problem that is also difficult. Known as the Realizability problem.

Realizability Problem

By dropping the first set of constraints we would allow for edges to cross more then one other edge. The result may not even be planar and if it is it maybe very hard to find.

The problem comes form not having any information on the proper ordering of the crossings. We are not left with a simple way to add vertices to then graph to check for

planarity. The Realizability Problem has been proven to be NP-complete(Kratochvil).

Kuratowski constraints

So we seek a set of linear inequalities that will assure use that the graph resulting from inserting a vertex for each  will result in a planar graph. First definitions.

Let  represent a graph that is generated from adding vertices to .

Let  represent a Kuratowski subgraph in  (A subdivision of  or  in the graph generated by adding a vertex for each element of  ) Let  denote the set of

edges that exist in the original set of edges . And  represent the set of all possible pairings of these edges then

So we end up with not only an exponential number of subsets to consider. We have an undetermined number of Kuratowski subgraphs in each subset. If we wanted to try and

write down every constraint for a given instance of the problem. To understand these constraints I will put together some examples of why is must be true for any feasible

solution. (I am still working on making it presentable). Even though we have exponential number of constraints it turns out to be a good formulation for a branch and bound

solution strategy. See Dr. Petra Mutzel, Dr, Gunnar W. Klau, and Rene Weiskircher. Optimal Crossing Minimization using integer linear programming

(http://www.complang.tuwien.ac.at/cd/ebner/ebner05da.pdf).

min

s.t.

 ∑
x∈E2

xij

 ≤ 1∀i ∈ E∑
j∈E

xij

A set of constraints that forbids the resulting graph from having a Kuratowski subgraph "Kurtatowski constraints"

= 1xij

GD G∀ ∈ Dxij

H GD K5 K3,3 D H′

E H′2

− ≥ 1− ∣ ∩ D ∣ for everyD ⊆ and every Kuratowski subgraphH ∈∑
∖DH′2

xij ∑
∩DH′2

xij H′2 E2 GD
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IP for the crs(G)

Then are final formulation becomes

We still have a another problem that needs to be solved for are formulation to be on any practical use. How to find the Kuratowski subdivisions.

Finding the Kuratowski subdivsions

See here (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.557&rep=rep1&type=pdf). If you are interested.

Sources

J. Kratochvil. String graphs 2. Recognizing string graphs is NP-hard. J. comb Theory Ser. B, 52(1):67-78, 1991 Dr. Petra Mutzel, Dr, Gunnar W. Klau, and Rene Weiskircher.

Optimal Crossing Minimization using integer linear programming. February 2005 (need to finish this)
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Minimum Spanning Tree

From CU Denver Optimization Student Wiki

Project Description

A Minimum Spanning Tree [Robert Sedgewick and Kevin Wayne / https://algs4.cs.princeton.edu/home/ ] is a subgraph of an undirected graph such that the subgraph spans

(includes) all nodes, is connected, is acyclic, and has minimum total edge weight. Three main algorithms related to Min Spanning Tree are Kruskal’s algorithm, Prim’s

algorithm and Boruvka’s algorithm.

Application:

 Reducing data storage in sequencing amino acids in a protein. 

 Network design (communication, electrical, hydraulic, computer, road).

Prim’s algorithm: [Algorithm Design: Parallel and Sequential" book by Umut A. Acar and Guy E, [1] (http://www.parallel-algorithms-book.com/)] Prim’s algorithm is an

algorithm for determining the minimal spanning tree in a connected graph. The algorithm is as the following

• Choose any starting vertex. Look at all edges connecting to the vertex and choose the one with the lowest weight and add this to the tree.

• Look at all edges connected to the tree that do not have both vertices in the tree. 

• Choose the one with the lowest weight and add it to the tree.

• Repeat step 2 until all vertices are in the tree.

https://algs4.cs.princeton.edu/home/
http://www.parallel-algorithms-book.com/


Example of Prim's Algorithm: 

Kruskal's MST Algorithm: Kruskal's algorithm is an algorithm in graph theory that finds a minimum spanning tree for a connected weighted graph. This means it finds a

subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. If the graph is not connected, then it finds a

minimum spanning forest (a minimum spanning tree for each connected component).

Description

- create a forest T (a set of trees), where each vertex in the graph is a separate tree

- create a set S containing all the edges in the graph 

- while S is nonempty and T is not yet spanning 

 .remove an edge with minimum weight from S 

 .if that edge connects two different trees, then add it to the forest, combining two trees into a single tree, otherwise discard that edge. 

Example of Kruskal's Algorithm in 5 steps:
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The Boruvka’s Algorithm: [2] (https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm) This algorith was proposed by Otakar Borůvka in 1926. This is an algorithm

to find the minimum spanning tree for a graph with distinct edge weights (none of the edges have the same value). The goal of the algorithm is to connect “components” using

the shortest edge between components. It begins with all of the vertices considered as separate components.

Pseudocode:

  Input: A graph G whose edges have distinct weights 

  Initialize a forest F to be a set of one-vertex trees, one for each vertex of the graph. 

  While F has more than one component: 

  Find the connected components of F and label each vertex of G by its component 

  Initialize the cheapest edge for each component to "None“

  For each edge uv of G:

  If u and v have different component labels: 

  If uv is cheaper than the cheapest edge for the component of u:

  Set uv as the cheapest edge for the component of u 

  If uv is cheaper than the cheapest edge for the component of v:

  Set uv as the cheapest edge for the component of v

  For each component whose cheapest edge is not "None":

  Add its cheapest edge to F

  Output: F is the minimum spanning forest of G.

Example of Burukav Algorithm in three steps
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Resources:

1. Robert Sedgewick and Kevin Wayne [ /https://algs4.cs.princeton.edu/home/]

2. Algorithm Design: Parallel and Sequential" book by Umut A. Acar and Guy E [3] (http://www.parallel-algorithms-book.com/)

3. https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm
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Monitoring Population to Track Low Student Retention

From CU Denver Optimization Student Wiki

Abstract

We are investigating the enrollment trends in Denver neighborhoods to see if there are any schools losing students. The focus is on finding neighborhoods in Denver whose

schools are either gaining school population slower than other regions in Denver during times when Denver’s population is growing, or the population of enrolled students is

decreasing without the population of Denver decreasing in the k-12 grades.

This project aims to find these trends by looking at the school data the city of Denver collected in the neighborhood surveys. This data collects data over 5 years and releases

the aggregate broken down by neighborhood and serves as a good high-level view of the neighborhoods of Denver. We will be grouping the neighborhoods to include at least

one school of every grade level and track the survey outputs to look at the stability of the population of each grade level over time. For example, if we start with 350 students

in grades 1-4, then 4 years later if there is no population movement then there should be 350 students enrolled in grades 5-8 in a neighborhood.

There are many ways policy can affect schools that can affect school enrollment so the goal of this project is to find regions that are exhibiting these troubling trends so that

policy makers can target them specifically to stop the loss of students.

Helpful Project Links

GitHub (https://github.com/szirkelbach/ORTopicsFinalProject)
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Moses Khan

From CU Denver Optimization Student Wiki

Moses Khan received his Master's Degree in Applied Mathematics at the University of Colorado Denver in 2018. Moses has been in the Health, Wellness and Fitness Industry

for the past 27 years. He also received a Master's Degree in Exercise Physiology (With an emphasis in Sport Science and Nutrition) at the University of Texas, Austin. He also

has studied Massage, Sports and Rehabilitative Therapy and completed his Bachelor's degree in Mathematics at the University of St. Thomas in Houston, Texas. Moses also

has many certifications/licenses in Personal Training, Massage Therapy and as a Strength and Conditioning Expert.

Given Moses last Master's Degree in Applied Mathematics, he specialized in Operations Research with an emphasis in Optimization. Moses is hoping to use the mathematics

that he is learning in order to optimize human performance, recovery and weight loss/gain/health maintenance to it's maximal capacity. Moses would also like to apply

mathematical modelling towards learning/discovering more about neuroplasticity. Moses is also hoping to use Mathematical Modeling/Programming to help companies

function at their maximal optimal potential.

Moses comes from the island of Trinidad and Tobago, and he hopes to use the mathematics that he is learning combined with everything else he has learned in his life in order

to try and make a very significant and positive difference in the world.

Here are Moses's contributions to the Optimization Wiki:

Linear Programming for Diet and Nutrition

Derivation of Blood Flow as a Network Flow
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Multi-commodity Flow

From CU Denver Optimization Student Wiki

The multi-commodity flow problem is a generalization of the maximum flow problem, where we need to find a maximum - flow through the network for all

commodities  while keeping the sum of flow over all commodities on each arc below its capacity. The formulation for this problem is a linear program that can

be solved in strongly polynomial time.

However due to the fact that more than one commodity travel on the same arc the problem becomes -hard when you look for an integer solution. Unlike standard max

flow problem there is also no guarantee that an integer solution exists just because you have a feasible flow. Even if you are not looking for an integer solution it turns out in

practice that while polynomial time algorithms exist to solve the multi-commodity flow problem, there is a larger issue to address. Say we have a graph with 1000 nodes and

10,000 edges, and we have 1 million commodities to send through this network (sending flow from each node to every other node). Then the number of variables in this

seemingly reasonable problem becomes about 10 trillion, and at a measly 8 bytes per variable which is less than the space usually allocated to each variable in this type of

problem, you have already used 80 gigabytes of storage space. Ultimately this leads us to decide that we need to use a method such as column generation to greatly reduce the

size of the matrix needed to perform the necessary calculations to find our multi-commodity flow.

Column Generation

Column generation is the dual to the cutting plane method. It allows us to consider only a subset of the variables while keeping all of the constraints of the problem. Our

original problem will now be called the master LP. We then consider a restricted LP which contains all the constraints of the original LP and a subset of the variables. Each

iteration we solve a pricing problem (see if there are variables we should add to improve our objective function value) until we reach the optimal solution which means there

are no more variables to add that will improve the objective function value.

For this to work with the multi-commodity flow problem we need to start with our master LP being the path formulation of the multi-commodity flow problem.
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So essentially with this formulation each column you add represents a path through the network that a commodity is sent along. So our restricted master LP is the constraints

over a small starting number of paths  which makes our restricted master LP:

And the dual of the restricted master problem is:

By the duality theorem we know that a solution  to the restricted dual is a lower bound on a solution to the dual which also provides a lower bound to the primal problem. If

both the primal and dual problem are feasible finding the optimal solution for the dual master problem will result in the optimal solution for the primal master LP. Below is a

basic algorithm for solving the multi-commodity flow problem using column generation. Once the algorithm terminates with no other columns to add you have the optimal

solution to the masterLP. Since the largest calculation done every iteration is coming up with the new pricing vector, if this pricing problem is solved in polynomial time then

the master problem is solvable in polynomial time. Plus you no longer have the storage problems discussed above because you are only using the variables necessary to reach

the optimal solution.
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Dantzig-Wolfe Decomposition
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Natalia VillegasFranco

From CU Denver Optimization Student Wiki

I am a highly motivated person who, through academic and consultant work, has developed a variety of programming skills and problem solving abilities.

I am very creative in the use of mathematical tools and their practical application. I am originally from Colombia and am working on my Master's Degree in Applied

Mathematics at the University of Colorado Denver.

Here is my contribution to the Optimization Wiki:
Crime response planning by linear programing
Spectral clustering
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Nicholas Crawford

From CU Denver Optimization Student Wiki

Hello I am Nick (said it Groot voice). I am a first year PhD student at University of Colorado Denver. I got my B.S in Mathematics from Cal Poly, San Luis Obispo and my

M.S is Applied Mathematics from San Jose State University in Applied Mathematics. My main research projects are finding algorithms for determining if a graph with certain

bounds on minimum degree are 3-colorable. Other research projects I have worked on include Spectral Graph Theory and the student of Betti number diagrams. In my free

time I enjoy many outdoor activities such as hiking, rock climbing, disc golf, and playing soccer.

Projects

I worked with Zachary Sorenson on categorizing circuits for the Matching Problem. Our project was titled Circuits and Bloom's Algorithm.

I worked with Drew Horton on finding efficient Disaster Evacuations for Colorado.

I did a small project on Using AMPL and Python to solve the cutting stock integer program

I am currently working on a project called Primal and Strong Duality of Linear Programs.
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Nicholas Rogers

From CU Denver Optimization Student Wiki

About me

Hello, my name is Nick Rogers. I am a PhD student at CU Denver. I am interested in applications of mathematics to biology and medicine.

Education

I received my Bachelor's in Math with a minor in Computer Science from Elmhurst University in December of 2021.

Projects

Fall 2023 - Optimizing SAR Paths in the Rocky Mountain Region, project with Matthew Knodell and Lillian makhoul.

Spring 2024 - Minimum Cost-to-Time Ratio Cycle Problem
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One-way: To Improve Denver Traffic

From CU Denver Optimization Student Wiki

Introduction

This project was an effort of Jacob Johns across the span of three months. The traffic data were provided by the Colorado Information Marketplace

(https://data.colorado.gov/Transportation/Road-Traffic-Counts-in-Colorado-2019/4j38-u7sj) and some limited satellite street data from Google Maps

(https://www.google.com/maps).

Abstract

One-way roads have been hailed as an effective measure to increase traffic flow, decrease pedestrian accidents and reduce congestion. This is because there are fewer meeting

points between cross traffic as well as the fact that pedestrians only have to check one direction to ensure safety. There have been recent reports that in practice, despite this

logic, the latter claim that one-way streets reduce traffic does not hold. In this project, we aim to model the flow of traffic in a Denver neighborhood under current

circumstances as well as under the stipulation of adding one-way streets. We use the linear programming techniques of network flows to make this model— initially with real

world data, then again with predicted data. These predictions come from a linear regression model, which allows us to estimate the amount of traffic given certain conditions,

such a road being one-way or not. Our results indicate that the City of Denver should not implement a policy to turn these streets into one-ways.

Links

GitHub Repository (https://www.github.com/jakeat555/TrafficProject)

There are three primary folders in the GitHub: Administrative, Linear Regression and Linear Programming. In the Administrative folder, there are various presentations,

graphics and an abstract. In the Linear Regression folder, there are both R code and html output for each of our linear modeling steps (Cleaning, Exploration, Visualization,

Modeling). There are also the completed linear models, as well as the data. In the Linear Programming folder, there is R code and html output for the predictions of streets that

were missing data. There is also the AMPL model and the AMPL data files for each of the three conditions we modeled.

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=One-way:_To_Improve_Denver_Traffic&oldid=4484"

This page was last modified on 4 December 2023, at 15:34.
This page has been accessed 20 times.

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Jacob_Johns
https://data.colorado.gov/Transportation/Road-Traffic-Counts-in-Colorado-2019/4j38-u7sj
https://data.colorado.gov/Transportation/Road-Traffic-Counts-in-Colorado-2019/4j38-u7sj
https://www.google.com/maps
https://www.google.com/maps
https://www.github.com/jakeat555/TrafficProject
https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=One-way:_To_Improve_Denver_Traffic&oldid=4484


Optimization Solvers in Five Different Programming Languages

From CU Denver Optimization Student Wiki

Abstract

Learning a new programming language to solve a mathematical program can be challenging. For many practitioners, it would be easiest to be able to access optimization

solvers in one of the programming languages with which they are familiar. This project provides detailed instructions on the installation and use of optimization solvers such as

CPLEX, GUROBI, and XPRESS, as well as information on accessing these solvers in five different programming languages. The core programming languages used are

AMPL, MATLAB, R, Python, and C++. We show sample codes in these programming languages for linear, integer, quadratic, nonlinear, and semi-definite programs.

Link to Github with Project file & sample codes

Here is the link which contains all the sample codes and the detailed procedure on how to installation solvers and calling in different programming languages. Link:

https://github.com/kushmakarb/Optimization-Solvers-Sample-Codes

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Optimization_Solvers_in_Five_Different_Programming_Languages&oldid=2596"

This page was last modified on 30 April 2020, at 10:16.
This page has been accessed 1,023 times.

https://github.com/kushmakarb/Optimization-Solvers-Sample-Codes
https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Optimization_Solvers_in_Five_Different_Programming_Languages&oldid=2596


Optimization Solvers

From CU Denver Optimization Student Wiki

Abstract

Learning a new programming language to solve a mathematical program can be challenging. For many practitioners, it would be easiest to be able to access optimization

solvers in one of the programming languages with which they are familiar. This project provides detailed instructions on the installation and use of optimization solvers such as

CPLEX, GUROBI, and XPRESS, as well as information on accessing these solvers in five different programming languages. The core programming languages used are

AMPL, MATLAB, R, Python, and C++. We show sample codes in these programming languages for linear, integer, quadratic, nonlinear, and semi-definite programs.

Link to Github with Project file & sample codes

Here is the link which contains all the sample codes and the detailed procedure on how to installation solvers and calling in different programming languages. Link:

https://github.com/kushmakarb/Optimization-Solvers-Sample-Codes
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Optimization

From CU Denver Optimization Student Wiki

Optimization is the mathematical process of selecting the best solution or element from a set of solutions or elements. This is a simple process when given a small and finite

set of elements, such as picking the largest of 5 integers, but becomes much more complex when dealing with multi-dimensional systems and infinite spaces. The basics of

optimization are rather intuitive, since most people are subconsciously optimizing all the time. Everybody wants to get the best value for the products they buy, the most

money for the hours they work, and the most joy out of activities they partake in. While most people aren't building mathematical models and solving them for these day-to-

day activities, they partake in basic optimization every day. Optimization is commonly used in business analytics for finding the best method of doing business. Some uses

include making the most profit, spending the least, creating the smallest environmental impact, generating the best public response, and using the least time to transport goods.

Optimization has many different sub-fields of research.
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5 Duality Theory
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Uses for Optimization

Business Analytics and Industrial Engineering

There are an endless number of ways to use mathematical optimization. Businesses hire mathematicians to increase their profits and reduce their costs. For example, consider a

small business that is thinking about expanding. They want to know how much they should invest and how many new people they should hire to see the best returns for their

money. This is an optimization problem for small businesses. Investing too much up front may bankrupt the business, while investing to little can hold them back and make it

harder to expand in the future. Because there are so many variables associated with small businesses and expansion, this type of optimization problem takes mathematicians

and computers to solve. Large businesses use optimization to find ways to run their business most efficiently, to minimize costs and maximize cash flow.

Military Operations

Optimization is commonly used in military planning. Military operations around the world use optimization to find the optimal way to engage a target. In fact, Alan Turing and

his group of mathematicians used statistics and optimization to decide the best intelligence to act upon once they retrieved it from the Enigma decoder they built. Optimization

is used in military operations to find the quickest and least risky route to transport goods to ground troops. It is also used to find the best air route for air raid runs.

Engineering

Electrical engineers use optimization to find the path of least resistance for a circuit. This type of optimization falls under the category of network flows and is similar to

optimizing transportation of goods. That's right, semi-trucks and electrons have more in common than you thought.

History

Newton and Gauss introduced the idea of iterative searches to find an optimal point for a function. Lagrange and Fermat expanded on Newton's work in optimization and

calculus to create gradient and calculus based formulas for optimization. Mathematical programming was developed by Dantzig for the U.S. military, and Neumann used that

research to develop Duality theory shortly after.

Modern Optimization

Optimization is a branch of applied mathematics that uses computers to solve large problems that are programmed into them. modern computers are incredibly fast, but not fast

enough to pick every point and test it until the best point is found. There are an infinite number of solutions to any continuous problem, and computers can still only work with

discrete data. Therefore, computers use algorithms to jump between points or sets until an optimal solution is found. The most popular algorithm for linear programs is the

simplex algorithm, developed by George Dantzig for the U.S. military in the 1940s. This is still the most widely used algorithm for linear systems because it has the shortest

run time for any algorithm known. In essence, it is the optimal optimizer. There are other algorithms for non-linear optimization but they take longer to run.
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The Optimization Problem

Optimization problems take various forms, depending on the type of and relationship between the variables. They all have objective functions, constraints, and feasible

regions. The objective function is the thing that is being optimized. This is the part of the problem that states whether you want to spend the least of a set of variables or receive

the most of a set of variables. There can be multiple objective functions to a program. The constraints are bounds on what the optimal objective function value can be. They are

combinations of variables that must be less than, greater than, or equal to a constant. The feasible region is the set of all points that satisfy all of the constraints. The optimal

solution (or solutions) lie within the feasible region.

Linear Program

Linear programs are a special type of program where all of the constraints are linear, and should be familiar to anyone that has taken linear algebra. They are programs with the

set of  constraints and  variables defined by an  matrix. A linear optimization problem takes the form:

With  as the objective function, or the thing that being optimized.  is the constraint matrix, which consists of all the bounds for the problem.  is the set of right hand

side values for the constraint matrix. The final line are bounds on .

Nonlinear Program

Nonlinear programs are mathematical programs that do not have linear constraints or a linear objective function. Nonlinear optimization problems take the form:

 where  is the domain of definition for .

So a program in nonlinear if any of the functions  have nonlinear features. Common types of non-linear programs are quadratic, exponential, and logarithmic.

Combinatorial Optimization

Combinatorial optimization deals with finite sets of data and finite possibilities for optimal values. This branch of optimization includes integer programming, discrete

optimization, optimization of graphs, and other interesting applications such as the knapsack problem.

m n m × n
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∑A  = bxT
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xcT AxT b
x

min f(x)
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 X x
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Multi-Objective Optimization

Multi-objective optimization occurs when there is more than one objective function that is being optimized to the same set of constraints. Often, these objective functions are

in contention with each other. For example, a business trying to maximize profit while minimizing cost, or trying to maximize output while minimizing environmental impact.

In this case, there is usually not one optimal objective function value, but a whole set of points that are feasible. Each of these points will make one of the objective functions

better and one of them worse. The set of these points is called the Pareto set.

Solving Methods

Solving mathematical programs gets increasingly difficult as the programs gain more constraints and increase in dimension. Therefore, mathematicians rely on methods of

solving these programs that make them easier to keep tack of of.

Algorithms

There are a wide variety of algorithms used to solve mathematical programs. Each algorithm has advantages and disadvantages and works for different types of problems. The

first algorithm created was the simplex algorithm. It was developed for the U.S. government in the 1960s to optimize scheduling for the military. This particular algorithm only

works for linear programs. There are other algorithms for non-linear programs and integer programs. The Bellman-Ford algorithm is another common algorithm and is used to

find the shortest path for a graph. There are even algorithms that jump between the primal problem and the dual problem until the optimal solution for both is found.

Using Computers

Most mathematical programs are are far too large to solve by hand. Therefore, computers are used to solve these programs exponentially quicker than humans can. Computers

use pre-determined algorithms to solve programs based on the file type and program input parameters of the solver. For professionals in optimization, understanding

programming is almost as important as understanding the math.

Lagrange Multipliers

Duality Theory

In mathematical programming, duality is the theory that any program can be both viewed and solved from two perspectives. The first is the primal program and the second is

the dual program. Using both of these to look at a program provides deeper insight in to the program functions. The dual problem is often used to give insight into the

sensitivity of the primal problem. It can also be used to place bounds on the primal problem to make it easier to solve.

Topics:
Duality: Bounding the Primal
Duality: Economic Example
Shadow price
Complementary slackness
Lagrangian Duality
Lagrange Multipliers
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Optimize the patrolling route

From CU Denver Optimization Student Wiki

Abstract: The Denver Metro area is administered by a multitude of policing zones and within these policing zones, crime incidences distribute unevenly. Optimizing the

patrolling route for a police car is always a strategy which we can apply to improve policing. By analyzing historical crime data, we can shed light on which locations are more

crime-prone than others. Using graph theory knowledge, we can simplify those locations as vertices in a graph, and then determining an optimized patrolling route can be

reduced and solved as a classical TSP problem.

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Optimize_the_patrolling_route&oldid=1955"

This page was last modified on 21 March 2019, at 12:27.
This page has been accessed 411 times.

https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Optimize_the_patrolling_route&oldid=1955


Optimizing Highschool Graduation Rates

From CU Denver Optimization Student Wiki

This project is by Alyssa Newman Collin Powell and Zane Showalter-Castorena, and is for the Linear Programming course in Fall of 2020. The project will be presented at the

Data to Policy Project on Friday, December 4th.

Abstract

In this project, we consider existing data on variables which affects high school graduation rates in Colorado. Specifically, we are considering student teach ratio, average

teacher salary, demographic disparity between teachers and students, and several others. This data is used to build a model to maximize the graduation rates of students in its

purview. This model is solved using linear programming techniques. This would provide these institutions with a powerful tool for adjusting current budget usage and other

resource allocation, relying on existing data. In order to demonstrate this model and the results it provides for decisions, we have created a mock school based on average

constraints for budget, number of students, and other considerations from the state of Colorado. Ultimately this will provide an optimized distribution of resources and other

policy questions.

GitHub links

All information, including code, PDF, and data can be found at https://github.com/Z-SC/OptimizingGraduationRates
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Optimizing SAR Paths in the Rocky Mountain Region

From CU Denver Optimization Student Wiki

Contents

1 Contributors
2 Abstract
3 Code and Presentation

3.1 AMPL Files
3.2 Miscellaneous Files

Contributors

This Project is by Matthew Knodell, Lillian makhoul, and Nicholas Rogers.

Abstract

The Colorado Search and Rescue Association reports there are approximately 3000 annual search and rescue (SAR) cases spanning 8000 hours every year. It is important that

this time is used in the most effective way to find the subject. We analyzed SAR patterns in the Rocky Mountain Region to find optimal patterns for teams to take. We use an

integer-based optimization model to find optimal SAR patterns based on a given starting location for the SAR team and the subject’s (last known) location. We then extend the

model in the following ways: multiple SAR teams with different starting locations were dispatched, the grid was changed from a square to a rectangular region, and the type of

incident was factored into the value of searching each grid space. Our model can serve as a guide for SAR associations to increase the likelihood of subjects being found as

SAR teams search.

Code and Presentation

Available on GitHub: https://github.com/makhoullillian153/D2p-fall-2023

Materials available:

AMPL Files

These files contain the main code we used in this problem.

Assignment_Model.mod contains the code for the assignment style problem.
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Shortest_Path_Model.mod contains the code for the shortest path style problem.

Data_File.dat contains the data file used for both the shortest path and assignment models

Miscellaneous Files

Bidirectional Path and Value Calculations.ipynb contains the Python code to print out the valid paths between nodes in the region and to assigns the value of the nodes.

Data_cleaning.Rmd contains the R code we used to filter and clean the data.

mission_data.csv contains the cleaned data we used for this project.

Optimizing_SAR_Paths_In_Class_Pres.pdf (and .pptx) contains our in-class presentation for our Fall 2023 Linear Programming class.
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Optimizing the patrolling route

From CU Denver Optimization Student Wiki

The Denver Metro area is administered by a multitude of policing zones and within these policing zones, crime incidents have different distributions. Optimizing the patrolling

route for a police car is a strategy which we can apply to improve policing. By analyzing historical crime data, we can identify which locations would benefit the most using

optimized patrolling routes. Using graph theory, we model those locations as vertices in a graph. Determining an optimized patrolling route can then be solved as a classical

Travelling Salesman Problem.

Contents

1 Motivation and Method
2 Model

2.1 K-means clustering[3]

2.2 Miller-Tucker-Zemlin formulation[4]

3 Implementation
3.1 Results

4 Poster and Files
5 Summary and Further Works
6 References

Motivation and Method

A number of police trials have suggested that patrolling, in particular foot patrolling, can significantly reduce crime incidents and disorders when they are targeted on crime

“hotspots” at “hot times”. An experiment done by Minneapolis PD put twice as many policemen patrolling 55 crime hotspots have shown the “treatment group” sees a

significant decline in crimes and public disorders compared with the “control group”[1]. In addition, British research has shown that targeted foot patrol can also improve

public confidence in the police, perceptions of crime, and feelings of safety[2].

So the question naturally arises, how to design the optimized patrolling route to maximize the positive effects of this practice?

In order to create a model for police patrolling, we have first to come up with a series of destinations that a policeman would need to pass through. I find the K-means

clustering algorithm is particularly helpful for creating geometric centroids which can be processed as vertices on the graph. Luckily there is no need to rewrite the step by step

code for K-means clustering in Matlab. A few command lines would do the work.
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Once the centroids are found, we can plug it into AMPL and use Miller-Tucker-Zemlin formulation to find the shortest path traveling through those points. That is solving a

Travelling salesman problem. I also explored the possibility to use K-means clustering to improve the design of precincts. This is done by group crime points according to its

nearest police station.

Model

K-means clustering[3]

For n data points (x1, x2, …, xn), where each xi is a equally dimensional real vector, k-means clustering partitions the n data points into k (≤ n) sets S = {S1, S2, …, Sk}, so that

the overall sum of the squares of the difference within cluster could be minimized. In formula, it finds:

where μi is the mean of points in Si.

Miller-Tucker-Zemlin formulation[4]

Given n nodes indexed from 1 to n and define:

Denote  to be the distance from node i to node j and introduce  as a dummy variable. Then we can formulate the TSP as the following integer linear programming

problem:

arg min
S

∑
i=1

k

∑
x∈Si

∥x − ∥μi
2

= {xij
1

0

the path goes from node i to node j

otherwise

cij ui

Typesetting math: 100%



The first and second set of constraints are degree constraints, which requires that each node can only be arrived at and departed from exactly once. The third constraint is the

subtour elimination. It can be shown that (1) every feasible solution contains one and only one subtour and (2) every single tour which goes through all nodes, there is a set of

feasible values for the  satisfying the constraints.

Implementation

The data for this project is from the Data2policy website[5]. We used Matlab to draw graphs and use K-means clustering to group the data points. The first attempt to group all

the data points at once cost too much computer running time, so we filter the data just by precinct 521 which significantly shrink the running time into seconds.

Once we find all the geometric centroids for the clusters and record their longitudes and latitudes, I can write an AMPL program to automatically calculate their distances with

each other. Due to the limit of human resource in our team, we use geometric distance to approximate the traveling time between those centroids. If time permitted, a better

model would incorporate a more accurate driving/walking time pulled out from Google Map. Plug into the AMPL program based on Miller-Tucker-Zemlin formulation. We

can then calculate and shortest path through all of the centroids. Drawing lines between those centroids according to the 0,1 outputs from AMPL program would give us the

shortest path.

min :∑
i=1

n

∑
j≠i,j=1

n

cijxij

∈ {0, 1}xij

∈ Zui

= 1∑
i=1,i≠j

n

xij

= 1∑
j=1,j≠i

n

xij

− + n ≤ n − 1ui uj xij

0 ≤ ≤ n − 1ui

i, j = 1, … , n;
i = 1, … , n;

j = 1, … , n;

i = 1, … , n;

2 ≤ i ≠ j ≤ n;
2 ≤ i ≤ n.

ui
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Figure 1: Centroids of

Precinct 521

Figure 2: Optimized

Patrolling route of Precinct

521

Figure 3: New Precincts

design for Denver

Results

Node Order Longitude Latitude

1 1 -104.8408 39.7877

2 8 -104.8134 39.7942

3 5 -104.8285 39.7868

4 11 -104.8193 39.7870

5 14 -104.8415 39.7806

6 13 -104.8108 39.7752

7 12 -104.8118 39.7844

8 6 -104.8459 39.7805

9 7 -104.8430 39.7954

10 4 -104.8341 39.7940

11 2 -104.8304 39.7763

12 15 -104.8178 39.7777

13 3 -104.8239 39.7779

14 10 -104.8359 39.7790

15 9 -104.8238 39.7944

Poster and Files

Please see my Github account for the poster and program files.

https://github.com/LDDCZCN/IP-Final-Project.git

Summary and Further Works

For a more efficient policing, we can use the K-means clustering technique to construct to precincts. Further improvements can be archived by incorporating more accurate

transportation information from Google Map and the capacity of each police station.

Among those precincts, the above procedures would help design better patrolling routes. Since the crime data varies from period to period, for the practical purpose, a program

which can automatically generate patrolling routes for every precinct by retrieving the data from the database and performing the above analysis would be applicable and more

attractive.
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Divide the crime data into day time crimes and nighttime crimes and types, the above procedures may produce different patrolling routes and reveal new information on the

distribution patterns of certain types of crimes.
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Contact Links

[orlando.2.gonzalez@ucdenver.edu Email]

Early Life and Background

Orlando Gonzalez was born in Jalisco, Mexico.

Projects

Clustering Neighborhoods in Order to Analyze Policy Needs

(http://math.ucdenver.edu/~sborgwardt/wiki/index.php/Clustering_Neighborhoods_in_Order_to_Analyze_Policy_Needs)
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Contact Links

Email (mailto:paul.guidas@ucdenver.edu)

GitHub (https://github.com/pgmath/)

About Me

My name is Paul Guidas and I am a BS/MS student studying applied mathematics with a focus in Operations Research/Optimization at CU Denver.

Education

1. Colorado State University, General coursework towards Mechanical Engineering and Computer Science
2. Front Range Community College, General coursework towards Network Administration
3. University of Colorado Denver, B.S./M.S. in Applied Mathematics - Expected Graduation in May 2025

Programming Languages/Experience

AMPL
Python

mailto:paul.guidas@ucdenver.edu
https://github.com/pgmath/


R
LaTeX

Projects

Fall 2023 - Emissions and Equality: Colorado Car Share Optimization with Colin Furey and Alana Saragosa.
Spring 2024 - Cycle Cancelling Algorithm
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Police and Fire Coordination: Response to Fatalities

From CU Denver Optimization Student Wiki

Police dispatch and Fire dispatch in Denver do not coordinate. However, they both respond to certain types of crashes. In order to facilitate cooperation between the different

services, we will match up each Fire Station with a unique Police Station which it can coordinate well with. Specifically, we will solve a Many-to-One matching problem for

Police Stations and Fire Stations, where the weights we are putting on the edges corresponds to how far away they are from car crashes. More specifically, we will solve the

following integer program (where  is the set of Fire Stations, and  is the set of Police Stations):

Where  and  is the set of all crashes we are considering.

Project by Eric Culver and Christina Ebben
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Police vs Firefighters

From CU Denver Optimization Student Wiki

Police dispatch and Fire dispatch in Denver do not coordinate. However, they both respond to certain types of crashes. In order to facilitate cooperation between the different

services, we will match up each Fire Station with a unique Police Station which it can coordinate well with. Specifically, we will solve a Many-to-One matching problem for

Police Stations and Fire Stations, where the weights we are putting on the edges corresponds to how far away they are from car crashes. More specifically, we will solve the

following integer program (where  is the set of Fire Stations, and  is the set of Police Stations):

Where  and  is the set of all crashes we are considering.
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Preflow-Push Algorithm

From CU Denver Optimization Student Wiki

This project is on the Preflow-Push Algorithm, used to find a maximum flow in a network.
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Abstract

In this project we analyze two different implementations of the preflow-push algorithm. We first examine the generic preflow-push algorithm, and then compare this to the

first-in, first-out(FIFO) preflow-push algorithm. We take a look at the running times of each of these implementations, and discuss examples of when the FIFO implementation

performs either better than or very similar to the generic implementation.

Project Summary

The Generic Preflow-push Algorithm

Consider a capacitated network  with a nonnegative capacity  associated with each arc . Define a source node  and a sink node  of . We

define a preflow as a function  such that:  and  The

preflow-push algorithm will maintain a preflow at each intermediate stage of the algorithm. For some given preflow , the excess of each node  is given by:

 Node that in any preflow,  for all . We refer to any node with a strictly positive excess as an active node.

The preflow-push algorithm works by selecting an active node and trying to remove its excess by pushing flow to its neighbors. The neighbors in which flow is pushed are

those which are closer to the sink node , where closeness is determined by distance labels which are updated throughout the algorithm. We refer to the distance of a node  as

. We also note that flow is sent only through admissible arcs, where an arc  is admissible if it satisfies the condition that . Any other arcs are

referred to as inadmissible.

Analysis of the gerneric Preflow-push Algorithm

As we discussed the proof of many lemmas and the theorem of the runtime of the generic preflow-push algorithm in class, we will give just a brief overview of the argument

of the runtime here as to not simply reiterate class materials.

Theorem 1:

The generic preflow-push algorithm runs in  time.

The key observations to support this argument are the following lemmas:

Lemma 2:

If the algorithm relabels any node at most  times, the algorithm saturates arcs at most  times.

G = (N ,A) uij (i, j) ∈ A s t G

x : A → R − ≥ 0 for all i ∈ N − {s, t}∑
{j:(j,i)∈A}

xji ∑
{j:(i,j)∈A}

xij 0 ≤ ≤  for each (i, j) ∈ A.xij uij

x i ∈ N
e(i) = − .∑

{j:(j,i)∈A}

xji ∑
{j:(i,j)∈A}

xij e(i) ≥ 0 i ∈ N − {s}

t i
d(i) (i, j) d(i) = d(j) + 1

O( m)n2

k km/2
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Lemma3:

Each distance label increases at most  times. Consequently, the total number of relabel operations is at most .

Lemma 4:

The generic preflow-push algorithm algorithm performs  nonsaturating pushes.

Code Implementation of the generic Preflow-push Algorithm

An implementation of the generic preflow-push algorithm in Sage is given on GitHub, with guidance taken from [1] and [2].

The FIFO Preflow-push Algorithm

We now introduce the first-in,first-out(FIFO) implementation of the preflow-push algorithm as presented in [1]. In order to describe how the FIFO implementation differs from

the generic implementation, we first describe the concept of node examination. For a selected node  in the generic preflow-push algorithm, the algorithm may perform a

saturating/nonsaturating push or relabel the given node. Note that if the algorithm performs a saturating push, then the node  may still be active. If this is the case, the

algorithm may then select a new node for a push/relabel operation. In the FIFO implementation, we implement a rule in which when the algorithm selects a node, it continues

to push flow from that node until the node's excess becomes zero or the algorithm relabels the node. Note that the algorithm may then perform many saturating pushes

followed by either a nonsaturating push or a relabeling. This sequence of operations is referred to as node examination. The FIFO implementation maintains the set LIST as a

queue. It selects a node  from the front of LIST, performs pushes from this node, and adds newly active nodes to the rear of LIST. The algorithm examines node  until it

becomes inactive or it is relabeled. If node  is relabeled, it is added to the rear of the queue. The FIFO implementation ends once the queue of active nodes is empty.

Complexity of the Preflow-push Algorithm

To help us examine worst-case complexity of the FIFO algorithm, we first partition the total number of node examinations into phases. Phase one consists the node

examinations for nodes that become active during the pre-process operation. Phase two is the the node examinations of all nodes in the queue after the algorithm has examined

all nodes in phase one. We continue in this manner, noting that the algorithm examines any node at most once during a phase. We present proofs similar to those in [3].

Lemma 5:

The FIFO algorithm performs at most  phases.

2n 2n2

O( m)n2

i
i

i i
i

4n2
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Proof:

Consider the potential function given by , and let  when there are no active nodes. We are interested in the initial value and final value

of  during a given phase. We consider two cases:

Case 1: The algorithm performs at least one relabel operation during a phase. In this case  may increase by the maximum amount a distance label can increase by. Thus, by

lemma 3, the total increase in  over all phases is at most .

Case 2: The algorithm does not perform an relabel operations during a phase. Then the excess of each node that was active at the beginning of the phase moves to nodes with

smaller distance labels. Therefore,  must decrease by at least one unit.

As  has initial value zero, final value zero, and is nonnegative, the total number of phases in which  decreases can be at most the total increase of  over all phases. Thus,

the number of phases of type 2 is at most . As there are at most distance label updates, there are also at most  phases of type 1. Therefore, there are at most 

phases.

Theorem 6:

The FIFO preflow-push algorithm runs in  time.

Proof:

As each phase examines any node at most once and each node examination performs at most one nonsaturating push, the FIFO preflow-push algorithm performs at most

 nonsaturating pushes by lemma 5. Therefore, the FIFO preflow-push algorithm performs  nonsaturating pushes. As the bottleneck operation for the

generic preflow-push algorithm is the number of nonsaturating pushes, we have that the FIFO preflow-push algorithm runs in  time.

A Comparison of the Two Implementations

When looking at the running times of these two implementations, it's clear the FIFO implementation has the potential to far outperform the generic implementation when

running on networks that have many edges. For instance, a network with multiedges(nonparallel) can have up to  edges, in which case the generic preflow-push

algorithm then runs in  time. It's also worth noting that in a connected network in which each arc has a corresponding arc in the opposite direction(which we assume),

the minimum number of edges is . Thus, for any connected network under our assumptions, . This implies we should in practice just always implement

this node examination rule for any implementation of the preflow-push algorithm. This is in fact what is done in practice.

Examples of Networks

Below we show two examples of networks. One in which FIFO outperforms the generic algorithm and another in which they perform similarly. A deeper analysis of the

performances on these networks is on GitHub.

Φ = max{d(i) : i is active} Φ = 0
Φ

Φ
Φ 2n2

Φ

Φ Φ Φ
2n2 2n2 2n2 4n2

O( )n3

n(4 ) = 4n2 n3 O( )n3

O( )n3

− nn2

O( )n4

2n − 2 ≤ mn3 n2
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FIFO outperforms generic

FIFO similar to generic

[1]

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:GoodFIFO.PNG
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:GoodFIFO.PNG
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:FIFOsimGen.PNG
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/File:FIFOsimGen.PNG


References

1. ↑ 1.0 1.1 1.2 Ahuja, Ravindra K., Thomas L. Magnanti, and James B. Orlin. "Network flows." (1988).
2. ↑ https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm
3. ↑ David P. Williamson and June Andrews "https://people.orie.cornell.edu/dpw/orie633/LectureNotes/lecture5.pdf"

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Preflow-Push_Algorithm&oldid=4826"

This page was last modified on 2 May 2024, at 11:41.
This page has been accessed 83 times.

Typesetting math: 100%

https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm
https://people.orie.cornell.edu/dpw/orie633/LectureNotes/lecture5.pdf
https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Preflow-Push_Algorithm&oldid=4826


Primal and Strong Duality of Linear Programs

From CU Denver Optimization Student Wiki

Contents

1 Abstract
2 Linear Programming basics
3 Duality

3.1 Farkas' Lemma
3.2 Strong Duality Theorem
3.3 Weak Duality Theorem

4 Examples
5 References

Abstract

A linear program is a problem of maximizing or minimizing a linear function of several variables to a system of linear constraints. The theory of linear programming concerns

itself with the study of duality. Duality theory is established through a series of statements about linear constraints which lead to Farkas’ Lemma and thus the existence of the

duality theorems. These results give bounds on the optimal solutions of the primal (original) linear program. In this project we will look at both duality theorems and their

implications on solving linear programs. We will also look at several applications of duality extending to the realm of network flows and graph theory.

Linear Programming basics

Linear programs are program where all of the constraints are linear. They have a set of  constraints and  variables defined by an  matrix. A linear optimization

problem takes the form:

With  as the objective function,  is the constraint matrix.  is the set of right hand side values for the constraint matrix. There are also conditions on .

m n m × n

max :
s. t.

xcT

∑A  = bxT

x ≤ or ≥ 0

xcT AxT b x
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Duality

In this section we will look at important results from duality theory. The first result is Farkas' Lemma. This lemma is key to proving the strong duality theorem.

Farkas' Lemma

The statement of Farkas' Lemma is:

Farkas' Lemma: Let . Either there exists  such that  and , or there exists  such that  and .

Proof of Farkas' Lemma: Let  and suppose that the 'or' case does not hold, so . Let  be the closed ball of radius  about , where

, so . Since  is closed and  is compact, there is a closest vector  to . If  then , whereas , so

 is a closest vector in  to .

Take any  and consider the line segment joining  to . Since  is convex, this segment lies in . Therefore for any  such that , we have

Hence, taking  to be a small positive number we have .

Set . Setting  we get , and so

Hence there exists  such that

for all . Fix . Since  for all  we have  for all . Taking  large enough, . Therefore 

satisfies the required conditions for the first case.

Farkas' Lemma Variant Let . Either there exists  such that , or there exists  such that  and .

We will now prove that Farkas' Lemma and the variant are equivalent. Suppose that Farkas' Lemma holds. If the 'or' case of the variant fails to hold then there is no 

such that

b ∈ R
m x ∈ R

n x ≥ 0 Ax = b y ∈ R
m A ≥ 0yt b = −1yt

C = {Ax : x ∈ ,x ≥ 0}R
n b ∉ C B R b
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b ∈ R
m x ∈ R
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m y ≥ 0, A = 0yt b = −1yt

y ∈ R
m
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and . Hence, by Farkas' Lemma, there exists  such that that  and

Therefore  and the first case of the variant holds.

Now suppose that the variant holds. If the first case of Farkas' Lemma fails to hold then there is no  such that  and

Let . Thus there is no  such that ,

and . Hence, by Farkas' variant, there exists  such that  and

Thus  and . By scaling we may assume that , as required for the second case of Farkas' Lemma.

Strong Duality Theorem

With Farkas' Lemma above we will prove the following theorem:

Strong Duality Theorem If both the primal and dual problems are feasible then they have the same optimal solution.

Proof Let  be the optimal value of the primal problem and let . Since there exists no  such that , there exists no 

such that

By the variant of Farkas' theorem there exist  and  such that ,

b = −1yt x ∈ < math > and < math > z ∈R
n

R
m x ≥ 0, z ≥ 0

( )( ) = bA Im
x

z

Ax ≤ b

x ∈ R
n x ≥ 0

( )( ) = 0.A −b
x

1

c = (0, … , 0, 1) ∈ R
n+1 w ∈ R

n+1 w ≥ 0

( ) = 0wt At

−bt

− c = −1wt y ∈ R
m y ≥ 0

( )y ≤ c.
At

−bt

y ≤ 0A
t y ≥ 1bt y = 1bt

∈ RτP τ = + ετP x ∈ R
n Ax ≤ b, x ≥ τct x ∈ R

n

x ≤ .
⎛

⎝

A

−In

−ct

⎞

⎠

⎛

⎝

b

0
−τ

⎞

⎠

y ∈ , z ∈R
m

R
n α ∈ R ( α) ≥ 0ytzt
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and . Thus  and .

Suppose that . Then, since  and , thus the dual problem is either infeasible or unbounded. This contradicts the Weak Duality Theorem

since, by asuumption, both problems are feasible. Therefore  and . So  and . Hence if  is the optimal value of the dual problem

then . By the Weak Duality Theorem it follows that . Since  was arbitrary we have .

Weak Duality Theorem

Weak Duality Theorem: If  is feasible for the primal problem and  is feasible for the dual problem then .

Proof: From  and  we get  (Fix this)

A nice implication of this is that if the primal problem is feasible then the dual problem is bounded, and if the dual problem is feasible then the primal problem is bounded. The

converses to these statements do not hold, because it is possible that both primal and dual problems are infeasible (and so, immediately from the definition, they are both

bounded): for example, take

Then for any  such that  we have , and for any  such that  we have .

Examples

In this example we will construct the dual program form the primal program. The way we do this is by taking the negative constraint matrix and switching the values on the

right hand side for the negative objective function values. Consider the example below:

First, find any feasible point in the primal problem given. For example,  is a feasible point. The objective function value for this point is

( ) = 0yt zt α
⎛

⎝

A

−In

−ct

⎞
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b − ατ < 0yt A = + αyt zt ct b < ατyt
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Since  is a feasible point, we know that the optimal objective function value is either at this point or at a point of greater value. Thus, any feasible point provides a

lower bound on the objective function value. This function value can be improved with another feasible solution . This gives the objective function value of . Now

that we have a lower bound for for our objective function, our next step is to get an upper bound. We do this by adding constraints together:

simplifying we get: 

Since each variable is greater than or equal to 0, we know

.

This implies that  is an upper bound on the objective function value. The difference between these  and  is called the duality gap. The goal of many optimization

problems is to make this gap as small as possible (zero is ideal) Since linear programs are always convex, the duality gap is 0. The only time there will be non-zero gap is if the

program is concave. (Reference)

The upper bound can be improved by adding the constraints together in different ways to get a lower upper bound. For example, adding the 2 of the third constraint to the

second constraint yields:

which is a lower upper bound than the previous one. Our goal is to find the the greatest lower bound (infimum) of the upper bounds. We accomplish this task by assigning

variables to each of the constraints and then solving for those variables to find an optimal solution. Using the variable , the constraints become:

Simplifying

Dropping the inequalities and rewriting

1(1) − 1(1) + 3(1) = 3

(1, 1, 1)
(0, 0, 2) 6
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− + 3 ≤ 5 + 2 + 3 ≤ 20x1 x2 x3 x1 x2 x3

20 6 20
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y
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+
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+
−
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x3y2
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10y1
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8y3
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We assume that each  variable's coefficient is at least as large as its objective function coefficient, so

Bringing back in the inequalities and remembering that each of the variables must be less than their corresponding coefficients, implies that is the upper bound. In order to find

the least upper bound, we minimize and get the following program

This program is the dual of the primal optimization problem. It is also possible to follow this same logic and get back to the primal problem.
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Programming Files

From CU Denver Optimization Student Wiki

The most common programming file types are .lp and .mps files. These are both file types that can be read by a wide variety of solvers. Many languages have solvers for these

built in. For example, Python has lpsolve55 as its default solver for .lp and .mps files. Python will be the standard language discussed, as most mathematicians have worked

with it. The solver for python, lpsolve55, was written for C++ and modified to work for python, which makes some of the implementation difficult in Python. However,

because Python is a higher level language and therefore further away from machine code, it is easier for humans to read and consequently understand. Therefore, this page will

be written using Python.

Contents

1 .lp Files
2 .mps Files

2.1 Dualizing a File
3 References

.lp Files

A .lp file is the most intuitive linear program file, as it is written much like a linear program in standard form. It has an objective function, constraints, inequalities and

equalities, and non-negaivity constraints where necessary. The following linear program is the same program found in the shadow price section of the wiki, but written as if it

was a .lp file:

max: 40 x 1 50 x 2 ;

x 1 x 2 <= 1000; 

x 1 <= 700;

2 x 2 <= 1100;

x 1 >= 300;

x 2 >= 300

Is the exact input into Python for a linear program once lpsolve55 has been called. Notice that there are no addition signs. This is because an .lp format can only handle linear

programs. However, if the variables were multiplied together the program would become non-linear. The solver that Python uses has a variety of algorithms that can be called

to use for solving any .lp file. These range from the simplex algorithm, which is the standard algorithm for lpsolve, to primal-dual algorithms and dual solve methods. The .lp

file can also be generated in Python, by writing a program in this form and then commanding "return = lpsolve('write_lp', lp, filename)" instead of "return = lpsolve('solve_lp',

lp)". [1]



While Python is a very easy language to do this in, there are some IDLEs that have interfaces that are tuned more for linear program writing, such as Lp_Solve. This program

can be used to write .lp files and solve them, and can be imported as a package into Python, Matlab, and many other languages to be solved in whatever language the user

prefers to code in.

.mps Files

.mps (mathematical programming system) files contain the same information that .lp files contain, but are written differently. While a .lp file is written vary similar to the

conventional way a linear program is written, while a .mps file is written in column format. For comparison, the previous program written in .mps form looks like:

name            friction

   n    cost

   l    lim1

   l    lim2

   l    lim3

   g    dem1

   g    dem2

columns

        xone    cost        40    lim1    1

        xone    lim2        1     dem1    1

        xtwo    cost        50    lim1    1

        xtwo    lim3        2     dem2    1

rhs

        rhs1    lim1        1000  lim2    700

        rhs1    lim3        1100  dem1    300

        rhs1    dem2        300

enddata

Notice how the program individually lists all of variables and their coefficients with the particular constraint.

Dualizing a File

In Python, generating the dual program is rather simple. Instead of creating a whole new program, one can simply take the known .lp file, import is after importing the lpsolve

package, and run the following code:

[obj, x, duals, return] = lpsolve('get_solution', lp)

This code will then print the objective function value, the dual objective function value, and the duals.

In order to get a file of the dual program, access the directory in in which the .lp or ,mps file is contained, then import the the lpsolve library and run the following code.

from lpsolve55 import *

lp = lpsolve('read_LP','My_Lp.lp')

lpsolve('solve',lp)

dlp.  lpsolve('copy_lp',lp)

lpsolve('dualize_lp',dlp)

lpsolve('write_lp',dlp,'My_DLp.lp')



This will return a file into the same directory as the file that My_Lp.lp is under the name My_DLp.lp.

References

1. ↑ "Lpsolve reference guide." Lpsolve 5.5 Referance Guide, 1999, lpsolve.sourceforge.net/5.5/. Accessed 15 Mar. 2017.
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Queue-Based Strategy to Achieve Maximum Stable Rate in Multi-user Network

From CU Denver Optimization Student Wiki

In this project, we will explore a strategy determined by linear programming to stabilize queues in a multicast communication network. The strategy will maximize the
communication rate with no loss of packets.

This project is for MATH5593 Linear Programming at the University of Colorado-Denver, Fall 2019. Student contributors: John McFarlane and Sajjad Nassirpour

Contents

1 Abstract
2 Motivation
3 Queue-based strategy
4 System Stabilizing
5 Link to GitHub page
6 References

Abstract

Nowadays, multi-user wireless networks are gaining more and more popularity due to their high efficiency. For instance, in LTE cellular networks, transmitters can deliver its

packets to some users at the same time and service different users with the same infrastructure. There are a lot of communication models which are used in multi-user

networks. In this project, we focus on multicast channel model which means transmitters should deliver packets to all users and we need a communication strategy to deliver

all packets successfully. In this project, we use a queue-based strategy to handle the packets in our scheme and use network codes probabilistically to ensure packets are

delivered to all users. Most ideal studies on network coding assume infinite queue length. We constrain queues to finite length and consider more practical multi-user networks

with bounded queue lengths.

In the new stable queuing model, each packet in a queue is associated with an index set indicating users that still require the packet. Our objective is to maximize the input rate

under the queue stability constraint that no packet can be dropped from overflowing the queues. We will first introduce some basic and important concepts of multi-user

networks, will formulate as a linear programming problem, and propose a network coding-based packet scheduling scheme that finds the optimal solution. Finally, the

simulation results with AMPL corroborate our method.
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Figure 1: Multi-user Network

Figure 2: Source Packet Generation

Motivation

Example of Multi-user Network

In our multicast transmission model (Figure 1), we want to maximize the rate of packet delivery and transmit all
packets to our users with zero packet losses. This project will focus on transmissions inside a subnet of the larger
internet, where there is only one packet source transmitting to a given number of receiver clients (see blue box).

Assume that the transmitter has a finite number of packets it can store in buffers for later transmission. This problem
is the impetus for the communication strategy discussed in this project.

Assume that the  channels between the transmitter and each of the  receivers are packet erasure channels. That

is, there are  independent probabilities  that a packet sent from the transmitter is not received at a given receiver
and there are  independent probabilities  that a packet sent from the transmitter is received at a given

receiver. Assume that the  channel erasure probabilities can be observed at the transmitter. Assume the channels
are slow-fading. That is, assume the channels have a long coherence time compared to the time they are in use.

Multicast Transmission Model

Assume packets are stochastically (randomly) generated at the source of the system with a variable

rate  (Figure 2). Assume that the packet arrivals rate is stationary, meaning that it

does not change over time.

Newly arriving packets at the transmitter are placed in the initial queue. Call the initial queue in the
system queue 0 to indicate that none of the receivers in the system have received the packets in this
queue. All receivers in the system require these packets and the system manages additional queues
(discussed in section "Queue-based strategy" below) according to where the packet has been
received.

N N
N ϵi
N = 1 −γi ϵi

N

= E[ (t)]λin A0
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Figure 3: System Communication Rate

Figure 4: Packet Queues in System

Figure 5: Queue Movement for Packets

Because our goal is to deliver packets to all receivers,  and we wish to maximize

 (Figure 3). The transmitter in this system has finite buffer lengths, so the transmitter must transmit
the packets in a manner that is most efficient given transmission success probabilities from the
transmitter to each receiver. The transmission strategy in this project uses queue-based packet
management.

Queue-based strategy

Details Of Queue-based strategy

The queues managed at the transmitter are defined by the set of users which still need to receive the
packets. When a packet moves to another queue where it is still required by a number of receivers, it
must still be retransmitted using network coding.

The queues/index sets can be described as follows:

The initial queue in the system that indicates that all receivers {1, 2, 3} in the system require the
packets in this queue. As soon as a packet is transmitted and successfully received at any queue, the
packet will leave this queue.

A queue in the system that indicates that receivers {1, 2} in the system require the packets in this

queue. This queue can be reached by packets from  if the former  packets are received at

receiver 3.

A queue in the system that indicates that receivers {2, 3} in the system require the packets in this queue. This queue can be reached by packets from  if the former

 packets are received at receiver 1.

= = λλout λin
λ

Q0

Q1

Q0 Q0

Q2
Q0
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A queue in the system that indicates that receivers {1, 3} in the system require the packets in this queue. This queue can be reached by packets from  if the former

 packets are received at receiver 2.

A queue in the system that indicates that receiver {1} in the system requires the packets in this queue. This queue can be reached by packets from  if the former 

packets are received at receivers {2, 3}, from  if the former  packets are received at receiver 2, or from  if the former  packets are received at receiver 3.

A queue in the system that indicates that receiver {2} in the system requires the packets in this queue. This queue can be reached by packets from  if the former 

packets are received at receivers {1, 3}, from  if the former  packets are received at receiver 1, or from  if the former  packets are received at receiver 3.

A queue in the system that indicates that receiver {3} in the system requires the packets in this queue. This queue can be reached by packets from  if the former 

packets are received at receivers {1, 2}, from  if the former  packets are received at receiver 2, or from  if the former  packets are received at receiver 1.

For each of these queues, the packets can leave the system entirely if they are transmitted and received at the received indices associated with their queues. The
probability of transition between sub-queues at any given transmission period is dependent upon how often packets are selected from the sub-queues and the channel
state parameters.

Network coding is used to combine packets utilizing the fact that some of the combined packets are known at the receiver and the relevant packets can be decoded from
the combined packets. For the network coding, the index sets must be mutually exclusive (i.e. no intersection between any two index sets) to ensure the received packet
is instantly decodable at all intended users. Also, the union of the index sets should be a full user set so that every network coded packet provides new information to as
many users as possible.

Assigning Network Coding based on Queue-based Strategy

The listed network codes are formed because the combined receiver indices of the queues sets contain receivers 1-3 (reference figure 4 for which receivers are needed

for each queue). Scheduling methods must be applied for choosing network codes to combine packets with the correct probabilities  so that the queues will not grow
boundlessly over time.

Q3
Q0

Q0

Q4
Q0 Q0

Q1 Q1 Q3 Q3

Q5
Q0 Q0

Q1 Q1 Q2 Q2

Q6
Q0 Q0

Q2 Q2 Q3 Q3

Pi

Typesetting math: 100%



Figure 6: System Network Codes

Figure 7: Dropping Packets from Finitely-sized Queues

System Stabilizing

Problem of Queue-based strategy

If the system does not devote a high enough percentage of the time transmitting from a given queue,
packets can accumulate and backlog in the queue. If the number of backlogged packets grows too
large, the queues overflow and packets are dropped.

Formulate the strategy for selecting network codes for transmission (determined with a focus on
which queues make up the network code) into a linear programming problem by solving which we
gain the maximum input rate (optimal stable input rate) while the transmitter sub-queues are
guaranteed to be stable. Under the queue stability constraint, the input rate equals the services rate,
which is also the network throughput.Therefore,the maximum stable input rate provides the
maximum achievable network throughput when bounded queuing system is considered.

Queue Stability Analysis

Number of packets in queues = 

Network Stability

A network is strongly stable if all individual queues of the network are strongly stable.

(t + 1) = max[ (t) − (t), 0] + (t)Ui Ui μi Ai

(t) : number of packets inside the queue i at time tUi

(t) : number of packets left the queue i at time tμi

(t) : number of packets arrived at queue i at time tAi
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Figure 8: Solutions for different error probabilities

Linear Program for selecting optimal transmission probabilities

 maximize: 

   

 

 subject to:

   

   

   

   

   

   

   

   

   

   Where  = arrival/departure rate,  = queue , 

    = probability of transmitting using channel code , 

    = transmission erasure probability for channel between transmitter and receiver , 

    = transmission success probability for channel between transmitter and receiver 

Examples: Optimal solutions for the Linear Program

Figure 8 shows optimal solutions for the LP given certain

error probabilities. Looking at these intuitively:

Row 1: With an lower overall error probability, the

system will most often choose to transmit from ;

Row 2: Increasing the error probability for all
channels, there will be a higher probability of
retransmission from queues with one remaining
receiver;
Row 3: Since the channel between the transmitter and

receiver 3 is weaker,  will grow faster than other queues so  (  and ) most be selected more frequently;

Row 4: similar to Row 2 example, again, since the overall error increases. Increase  because that is the network code that contains the set with receivers 2 and 3.

Extension to the Linear Program This LP to find the optimal solution, while it works in this case, grows exponentially in complexity if receivers are added to the system.

The number of queues is  and the number of possible codes is a Bell number.

λ

: λ − ⋅ ( ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ) ≤ 0;Q0 P0 e1 e2 γ3 e1 γ2 γ3 γ1 γ2 γ3 γ1 e2 γ3 e2 e3 γ1 γ1 γ2 e3 e1 e3 γ2

: ⋅ ⋅ ⋅ − ⋅ ( ⋅ + ⋅ + ⋅ ) ≤ 0;Q1 P0 e1 e2 γ3 P2 γ1 γ2 e1 γ2 γ1 e2

: ⋅ ⋅ ⋅ − ⋅ ( ⋅ + ⋅ + ⋅ ) ≤ 0;Q2 P0 e2 e3 γ1 P3 e2 γ3 γ2 γ3 e3 γ2
: ⋅ ⋅ ⋅ − ⋅ ( ⋅ + ⋅ + ⋅ ) ≤ 0;Q3 P0 e1 e3 γ2 P4 γ1 γ3 e1 e3 γ1 e3

: ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ − ( + ) ⋅ ≤ 0;Q4 P2 e1 γ2 P0 e1 γ2 γ3 P4 e1 γ3 P1 P3 γ1
: ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ − ( + ) ⋅ ≤ 0;Q5 P2 e2 γ1 P0 e2 γ1 γ3 P3 e2 γ3 P1 P4 γ2
: ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ − ( + ) ⋅ ≤ 0;Q6 P3 e3 γ2 P0 e3 γ1 γ2 P4 e3 γ1 P1 P2 γ3

∑ = 1Pi

λ Qi i
Pi i
ei i

= 1 −γi ϵi i

Q0

Q6 P2 Q1 Q6
P3

− 12N
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Link to GitHub page

Our AMPL code and presentation Pdf file are available at https://github.com/SajjadNassirpour/Stable-Queue-based-network-

References

N. Moghadam and H. Li, “A new wireless multicast queuing design using network coding and data-flow model,” IEEE Commun. Lett., vol. 20, no. 8, pp. 1603–1606,
Aug. 2016 [[1] (https://ieeexplore.ieee.org/iel7/4234/5534602/07469846.pdf)]
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Quinsen Joel

From CU Denver Optimization Student Wiki

I am a MEng in GIS and Geomatics student in the Civil Engineering Department at the University of Colorado Denver. I completed my Bachelor of Arts in Geography at the

University of Colorado Denver where I was first introduced to GIS and geospatial data. I am currently working as an intern under the Geospatial Data Science group at the

National Renewable Energy Laboratory (NREL). I'm interested in learning how mathematical and computational techniques can connect with Geography.

I am currently taking Network Flows with Steffen Borgwardt and contributed the following project: Assignment of Reservoirs for Pumped Hydro Storage Systems

Link to Github Page

Assignment of Pumped Hydro Storage Reservoirs Presentation (https://github.com/qjoel6398/Assignment-of-Pumped-Hydro-Storage-Reservoirs%7C)
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Rachel Snyder

From CU Denver Optimization Student Wiki

About Me

Hi! I'm Rachel Snyder, and I am a first year PhD student at the University of Denver Colorado. I am interested in discrete mathematics, particularly enumerative combinatorics

and graph theory.

Projects

I am currently working on the Catalan Numbers.
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Rebecca Robinson

From CU Denver Optimization Student Wiki

Contents

1 About Me
1.1 Education
1.2 Hobbies

2 My Contributions to the Wiki

About Me

My name is Rebecca Robinson and I am in my third year in the Applied Mathematics Ph.D program at the University of Colorado -

Denver. I specialize in graph theory, and I am currently working on a Master's project with Dr. Stephen Hartke involving really cool graph coloring stuff.

Education

I obtained my B.S. in Mathematics (Concentration in Abstract Mathematics) with minors in Biology and Chemistry from the University of Michigan - Flint in 2017. My

capstone project involved using Markov chains to model the viral-like spread of internet memes. I also completed an Honors thesis about chromatic polynomials.

Hobbies

Outside of mathematics, I enjoy playing board games with friends, taking my four-year-old black lab River out to breweries, and checking out the Denver area craft beer scene.

I am also known for having a different hair color almost every month.

My Contributions to the Wiki

In Fall of 2019, I worked on An Integer Linear Programming Approach to Graph Coloring with Megan Duff.

In Spring of 2020, I worked on Sollin's Algorithm for Minimum Spanning Trees.

In Spring of 2021, I worked with Drew Horton on combating inequality in access to fresh foods and produce in our project, Hungry for Equality: Fighting Food Deserts.
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Reducing Crimes with a Cleaner Solution

From CU Denver Optimization Student Wiki

Introduction:

The Traveling Salesman Problem(TSP) is one of the most famous integer programming algorithm. The concept is simple, find the quickest/cheapest/shortest path to visit a

certain amount of locations. The solutions become far from simple, especially when the amount of locations increases to larger numbers. We plan to find that solution for a

very specific case. The city of Denver has a large amount of parks in which we could apply TSP algorithms to. Our goal is to set up routes for anyone who wants to, or has to,

clean the parks of Denver.

Abstract:

Parks have always been a place for communities to come together. In fact, several studies have shown that a clean park can help reduce the crime of the area in and around the

park. We will use this knowledge to develop plans to clean and maintain parks more efficiently. The solution involves solving a famous integer program called “The Traveling

Salesmen Problem.” We plan to implement Christofide’s algorithm to find a route for city workers, volunteers, or any person who cares about the environment to visit and

clean our parks in a quick, efficient manner. The data sets that we will use about park size and location will be taken from the Data to Policy website. Distances will be

calculated using the taxicab geometry through online software. Results will be presented at the semiannual Data to Policy conference.
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Return To School Success In Times of COVID

From CU Denver Optimization Student Wiki

This project is by Alyssa Newman, and is for the Integer Programming course in Spring of 2021.

Abstract

A big issue currently facing not just Colorado, but the whole world is how to send children back to face-to-face learning after a year or remote learning. Schools are looking at

how to make improvements to the school over this summer to make next years’ experience safe and as successful as possible. In this project I am developing an optimization

model that will aid schools in making difficult decisions on what policies to implement and changes to make in their school. This model will use integer programing

techniques to make suggestions on policies and changes. This model will take into account many things, including the budget restrictions the school has, and the short term and

long-term benefits to students learning and experience. The school administrators using the this tool will be able to specify which policies they are considering and also put in

information like their budget to get suggestions tailored to them.

GitHub links

All information, including code, slides, and 5 minute Data to Policy video can be found at https://github.com/ANewman94/Return-To-School-Success-In-Times-of-COVID
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Sajjad Nassirpour

From CU Denver Optimization Student Wiki

This is Sajjad Nassirpour. I am a first year PhD student at electrical engineering department at CU Denver. My major field is Information Theory in wireless communication

systems. There are a lot of optimization problems in Information Theory which are considered as Linear programming problems. In fall 2019, I decide to work with John

McFarlane on a problem in wireless communication involving the queue-based strategy to achieve maximum stable throughput in multi-user topology, the link is Queue-Based

Strategy to Achieve Maximum Stable Rate in Multi-user Network
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Sam's Hauling and Vehicle Routing Problems

From CU Denver Optimization Student Wiki

Sam's Hauling is a mini dumpster rental service for the greater Denver area. As described at www.samshauling.com (http://www.samshauling.com), the lease dumpsters for

private use suck as homeowners, remodelers, contractors, and roofers. When the dumpsters are filled, Sam's Hauling also unloads the dumpsters at a landfill.

Every day, Sam's Hauling has to schedule times to pick up or drop off these dumpsters for all the requests people have made the next day. When done by hand, this takes a lot

of time. Thus, software to efficiently schedule their routes could improve their efficiency.

In this project, we experiment with a particular simplified formulation of their problem and test the problem's tractability with the commercial optimization software Cplex.

The goals of this project are to demonstrate how mixed integer programs arise in practice and to gain experience solving integer programs with software libraries. The code I

used can be found at Sams code.

Contents

1 Problem Context
1.1 Traveling Salesman Problem
1.2 Vehicle Routing Problem

2 Tractability
3 Model Assumptions

3.1 Description
3.2 Simplifications

4 Formulation
4.1 Previous Heuristic
4.2 Constraints
4.3 Inventory Constraints
4.4 Objective

5 Computational Results
5.1 Implementation Details

5.1.1 Problem Generation
5.1.2 Source Code
5.1.3 Local Search
5.1.4 CPlex API
5.1.5 Example output

5.2 Runtimes
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Problem Context

There are various well-known problems that can be used to model most aspects of this problem including the Vehicle Routing Problem (VRP) and the Pickup up Delivery

Problem. In this section, we will discuss the background and tractability of the VRP and related problems.

Traveling Salesman Problem

We will first note that the VRP is a generalization of the Traveling Salesman Problem (TSP), first posed in the 1800s by W. R. Hamilton. We construct a directed graph

 where nodes in  are locations (or stops) that must be visited and the edges in  are routes between the edges. If we assign a cost  to edge  for each edge

in  and use  to denote the set of edges directed out of or into any node within , then the TSP can be formulated as

The decision variables  indicate if edge  is used in the path. The first constraints ensure that each node is visited once, while the second are called "sub-tour elimination"

constraints and ensure that there are no cycles that are not connected to the rest of the cycle. Note that this last type of constraint implies an exponential number of constraints:

one for each subset of . With only these variables, the TSP cannot be formulated with fewer constraints. However, there is another formulation due to Miller, Tucker, and

Zemlin using only quadratic number of constraints by introducing auxiliary variables  and instead requiring

instead of the sub-tour elimination constraints.

Vehicle Routing Problem

The vehicle routing problem is a generalization of the traveling salesman problem in that it allows several salesmen to visit each node of the graph. Each salesman is usually

required to start and end at a single node called the "depot" which is usually chosen to be node  for convenience. Within a VRP given data stating a number of vehicles or

drivers and several locations that need to be visited by the drivers. We then ask to minimize the amount of time required to visit these locations, although different objectives

will be discussed as well.
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Let  denote the number of drivers that are available to service the stops. If a function  representing the minimum number of vehicles required to visit any

subset of the vertices is known, then Dantzig, Fulkerson, and Johnson showed the VRP can be formulated as

This time, the first two constraints require that each node aside from the depot must be visited once, while constraints the next two require that exactly  must leave and enter

the depot. Finally, the second to last constraints replace the sub-tour elimination constraints.

There are several extensions to the VRP that may be relevant here. The first is the Vehicle Routing problem with pick up and delivery. In this problem, rather than finding the

minimum distance to visit all nodes, we are asked to move goods from pick up locations to drop off locations. Another is the Vehicle Routing Problem with Time Windows, in

which nodes are assigned a range of values for which the vehicles can visit each node. This is the case for Sam's Hauling. The last that we briefly mention is the capacitated

Vehicle Routing Problem in which vehicles of constraints on how many goods they can carry. This may have bearing on our problem if we modeled all parts of our problem.

Tractability

Traveling salesman problems and Vehicle routing problems are notoriously difficult, NP-hard problems. I found that Cplex begins to take several minutes to solve traveling

salesman problems as problem size reaches around  nodes. One of the well-known libraries for solving TSPs is TSPLIB which has solved an 85,900 city TSP, although

optimality for solving a TSP of this size cannot be expected in general.

A common technique for solving these problems is to use heuristics including ant colony optimization, tabu search, genetic algorithms, simulated annealing, scatter search and

particle search among many others. Many of these techniques can use a distance function between known solutions, or a local search to improve the quality of solutions found.

One way of performing local searches is to define operations for moving between solutions and a neighborhood about a given solution that includes all other solutions that are

can be reached from the current solution within a specified number of operations.
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One common choice of operations to move from solution to solution that has proven to be useful for the TSP is -opts. An -opt is constructed by breaking a cycle at  edges

of a solution and recombining these. These can be used within more complicated heuristics or even branch and bound to provide warm starts and feasible solutions with strong

global upper bounds on the solution. For example, a -opt is formed by removing two edges and flipping the order of the middle path. If one part is the nodes ..., A, B, C, D, ...

and the other part is ..., E, F, G, H, ... these can then be exchanged to ..., A, B, F, E, ... and ..., C, D, G, H, ...

To the right, there is an example of one -opt. The cycle 9, 10, 11, 12, 13, 14, is replaced with 9, 12, 11, 10, 13, 14 to find a better cycle.

Notice that all cycles are within an -opt of eachother where .

Model Assumptions

Description

There are several details of Sam's Hauling that would be required to provide good schedules for Sam's Hauling. To start considering these, we

first describe the logistics of Sam's Hauling.

Sam's Hauling leases four different types of dumpsters: six, nine, twelve, and sixteen-yard dumpsters. Customers can rent any of these

dumpsters and will give Sam's Hauling a request to either pick up, deliver, or replace a dumpster of the given size. In this case, a replace can

be thought of as both a delivery followed by a pick up. Additionally, these requests may have associated time windows when the customer

needs the request to be serviced.

The typical number of requests per day is on the order of  to . Sam's Hauling has eight drivers to service these requests with ten trucks

of various sizes. Only the largest truck type can service dumpster requests of the largest size, while some locations can only be serviced by the

smallest truck as it is more maneuverable.

The dumpsters retrieved from the pick ups must be dumped at one of four landfills throughout Denver, which can have varying wait times or

unloading fees. At each landfill, Sam's Hauling owns space to store their small supply of unused dumpsters after pick ups that are ready to be

delivered to future customers.

The number of dumpsters at each landfill is called the landfill's inventory, so inventory constraints require that the number of dumpsters at each landfill must remain positive.

(We can pick up a dumpster from a landfill that has no dumpsters.) The inventory constraints are of particular concern as we have developed a heuristic that can find good

solutions to the routing problem, but which required many more available dumpsters at each depot. This heuristic did not perform well when including these inventory

constraints. Note that the schedule may ask that some drivers make trips between dumpsters with only the intention being to take move a dumpster from one landfill to another

so that a subsequent driver can pick it up.

A good model may also include some stochastic components. For example, upon servicing some pick ups the dumpsters may require additional cleaning time if, for example,

it has been graffitied. Also, drive times between destination and wait times at landfills may vary randomly across the day.

Finally, the last modeling complication we mention is that of nesting dumpsters. It is sometimes possible to nest empty dumpsters inside of each other to allow multiple

deliveries after visiting a given landfill.

n n n

2

2
n n = |V |

30 40
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Simplifications

Although we have a model that describes many of these aspects, we will only consider the simplest of models as input for Cplex. In particular, we will make all of the

following assumptions:

We only consider a single dumpster size

Considering more dumpster sizes is not much harder, but complicates the model unnecessarily by adding several indices.

We assume only one type of truck capable of servicing all requests

This also allows a one-to-one mapping between drivers and trucks.

We assume no time windows
The time between stops is constant (we used a google API to determine distances between locations in Denver)

Formulation

Previous Heuristic

Because a heuristic I used in the past influenced the formulation provided here, we will very briefly describe it. Because each driver must visit one of the landfills no later than

his third stop from a previous landfill, we found it convenient to break schedules into ``legs." Each leg begins and ends in a landfill and can optionally have a delivery

followed by an optional pick up. The heuristic had three phases:

Assign deliveries to pick ups (This is a matching problem that is easily solved.)
Form ``legs" between landfills and deliveries and between pick ups and landfills
Assign each leg to a particular driver's route.

Then we would consider slightly less than optimal assignments of legs or assignments of deliveries to pick ups to see if shorter routes could be created. The assignment phase

did not assign any deliveries to pick ups where the cost of doing so was greater than servicing the delivery alone. Lastly, pick ups were assigned to landfills based on the

inventory at that landfill.
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Constraints

The models proposed earlier in this section use decision variables for each \emph{edge} to indicate if they are taken. However, this makes several other aspects more difficult

to model. Instead, we use a formulation that assigns requests to positions in a driver's schedule. This may not be the most efficient formulation as it requires many more

variables, but it is more similar in structure to the heuristic that we developed earlier. We had hopes of warm starting Cplex using this heuristic so that we went with this

formulation.

With eight drivers and thirty requests per day, most drivers don't visit more than eight stops. Therefore, we started by breaking each route into a sequence of  legs. Choosing

a value of  that is too small will make the program not feasible if there are not enough legs to service all requests. However, there are values of  too small may force

deliveries to be grouped with pick ups that should not be. Therefore care must be taken to chose  large enough to allow the optimal solution, but small enough that the

problem is still tractable. For each driver, within each leg, a binary variable was created representing which path from landfill to delivery to pick up to delivery was chosen.

That is all possible legs are enumerated first: if there are  pick ups,  deliveries, and  landfills there are  different possible legs.

(The plus ones indicate that a deliver or pick up is not visited.) We then create a boolean variable  to determine whether driver  uses leg

 as his th leg.

We can use data indicators  to be  if leg  services pick up , and zero otherwise. We create data indicators 

to indicate if leg  services delivery . Lastly, we create data indicators  and  to indicate if leg  starts at or

finishes at landfill .

The last ingredient is the time. We can assign a time  completed to each leg in a driver's route. If the time required to take leg  is given

by , then we can create an auxiliary variable  to simulate the maximum time take by all any driver.

Then we can finally write the constraints as follows, the set of all  that satisfy

R
R R

R
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will be denoted as .

The first two constraints require that each pick up and deliver is visited exactly once. Next, we dictate that a driver cannot leave a landfill he did not enter in the last leg. Then

we ensure that each driver must start and end at the first depot. Lastly, before considering time constraints, we ensure a driver can only do one thing during each leg.

The first time constraint says that the completion time of the th driver on his th leg must be greater than his time at the  stop plus the time taken on the th leg, while

the third to last constraint requires that the total time  must be bigger than any time taken by any driver.

I am not proud of the constraints and variables used, but this is a somewhat simple way to formulate the problem. It would likely be better to formulate the problem with edges

between each stop. Another major problem with this formulation is that it has symmetry issues. Note that if a driver stays at a landfill for leg , then that driver could have

stayed at another landfill for any other leg. Not only this, but all drivers are indistinguishable.

Many of these constraints are what are known as specially ordered sets or  constraints, which are typically nicer, as the depth of a branch and bound tree only needs

to be logarithmic in the number of variables. These kinds of constraints require only one of a set of binary variables to be turned on. This may let the optimization library make

better branches. One example of how this kind of information could be useful is in the following: if  are binary variables such that
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, a niave approach would be to branch on  or , and continue in the fashion. However,

this would lead to a complete enumeration of all possible solutions, it may be much better to branch on  or

 to limit the number of branches. This indication that  are in an  constraint may allow the library to make smarter branches.

Inventory Constraints

The original plan was to also consider inventory constraints. These constraints are very problematic because the apply to all drivers based on the time. One approach would be

to first solve the problem without inventory constraints. Given a solution, we could simply check what times the inventories become negative and add constraints to ensure that

all inventories are positive at that time. For example, if it a solution to the previous problem becomes infeasible at times  for some set times , we could try

to rule these solutions out in the following manner. Suppose that the initial inventories are given by . We introduce nuisence variables

 to signify if the th leg of driver  is completed before time . We can ensure this by stipulating that

where  is an arbitrarily large number. Then we create inventory variables  for each time  at each landfill . These are integers but do not need to be explicitly declared as

such as they will be forced to be integral within the program. We can create data  representing the change in inventory at landfill  from

performing leg . For example, if leg  pick ups up a dumpster from landfill  and delivers it before pick up up a dumpster on the way to landfill , then  and

. Then inventories can be tracked with the constraint

The last piece is to ensure that the inventories are never negative:

However, there is a major problem with this approach: it introduces quadratic terms between . There are ways to enforce linearity because these are both binary

variables, but this formulation is already out of hand without including inventory constraints. Another caveat is that this does not make a distinction between a dumpster being

taken at the \emph{beginning} of the leg and a new dumpster being delivered at the \emph{end} of the leg.

The inventory constraints make most otherwise feasible solutions infeasible, as the  are usually small. Because these constraints cut off much of the feasible region, these

could be nice to include within a search algorithm to narrow the number of solutions to be tested. However, adding them to a linear program formulation makes the problem

much more complicated and do not imply a speed up.
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Objective

There are many different considerations when choosing the objective. One thing that might be nice to consider is the end of day inventories: if we leave a landfill with no

dumpsters, then scheduling the next day may prove to be difficult. Also, in practice, we really wish to maximize the number of stops we are capable of visiting, subject to

finishing the stops in one day.

Initially, we chose to minimize the time taken to service all requests, that is . However, this has some drawbacks. First of all, it introduces

much more symmetry: the objective does not change for several different solutions where the driver who takes the most time does not change his route. Also, the cost in time is

simply the sum of all times:  so that if we could make this smaller without affecting the longest time spent by any driver. However, simply minimizing this

assigns nearly all stops to a single driver. Therefore, we introduced a parameter  and minized a weighted sum of both of these expressions:

. In our code, we assigned .

Computational Results

Implementation Details

Problem Generation

To learn how to use Cplex, we created randomly generated problem sets, with locations being chosen with a uniform distance over  distances given by the euclidean

norm. We considered values of  between  and , values of  between  and , values of  between  and , values of  between  and .

Source Code

The source code I used has most likely changed since I edited this, but a snapshot containing most of the work is contained at Sams code.

Local Search

Initially, I used the object , and I found several solutions that were visibly less than optimal by changing only a few vertices. However, upon

further examination, I realized that these were only improvements for drivers whose time was not the maximum time. Upon changing the objective to

, I was no longer able to find simple solutions to the solutions found by Cplex.

My attempts are found in LocalSearch.java. The local search operation was to change any two sequential landfills within a route while swapping any two delivers or two

swapping any two pick ups. Unfortunately, swapping any two delivers or swapping any two pick ups at the same time was too expensive. I had hoped that by starting a random

search, and sequentially improving the solution by considering all these changes would provide a good warm start to the cplex optimizer. However, the cplex solver was good

enough that even after a few seconds, I was not able to improve the solutions Cplex had.
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Example output of the cplex

solver

CPlex API

While solving the MIP, cplex maintains a pool of feasible solutions currently found. Although this may not be the proper approach, I used the populate method to give breaks

while solving for me to access these. However, this did not reduce the optimality gap as quickly as simply calling the solve method.

Example output

Shown to the right, is example output from the cplex solver. Red circles correspond to deliveries, blue circles are pick ups, and green circles

are landfills. The lines between these circles are the routes chosen by cplex, and the landfill all the way to the right is the beginning depot.

Runtimes

Cplex was not able to solve this formulation for realistic problem sizes. I found that with , , , , cplex was able

to solve to optimality within  seconds. If I let cplex run for one minute, the optimality gaps found by cplex were:
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Sam's Hauling and Vehicle Routing Problems

From CU Denver Optimization Student Wiki
(Redirected from Sam's Hauling and Vehicle Routing)

Sam's Hauling is a mini dumpster rental service for the greater Denver area. As described at www.samshauling.com (http://www.samshauling.com), the lease dumpsters for

private use suck as homeowners, remodelers, contractors, and roofers. When the dumpsters are filled, Sam's Hauling also unloads the dumpsters at a landfill.

Every day, Sam's Hauling has to schedule times to pick up or drop off these dumpsters for all the requests people have made the next day. When done by hand, this takes a lot

of time. Thus, software to efficiently schedule their routes could improve their efficiency.

In this project, we experiment with a particular simplified formulation of their problem and test the problem's tractability with the commercial optimization software Cplex.

The goals of this project are to demonstrate how mixed integer programs arise in practice and to gain experience solving integer programs with software libraries. The code I

used can be found at Sams code.
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Problem Context

There are various well-known problems that can be used to model most aspects of this problem including the Vehicle Routing Problem (VRP) and the Pickup up Delivery

Problem. In this section, we will discuss the background and tractability of the VRP and related problems.

Traveling Salesman Problem

We will first note that the VRP is a generalization of the Traveling Salesman Problem (TSP), first posed in the 1800s by W. R. Hamilton. We construct a directed graph

 where nodes in  are locations (or stops) that must be visited and the edges in  are routes between the edges. If we assign a cost  to edge  for each edge

in  and use  to denote the set of edges directed out of or into any node within , then the TSP can be formulated as

The decision variables  indicate if edge  is used in the path. The first constraints ensure that each node is visited once, while the second are called "sub-tour elimination"

constraints and ensure that there are no cycles that are not connected to the rest of the cycle. Note that this last type of constraint implies an exponential number of constraints:

one for each subset of . With only these variables, the TSP cannot be formulated with fewer constraints. However, there is another formulation due to Miller, Tucker, and

Zemlin using only quadratic number of constraints by introducing auxiliary variables  and instead requiring

instead of the sub-tour elimination constraints.
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Vehicle Routing Problem

The vehicle routing problem is a generalization of the traveling salesman problem in that it allows several salesmen to visit each node of the graph. Each salesman is usually

required to start and end at a single node called the "depot" which is usually chosen to be node  for convenience. Within a VRP given data stating a number of vehicles or

drivers and several locations that need to be visited by the drivers. We then ask to minimize the amount of time required to visit these locations, although different objectives

will be discussed as well.

Let  denote the number of drivers that are available to service the stops. If a function  representing the minimum number of vehicles required to visit any

subset of the vertices is known, then Dantzig, Fulkerson, and Johnson showed the VRP can be formulated as

This time, the first two constraints require that each node aside from the depot must be visited once, while constraints the next two require that exactly  must leave and enter

the depot. Finally, the second to last constraints replace the sub-tour elimination constraints.

There are several extensions to the VRP that may be relevant here. The first is the Vehicle Routing problem with pick up and delivery. In this problem, rather than finding the

minimum distance to visit all nodes, we are asked to move goods from pick up locations to drop off locations. Another is the Vehicle Routing Problem with Time Windows, in

which nodes are assigned a range of values for which the vehicles can visit each node. This is the case for Sam's Hauling. The last that we briefly mention is the capacitated

Vehicle Routing Problem in which vehicles of constraints on how many goods they can carry. This may have bearing on our problem if we modeled all parts of our problem.

Tractability

Traveling salesman problems and Vehicle routing problems are notoriously difficult, NP-hard problems. I found that Cplex begins to take several minutes to solve traveling

salesman problems as problem size reaches around  nodes. One of the well-known libraries for solving TSPs is TSPLIB which has solved an 85,900 city TSP, although

optimality for solving a TSP of this size cannot be expected in general.
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A common technique for solving these problems is to use heuristics including ant colony optimization, tabu search, genetic algorithms, simulated annealing, scatter search and

particle search among many others. Many of these techniques can use a distance function between known solutions, or a local search to improve the quality of solutions found.

One way of performing local searches is to define operations for moving between solutions and a neighborhood about a given solution that includes all other solutions that are

can be reached from the current solution within a specified number of operations.

One common choice of operations to move from solution to solution that has proven to be useful for the TSP is -opts. An -opt is constructed by breaking a cycle at  edges

of a solution and recombining these. These can be used within more complicated heuristics or even branch and bound to provide warm starts and feasible solutions with strong

global upper bounds on the solution. For example, a -opt is formed by removing two edges and flipping the order of the middle path. If one part is the nodes ..., A, B, C, D, ...

and the other part is ..., E, F, G, H, ... these can then be exchanged to ..., A, B, F, E, ... and ..., C, D, G, H, ...

To the right, there is an example of one -opt. The cycle 9, 10, 11, 12, 13, 14, is replaced with 9, 12, 11, 10, 13, 14 to find a better cycle.

Notice that all cycles are within an -opt of eachother where .

Model Assumptions

Description

There are several details of Sam's Hauling that would be required to provide good schedules for Sam's Hauling. To start considering these, we

first describe the logistics of Sam's Hauling.

Sam's Hauling leases four different types of dumpsters: six, nine, twelve, and sixteen-yard dumpsters. Customers can rent any of these

dumpsters and will give Sam's Hauling a request to either pick up, deliver, or replace a dumpster of the given size. In this case, a replace can

be thought of as both a delivery followed by a pick up. Additionally, these requests may have associated time windows when the customer

needs the request to be serviced.

The typical number of requests per day is on the order of  to . Sam's Hauling has eight drivers to service these requests with ten trucks

of various sizes. Only the largest truck type can service dumpster requests of the largest size, while some locations can only be serviced by the

smallest truck as it is more maneuverable.

The dumpsters retrieved from the pick ups must be dumped at one of four landfills throughout Denver, which can have varying wait times or

unloading fees. At each landfill, Sam's Hauling owns space to store their small supply of unused dumpsters after pick ups that are ready to be

delivered to future customers.

The number of dumpsters at each landfill is called the landfill's inventory, so inventory constraints require that the number of dumpsters at each landfill must remain positive.

(We can pick up a dumpster from a landfill that has no dumpsters.) The inventory constraints are of particular concern as we have developed a heuristic that can find good

solutions to the routing problem, but which required many more available dumpsters at each depot. This heuristic did not perform well when including these inventory

constraints. Note that the schedule may ask that some drivers make trips between dumpsters with only the intention being to take move a dumpster from one landfill to another

so that a subsequent driver can pick it up.

A good model may also include some stochastic components. For example, upon servicing some pick ups the dumpsters may require additional cleaning time if, for example,

it has been graffitied. Also, drive times between destination and wait times at landfills may vary randomly across the day.

n n n

2

2
n n = |V |

30 40
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Finally, the last modeling complication we mention is that of nesting dumpsters. It is sometimes possible to nest empty dumpsters inside of each other to allow multiple

deliveries after visiting a given landfill.

Simplifications

Although we have a model that describes many of these aspects, we will only consider the simplest of models as input for Cplex. In particular, we will make all of the

following assumptions:

We only consider a single dumpster size

Considering more dumpster sizes is not much harder, but complicates the model unnecessarily by adding several indices.

We assume only one type of truck capable of servicing all requests

This also allows a one-to-one mapping between drivers and trucks.

We assume no time windows
The time between stops is constant (we used a google API to determine distances between locations in Denver)

Formulation

Previous Heuristic

Because a heuristic I used in the past influenced the formulation provided here, we will very briefly describe it. Because each driver must visit one of the landfills no later than

his third stop from a previous landfill, we found it convenient to break schedules into ``legs." Each leg begins and ends in a landfill and can optionally have a delivery

followed by an optional pick up. The heuristic had three phases:

Assign deliveries to pick ups (This is a matching problem that is easily solved.)
Form ``legs" between landfills and deliveries and between pick ups and landfills
Assign each leg to a particular driver's route.

Then we would consider slightly less than optimal assignments of legs or assignments of deliveries to pick ups to see if shorter routes could be created. The assignment phase

did not assign any deliveries to pick ups where the cost of doing so was greater than servicing the delivery alone. Lastly, pick ups were assigned to landfills based on the
Typesetting math: 100%



inventory at that landfill.

Constraints

The models proposed earlier in this section use decision variables for each \emph{edge} to indicate if they are taken. However, this makes several other aspects more difficult

to model. Instead, we use a formulation that assigns requests to positions in a driver's schedule. This may not be the most efficient formulation as it requires many more

variables, but it is more similar in structure to the heuristic that we developed earlier. We had hopes of warm starting Cplex using this heuristic so that we went with this

formulation.

With eight drivers and thirty requests per day, most drivers don't visit more than eight stops. Therefore, we started by breaking each route into a sequence of  legs. Choosing

a value of  that is too small will make the program not feasible if there are not enough legs to service all requests. However, there are values of  too small may force

deliveries to be grouped with pick ups that should not be. Therefore care must be taken to chose  large enough to allow the optimal solution, but small enough that the

problem is still tractable. For each driver, within each leg, a binary variable was created representing which path from landfill to delivery to pick up to delivery was chosen.

That is all possible legs are enumerated first: if there are  pick ups,  deliveries, and  landfills there are  different possible legs.

(The plus ones indicate that a deliver or pick up is not visited.) We then create a boolean variable  to determine whether driver  uses leg

 as his th leg.

We can use data indicators  to be  if leg  services pick up , and zero otherwise. We create data indicators 

to indicate if leg  services delivery . Lastly, we create data indicators  and  to indicate if leg  starts at or

finishes at landfill .

The last ingredient is the time. We can assign a time  completed to each leg in a driver's route. If the time required to take leg  is given

by , then we can create an auxiliary variable  to simulate the maximum time take by all any driver.

Then we can finally write the constraints as follows, the set of all  that satisfy

R
R R

R

P D L M = L ⋅ (D + 1) ⋅ (P + 1) ⋅ L
xd,r,l d ∈ {1, 2, … ,T}

l ∈ {1, 2,M} r ∈ {1, 2, … ,R}

∀1 ≤ l ≤ M , 1 ≤ i ≤ Ppli 1 l i ∀1 ≤ l ≤ M , 1 ≤ i ≤ Ddli
l i ∀1 ≤ l ≤ M , 1 ≤ i ≤ Lsli ∀1 ≤ l ≤ M , 1 ≤ i ≤ Lfli l
i

≥ 0∀1 ≤ d ≤ T , 1 ≤ r ≤ Rtdr l
cl u ≥ 0∀1 ≤ d ≤ T

u, ,tdr xdlr
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will be denoted as .

The first two constraints require that each pick up and deliver is visited exactly once. Next, we dictate that a driver cannot leave a landfill he did not enter in the last leg. Then

we ensure that each driver must start and end at the first depot. Lastly, before considering time constraints, we ensure a driver can only do one thing during each leg.

The first time constraint says that the completion time of the th driver on his th leg must be greater than his time at the  stop plus the time taken on the th leg, while

the third to last constraint requires that the total time  must be bigger than any time taken by any driver.

I am not proud of the constraints and variables used, but this is a somewhat simple way to formulate the problem. It would likely be better to formulate the problem with edges

between each stop. Another major problem with this formulation is that it has symmetry issues. Note that if a driver stays at a landfill for leg , then that driver could have

stayed at another landfill for any other leg. Not only this, but all drivers are indistinguishable.

Many of these constraints are what are known as specially ordered sets or  constraints, which are typically nicer, as the depth of a branch and bound tree only needs

to be logarithmic in the number of variables. These kinds of constraints require only one of a set of binary variables to be turned on. This may let the optimization library make

better branches. One example of how this kind of information could be useful is in the following: if  are binary variables such that

= 1∑
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, a niave approach would be to branch on  or , and continue in the fashion. However,

this would lead to a complete enumeration of all possible solutions, it may be much better to branch on  or

 to limit the number of branches. This indication that  are in an  constraint may allow the library to make smarter branches.

Inventory Constraints

The original plan was to also consider inventory constraints. These constraints are very problematic because the apply to all drivers based on the time. One approach would be

to first solve the problem without inventory constraints. Given a solution, we could simply check what times the inventories become negative and add constraints to ensure that

all inventories are positive at that time. For example, if it a solution to the previous problem becomes infeasible at times  for some set times , we could try

to rule these solutions out in the following manner. Suppose that the initial inventories are given by . We introduce nuisence variables

 to signify if the th leg of driver  is completed before time . We can ensure this by stipulating that

where  is an arbitrarily large number. Then we create inventory variables  for each time  at each landfill . These are integers but do not need to be explicitly declared as

such as they will be forced to be integral within the program. We can create data  representing the change in inventory at landfill  from

performing leg . For example, if leg  pick ups up a dumpster from landfill  and delivers it before pick up up a dumpster on the way to landfill , then  and

. Then inventories can be tracked with the constraint

The last piece is to ensure that the inventories are never negative:

However, there is a major problem with this approach: it introduces quadratic terms between . There are ways to enforce linearity because these are both binary

variables, but this formulation is already out of hand without including inventory constraints. Another caveat is that this does not make a distinction between a dumpster being

taken at the \emph{beginning} of the leg and a new dumpster being delivered at the \emph{end} of the leg.

The inventory constraints make most otherwise feasible solutions infeasible, as the  are usually small. Because these constraints cut off much of the feasible region, these

could be nice to include within a search algorithm to narrow the number of solutions to be tested. However, adding them to a linear program formulation makes the problem

much more complicated and do not imply a speed up.
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Objective

There are many different considerations when choosing the objective. One thing that might be nice to consider is the end of day inventories: if we leave a landfill with no

dumpsters, then scheduling the next day may prove to be difficult. Also, in practice, we really wish to maximize the number of stops we are capable of visiting, subject to

finishing the stops in one day.

Initially, we chose to minimize the time taken to service all requests, that is . However, this has some drawbacks. First of all, it introduces

much more symmetry: the objective does not change for several different solutions where the driver who takes the most time does not change his route. Also, the cost in time is

simply the sum of all times:  so that if we could make this smaller without affecting the longest time spent by any driver. However, simply minimizing this

assigns nearly all stops to a single driver. Therefore, we introduced a parameter  and minized a weighted sum of both of these expressions:

. In our code, we assigned .

Computational Results

Implementation Details

Problem Generation

To learn how to use Cplex, we created randomly generated problem sets, with locations being chosen with a uniform distance over  distances given by the euclidean

norm. We considered values of  between  and , values of  between  and , values of  between  and , values of  between  and .

Source Code

The source code I used has most likely changed since I edited this, but a snapshot containing most of the work is contained at Sams code.

Local Search

Initially, I used the object , and I found several solutions that were visibly less than optimal by changing only a few vertices. However, upon

further examination, I realized that these were only improvements for drivers whose time was not the maximum time. Upon changing the objective to

, I was no longer able to find simple solutions to the solutions found by Cplex.

My attempts are found in LocalSearch.java. The local search operation was to change any two sequential landfills within a route while swapping any two delivers or two

swapping any two pick ups. Unfortunately, swapping any two delivers or swapping any two pick ups at the same time was too expensive. I had hoped that by starting a random

search, and sequentially improving the solution by considering all these changes would provide a good warm start to the cplex optimizer. However, the cplex solver was good

enough that even after a few seconds, I was not able to improve the solutions Cplex had.

min{u : (u, , ) ∈ F}tdr xdlr

∑T
d=1 td,R−1

λ

min{λTu + : (u, , ) ∈ F}∑T
d=1 td,R−1 tdr xdlr λ = 2
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Example output of the cplex

solver

CPlex API

While solving the MIP, cplex maintains a pool of feasible solutions currently found. Although this may not be the proper approach, I used the populate method to give breaks

while solving for me to access these. However, this did not reduce the optimality gap as quickly as simply calling the solve method.

Example output

Shown to the right, is example output from the cplex solver. Red circles correspond to deliveries, blue circles are pick ups, and green circles

are landfills. The lines between these circles are the routes chosen by cplex, and the landfill all the way to the right is the beginning depot.

Runtimes

Cplex was not able to solve this formulation for realistic problem sizes. I found that with , , , , cplex was able

to solve to optimality within  seconds. If I let cplex run for one minute, the optimality gaps found by cplex were:
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Sams code

From CU Denver Optimization Student Wiki

This page contains a snapshot of my source code for experimenting with Cplex for Sam's Hauling

Contents

1 Solution.java
2 Problem.java
3 DepotArc.java
4 Location.java
5 LocalSearch.java
6 Painter.java
7 SecondMain.java

Solution.java

package second;

 

import ilog.concert.IloException;

import ilog.concert.IloLinearNumExpr;

import ilog.concert.IloNumVar;

import ilog.cplex.IloCplex;

import ilog.cplex.IloCplex.UnknownObjectException;

 

import java.io.IOException;

 

public class Solution

{

Problem problem;

Leg[][] legs;

double lambda = 2;

 

IloNumVar totalTime;

double totalTimeValue;

 

public Solution(Problem problem)

{

this.problem = problem;

 

legs = new Leg[problem.numTrucks][];

for (int i = 0; i < legs.length; i++)

{

legs[i] = new Leg[problem.maximumLegs];



for (int j = 0; j < legs[i].length; j++)

legs[i][j] = new Leg();

}

}

 

public Solution(Solution solution)

{

this.problem = solution.problem;

this.totalTime = solution.totalTime;

this.totalTimeValue = solution.totalTimeValue;

 

legs = new Leg[problem.numTrucks][];

for (int i = 0; i < legs.length; i++)

{

legs[i] = new Leg[problem.maximumLegs];

for (int j = 0; j < legs[i].length; j++)

{

legs[i][j] = new Leg();

legs[i][j].assign(solution.legs[i][j]);

}

}

}

 

public String toString()

{

StringBuilder builder = new StringBuilder();

 

for (int driver = 0; driver < legs.length; driver++)

{

builder.append("Driver ").append(driver).append('\t');

for (int stop = 0; stop < legs[driver].length; stop++)

{

builder.append(stop).append(':').append(legs[driver][stop]);

}

builder.append('\n');

}

 

return builder.toString();

}

 

public double getCost()

{

double maxTime = 0;

double sumOfTimes = 0;

 

for (int driver = 0; driver < legs.length; driver++)

{

double driverTime = 0;

for (int stop = 0; stop < legs[driver].length; stop++)

{

driverTime += problem.arcs[legs[driver][stop].depotIndex].cost;

}

 

maxTime = Math.max(maxTime, driverTime);

sumOfTimes += driverTime;

}

 

return legs.length * lambda * maxTime + sumOfTimes;

}

 

public static Solution createRandomSolution(Problem problem)

{



Solution solution = new Solution(problem);

 

for (int pickup = 0; pickup < problem.pickups.length; pickup++)

{

while (true)

{

int driver = SecondMain.RANDOM.nextInt(solution.legs.length);

int leg    = SecondMain.RANDOM.nextInt(solution.legs[driver].length);

if (solution.legs[driver][leg].pickup >= 0)

continue;

 

solution.legs[driver][leg].pickup = pickup;

break;

} 

}

for (int delivery = 0; delivery < problem.deliveries.length; delivery++)

{

while (true)

{

int driver = SecondMain.RANDOM.nextInt(solution.legs.length);

int leg    = SecondMain.RANDOM.nextInt(solution.legs[driver].length);

if (solution.legs[driver][leg].delivery >= 0)

continue;

 

solution.legs[driver][leg].delivery = delivery;

break;

}

}

for (int driver = 0; driver < solution.legs.length; driver++)

{

for (int leg = 0; leg < solution.legs[driver].length; leg++)

{

Leg l = solution.legs[driver][leg];

if (l.delivery < 0 && l.pickup < 0)

continue;

l.landfill = SecondMain.RANDOM.nextInt(problem.landfills.length);

}

}

 

return solution;

}

 

public void validate()

{

problem.validate();

 

for (int pickup = 0; pickup < problem.pickups.length; pickup++)

{

int count = 0;

for (int driver = 0; driver < legs.length; driver++)

for (int stop = 0; stop < legs[driver].length; stop++)

{

if (legs[driver][stop].pickup != pickup)

continue;

count++;

}

if (count != 1)

throw new RuntimeException("Found pickup " + pickup + " " + count + " times.");

}

for (int delivery = 0; delivery < problem.deliveries.length; delivery++)

{

int count = 0;



for (int driver = 0; driver < legs.length; driver++)

for (int stop = 0; stop < legs[driver].length; stop++)

{

if (legs[driver][stop].delivery != delivery)

continue;

count++;

}

if (count != 1)

throw new RuntimeException("Found delivery " + delivery + " " + count + " times.");

}

for (int driver = 0; driver < legs.length; driver++)

{

if (problem.arcs[legs[driver][0].depotIndex].landfill1 != 0)

throw new RuntimeException("Driver does not start at the depot");

if (problem.arcs[legs[driver][legs[driver].length-1].depotIndex].landfill2 != 0)

throw new RuntimeException("Driver does not end at the depot");

 

for (int stop = 1; stop < legs[driver].length; stop++)

if (problem.arcs[legs[driver][stop].depotIndex].landfill1 != legs[driver][stop-1].landfill)

throw new RuntimeException("Driver does not start where he left");

}

}

 

 

 

public void solveWithCPlex() throws IloException, IOException

{

IloCplex cplex = new IloCplex();

 

totalTime = cplex.numVar(0, Double.MAX_VALUE, "total_time");

 

for (int driver = 0; driver < legs.length; driver++)

for (int stop = 0; stop < legs[driver].length; stop++)

legs[driver][stop].createVariables(cplex, problem, "driver_" + driver + "_" + stop + "_");

 

// has to pick something

for (int driver = 0; driver < legs.length; driver++)

for (int stop = 0; stop < legs[driver].length; stop++)

legs[driver][stop].addCanOnlyDoOneThingConstraint(cplex, driver, stop);

 

// has to stop and start

for (int driver = 0; driver < legs.length; driver++)

{

legs[driver][0]                    .createStartsConstraints(cplex, problem, driver);

legs[driver][legs[driver].length-1].createEndsConstraints(  cplex, problem, driver);

}

 

// has to leave current depot

for (int driver = 0; driver < legs.length; driver++)

for (int stop = 1; stop < legs[driver].length; stop++)

legs[driver][stop].hasToLeaveCurrentDepotConstraint(cplex, problem, driver, stop, legs[driver][stop-1]);

 

// has to visit each pickup

for (int pickup = 0; pickup < problem.pickups.length; pickup++)

{

IloLinearNumExpr v  = cplex.linearNumExpr();

for (int driver = 0; driver < legs.length; driver++)

for (int stop = 0; stop < legs[driver].length; stop++)

legs[driver][stop].pickupHasToBeVisitedConstraintConstraint(v, problem, pickup);

cplex.addEq(1, v, "someone_needs_to_visit_pickup_" + pickup);

}

 



// has to visit each delivery

for (int delivery = 0; delivery < problem.deliveries.length; delivery++)

{

IloLinearNumExpr v  = cplex.linearNumExpr();

for (int driver = 0; driver < legs.length; driver++)

for (int stop = 0; stop < legs[driver].length; stop++)

legs[driver][stop].deliverHasToBeVisitedConstraintConstraint(v, problem, delivery);

cplex.addEq(1, v, "someone_needs_to_visit_delivery_" + delivery);

}

 

// must set the time

for (int driver = 0; driver < legs.length; driver++)

for (int stop = 0; stop < legs[driver].length; stop++)

legs[driver][stop].hasToHaveTheTime(cplex, problem, driver, stop, stop == 0 ? null : legs[driver][stop-1]);

for (int driver = 0; driver < legs.length; driver++)

legs[driver][legs[driver].length-1].timeMustBeLessThanMaximum(cplex, driver, totalTime);

 

IloLinearNumExpr obj = cplex.linearNumExpr();

 

obj.addTerm(lambda * problem.numTrucks, totalTime);

 

for (int driver=0; driver<legs.length; driver++)

obj.addTerm(1, legs[driver][legs[driver].length-1].time);

 

cplex.addMinimize(obj);

 

cplex.exportModel("/home/yz/Documents/Source/eclipse-java/workspace/output/foobar.lp");

 

for (int count = 0; count < 20; count++)

{

cplex.setParam(IloCplex.IntParam.TimeLimit, 60);

if (cplex.populate())

{

System.out.println("Solution status: " + cplex.getStatus());

double tolerance = cplex.getParam(IloCplex.Param.MIP.Tolerances.Integrality);

// if (cplex.getValue(open[j]) >= 1 - tolerance)

 

int nsols = cplex.getSolnPoolNsolns();

for (int sol = 0; sol < nsols; sol++)

{

Solution otherSolution = new Solution(this);

otherSolution.assign(cplex, sol);

otherSolution.validate();

 

String filename = "/home/yz/Documents/Source/eclipse-java/workspace/output/test_" 

+ String.format("%04d_", count)

+ String.format("%04d", sol) + ".png";

otherSolution.write(cplex, filename, sol);

 

System.out.println(otherSolution);

LocalSearch localSearch = new LocalSearch(otherSolution);

localSearch.searchAllLandfills();

}

}

}

cplex.end();

}

 

public void compareCosts(IloCplex cplex)

{

double maxTime = 0;

double sumOfTimes = 0;



 

for (int driver = 0; driver < legs.length; driver++)

{

double driverTime = 0;

for (int stop = 0; stop < legs[driver].length; stop++)

{

double thisCost = problem.arcs[legs[driver][stop].depotIndex].cost;

driverTime += problem.arcs[legs[driver][stop].depotIndex].cost;

 

if (Math.abs(driverTime - legs[driver][stop].finishTime) > 1e-4)

{

System.err.println("driver " + driver + " stop " + stop);

System.err.println("\t\tmy time: " + driverTime);

System.err.println("\t\ttheir time: " + legs[driver][stop].finishTime);

}

}

 

maxTime = Math.max(maxTime, driverTime);

System.out.println("My    max time for driver " + driver + ": " + driverTime);

System.out.println("Their max time for driver " + driver + ": " + legs[driver][legs[driver].length-1].finishTime);

sumOfTimes += driverTime;

}

System.out.println("My    max time : " + maxTime);

System.out.println("Their max time : " + totalTimeValue);

 

System.out.println("objective value: " + (legs.length * lambda * maxTime + sumOfTimes));

}

 

public void write(IloCplex cplex, String filename,  int index) throws IloException, IOException

{

System.out.println("Optimal value:         " + cplex.getObjValue(index));

System.out.println("My computed objective: " + getCost());

// compareCosts(cplex);

System.out.println("Wrote to " + filename);

Painter.draw(this, filename);

}

 

public void assign(Solution other)

{

for (int driver = 0; driver < legs.length; driver++)

for (int stop = 0; stop < legs[driver].length; stop++)

legs[driver][stop].assign(other.legs[driver][stop]);

}

 

public void assign(IloCplex cplex, int index) throws UnknownObjectException, IloException

{

totalTimeValue = cplex.getValue(totalTime, index);

 

for (int driver = 0; driver < legs.length; driver++)

for (int stop = 0; stop < legs[driver].length; stop++)

{

legs[driver][stop].assign(problem, cplex, index);

 

if (stop > 0)

{

double nCost = problem.arcs[  legs[driver][stop  ].depotIndex].cost;

double pCost = cplex.getValue(legs[driver][stop-1].time, index);

double cCost = cplex.getValue(legs[driver][stop  ].time, index);

 

if (pCost + nCost > cCost)

{

System.out.println("driver: " + driver);



System.out.println("stop:   " + stop  );

System.out.println("nCost:  " + nCost );

System.out.println("pCost:  " + pCost );

System.out.println("cCost:  " + cCost );

System.out.println("assigned to: " + cplex.getValue(legs[driver][stop].arcIdx[legs[driver][stop].depotIndex], index));

System.out.println("variable name: " + legs[driver][stop].arcIdx[legs[driver][stop].depotIndex].getName());

System.out.println("index: " + legs[driver][stop].depotIndex);

 

throw new RuntimeException("uh oh!!!!!");

}

}

}

}

 

public static class Leg

{

int depotIndex = -1;

IloNumVar[] arcIdx;

IloNumVar     time;

 

int start    = -1;

int delivery = -1;

int pickup   = -1;

int landfill = -1;

 

double finishTime;

 

public String toString()

{

StringBuilder builder = new StringBuilder();

 

builder.append('[');

builder.append("start:   ").append(String.format("%03d", start   )).append(',');

builder.append("delivery:").append(String.format("%03d", delivery)).append(',');

builder.append("pickup:  ").append(String.format("%03d", pickup  )).append(',');

builder.append("landfill:").append(String.format("%03d", landfill)).append(',');

builder.append("time:    ").append(String.format("%08f", finishTime));

builder.append(']');

 

return builder.toString();

}

 

public void set(Problem problem, int l1, int delivery, int pickup, int l2)

{

this.start = l1;

this.delivery = delivery;

this.pickup = pickup;

this.landfill = l2;

depotIndex = problem.getIndex(l1, delivery, pickup, l2);

}

 

public void assign(Leg leg)

{

this.depotIndex = leg.depotIndex;

this.arcIdx = leg.arcIdx;

this.time = leg.time;

this.start = leg.start;

this.delivery = leg.delivery;

this.pickup = leg.pickup;

this.landfill = leg.landfill;

this.finishTime = leg.finishTime;

}



 

public void createVariables(IloCplex cplex, Problem problem, String prefix) throws IloException

{

arcIdx = cplex.boolVarArray(problem.arcs.length);

 

for (int i = 0; i < arcIdx.length; i++)

arcIdx[i].setName(prefix + "arc_" + i);

 

time = cplex.numVar(0, Double.MAX_VALUE, prefix + "_time");

}

 

public void addCanOnlyDoOneThingConstraint(IloCplex cplex, int driver, int stop) throws IloException

{

IloLinearNumExpr arc  = cplex.linearNumExpr();

for (int i = 0; i < arcIdx.length; i++)

arc.addTerm(1, arcIdx[i]);

cplex.addEq(1, arc, "driver_" + driver + "_does_one_thing_for_leg_" + stop);

}

 

public void pickupHasToBeVisitedConstraintConstraint(IloLinearNumExpr v, Problem problem, int pickup) throws IloException

{

for (int arc = 0; arc < arcIdx.length; arc++)

if (problem.arcs[arc].pickup == pickup)

v.addTerm(1, arcIdx[arc]);

}

 

public void deliverHasToBeVisitedConstraintConstraint(IloLinearNumExpr v, Problem problem, int deliver) throws IloException

{

for (int arc = 0; arc < arcIdx.length; arc++)

if (problem.arcs[arc].delivery == deliver)

v.addTerm(1, arcIdx[arc]);

}

public void createStartsConstraints(IloCplex cplex, Problem problem, int driver) throws IloException

{

for (int arc = 0; arc < arcIdx.length; arc++)

if (problem.arcs[arc].landfill1 != 0)

arcIdx[arc].setUB(0);

}

public void createEndsConstraints(IloCplex cplex, Problem problem, int driver) throws IloException

{

for (int arc = 0; arc < arcIdx.length; arc++)

if (problem.arcs[arc].landfill2 != 0)

arcIdx[arc].setUB(0);

}

 

public void hasToLeaveCurrentDepotConstraint(IloCplex cplex, Problem problem, int driver, int stop, Leg previous) throws IloException

{

for (int landfill = 0; landfill < problem.landfills.length; landfill++)

{

IloLinearNumExpr ended = cplex.linearNumExpr();

for (int arc = 0; arc < previous.arcIdx.length; arc++)

if (problem.arcs[arc].landfill2 == landfill)

ended.addTerm(1, previous.arcIdx[arc]);

IloLinearNumExpr started = cplex.linearNumExpr();

for (int arc = 0; arc < arcIdx.length; arc++)

if (problem.arcs[arc].landfill1 == landfill)

started.addTerm(1, arcIdx[arc]);

 

cplex.addEq(started, ended, "driver_" + driver + "_on_leg_" + stop + "_leaves_" + landfill + "_if_he_is_there");

}

}

 



public void hasToHaveTheTime(IloCplex cplex, Problem problem, int driver, int stop, Leg previous) throws IloException

{

IloLinearNumExpr timeToFinishThisLeg = cplex.linearNumExpr();

 

if (previous != null)

timeToFinishThisLeg.addTerm(1, previous.time);

 

for (int arc = 0; arc < arcIdx.length; arc++)

timeToFinishThisLeg.addTerm(problem.arcs[arc].cost, arcIdx[arc]);

 

cplex.addLe(timeToFinishThisLeg, time, "driver_" + driver + "_must_complete_stop_" + stop + "_after_in_order");

}

 

public void timeMustBeLessThanMaximum(IloCplex cplex, int driver, IloNumVar maxTime) throws IloException

{

cplex.addLe(time, maxTime, "driver_" + driver + "_must_finish_before_max_time");

}

 

 

public void assign(Problem problem, IloCplex cplex, int index) throws UnknownObjectException, IloException

{

depotIndex = -1;

 

for (int arc = 0; arc < arcIdx.length && depotIndex < 0; arc++)

{

if (index < 0 && cplex.getValue(arcIdx[arc]) > .5)

depotIndex = arc;

if (index >= 0 && cplex.getValue(arcIdx[arc], index) > .5)

depotIndex = arc;

}

 

if (depotIndex < 0)

throw new RuntimeException("No value set!");

 

start    = problem.arcs[depotIndex].landfill1;

delivery = problem.arcs[depotIndex].delivery;

pickup   = problem.arcs[depotIndex].pickup;

landfill = problem.arcs[depotIndex].landfill2;

 

finishTime = cplex.getValue(time, index);

}

}

}

Problem.java

package second;

 

public class Problem

{

Location[] deliveries;

Location[] pickups;

Location[] landfills;

 

double[][] l2l; // landfill to landfill



double[][] l2p; // landfill to pickups

double[][] l2d; // landfill to delivery

 

double[][] d2l; // delivery to landfill

double[][] d2p; // delivery to pickups

 

double[][] p2l; // pickup to landfill

 

int numTrucks;

 

DepotArc[] arcs;

// Map<DepotArc, Integer> arcToIdx = new HashMap<>();

int[][][][] arcToIdx;

 

int maximumLegs;

 

 

public void setDepotArcs()

{

arcs = new DepotArc[landfills.length * (deliveries.length + 1) * (pickups.length + 1) * landfills.length];

 

arcToIdx = new int[landfills.length][][][];

int idx = 0;

for (int landfill1 = 0; landfill1 < landfills.length; landfill1++) {

arcToIdx[landfill1] = new int[deliveries.length+1][][];

for (int deliver = -1; deliver < deliveries.length; deliver++) {

arcToIdx[landfill1][deliver+1] = new int[pickups.length+1][];

for (int pickup = -1; pickup < pickups.length; pickup++) {

arcToIdx[landfill1][deliver+1][pickup+1] = new int[landfills.length];

for (int landfill2 = 0; landfill2 < landfills.length; landfill2++) {

arcs[idx] = new DepotArc(this, landfill1, deliver, pickup, landfill2);

arcToIdx[landfill1][deliver+1][pickup+1][landfill2] = idx;

idx++;

}

}

}

}

}

 

public int getIndex(int l1, int d, int p, int l2)

{

return arcToIdx[l1][d+1][p+1][l2];

}

 

public void validate()

{

for (int arc = 0; arc < arcs.length; arc++)

if (getIndex(arcs[arc].landfill1, arcs[arc].delivery, arcs[arc].pickup, arcs[arc].landfill2) != arc)

throw new RuntimeException("did not match!");

}

 

 

public static Problem generateRandomProblem()

{

int numDeliveries = 10;

int numPickups = 10;

int numLandfills = 4;

int numTrucks = 5;

 

int maximumLegs = 10;

 

Problem problem = new Problem();



 

problem.deliveries = Location.createLocations(numDeliveries);

problem.pickups    = Location.createLocations(numPickups);

problem.landfills  = Location.createLocations(numLandfills);

 

problem.l2l = Location.createDistanceMatrix(problem.landfills, problem.landfills);

problem.l2p = Location.createDistanceMatrix(problem.landfills, problem.pickups);

problem.l2d = Location.createDistanceMatrix(problem.landfills, problem.deliveries);

 

problem.d2l = Location.createDistanceMatrix(problem.deliveries, problem.landfills);

problem.d2p = Location.createDistanceMatrix(problem.deliveries, problem.pickups);

 

problem.p2l = Location.createDistanceMatrix(problem.pickups, problem.landfills);

 

for (int i = 0; i < numLandfills; i++)

{

problem.landfills[i].x = .5 + .25 * Math.cos(i * 2 * Math.PI / numLandfills);

problem.landfills[i].y = .5 + .25 * Math.sin(i * 2 * Math.PI / numLandfills);

}

 

problem.numTrucks = numTrucks;

problem.maximumLegs = maximumLegs;

 

problem.setDepotArcs();

 

return problem;

}

}

DepotArc.java

package second;

 

public class DepotArc implements Comparable<DepotArc>

{

int landfill1;

int delivery;

int pickup;

int landfill2;

 

double cost;

 

public DepotArc(Problem p, int landfill1, int delivery, int pickup, int landfill2)

{

this.landfill1 = landfill1;

this.delivery = delivery;

this.pickup = pickup;

this.landfill2 = landfill2;

 

if (delivery < 0)

{

if (pickup < 0)

cost = p.l2l[landfill1][landfill2];

else

cost = p.l2p[landfill1][pickup] + p.p2l[pickup][landfill2];



}

else

{

if (pickup < 0)

cost = p.l2d[landfill1][delivery] + p.d2l[delivery][landfill2];

else

cost = p.l2d[landfill1][delivery] + p.d2p[delivery][pickup] + p.p2l[pickup][landfill2];

}

}

 

public String toString()

{

StringBuilder builder = new StringBuilder();

 

builder.append('[');

builder.append("L:").append(landfill1).append(',');

builder.append("D:").append(delivery ).append(',');

builder.append("P:").append(pickup   ).append(',');

builder.append("L:").append(landfill2).append(',');

builder.append(']');

 

return builder.toString();

}

public boolean equals(Object other)

{

if (!(other instanceof DepotArc))

{

return false;

}

return equals((DepotArc) other);

}

public boolean equals(DepotArc o)

{

return landfill1 == o.landfill1 && 

pickup == o.pickup &&

delivery == o.delivery &&

landfill2 == o.landfill2;

}

 

public int hashCode() {

return toString().hashCode();

}

 

@Override

public int compareTo(DepotArc o) {

int cmp;

cmp = Integer.compare(landfill1, o.landfill1);

if (cmp != 0) return cmp;

cmp = Integer.compare(delivery, o.delivery);

if (cmp != 0) return cmp;

cmp = Integer.compare(pickup, o.pickup);

if (cmp != 0) return cmp;

cmp = Integer.compare(landfill2, o.landfill2);

if (cmp != 0) return cmp;

return 0;

}

}



Location.java

package second;

 

public class Location

{

public double x, y;

 

public Location(double x, double y)

{

this.x = x;

this.y = y;

}

 

public static Location generateRandomLocation()

{

return new Location(SecondMain.RANDOM.nextDouble(), SecondMain.RANDOM.nextDouble());

}

public static Location[] createLocations(int size)

{

Location[] locations = new Location[size];

 

for (int i = 0; i < locations.length; i++)

locations[i] = generateRandomLocation();

 

return locations;

}

public static double[][] createDistanceMatrix(Location[] from, Location[] to)

{

double[][] ret = new double[from.length][to.length];

for (int i = 0; i < from.length; i++)

{

for (int j = 0; j < to.length; j++)

{

double dx = from[i].x - to[j].x;

double dy = from[i].y - to[j].y;

ret[i][j] = Math.sqrt(dx * dx + dy * dy);

}

}

return ret;

}

}

LocalSearch.java

package second;

 

import second.Solution.Leg;

 

public class LocalSearch {

 

Solution solution;



Solution oldSolution;

 

public LocalSearch(Solution solution)

{

this.oldSolution = solution;

this.solution = new Solution(solution);

}

 

public class OneMod

{

double oldCost;

 

boolean swapP;

int pdriver1;

int pstop1;

int pdriver2;

int pstop2;

 

boolean swapD;

int ddriver1;

int dstop1;

int ddriver2;

int dstop2;

 

int ldriver;

int lstop;

 

public void reset()

{

oldCost = oldSolution.getCost();

 

swapP = false;

pdriver1 = 0;

pdriver2 = 0;

pstop1 = 0;

pstop2 = 0;

 

swapD = false;

ddriver1 = 0;

ddriver2 = 0;

dstop1 = 0;

dstop2 = 0;

 

ldriver = 0;

lstop = 0;

}

 

public void check()

{

checkL1();

}

 

public void checkL1()

{

if (lstop == 0)

{

checkL2();

}

else

{

Leg lcurr1 = solution.legs[ldriver][lstop];

for (int landfill = 0; landfill < solution.problem.landfills.length; landfill++)



{

if (landfill == lcurr1.start)

continue;

 

Leg lprev1 = solution.legs[ldriver][lstop-1];

lprev1.set(solution.problem, lprev1.start, lprev1.delivery, lprev1.pickup, landfill       );

lcurr1.set(solution.problem, landfill    , lcurr1.delivery, lcurr1.pickup, lcurr1.landfill);

checkL2();

}

}

}

public void checkL2()

{

if (lstop == solution.legs[ldriver].length-1)

{

checkL3();

}

else

{

Leg lcurr1 = solution.legs[ldriver][lstop];

for (int landfill = 0; landfill < solution.problem.landfills.length; landfill++)

{

Leg lnext1 = solution.legs[ldriver][lstop+1];

 

if (landfill == lcurr1.landfill)

continue;

 

lcurr1.set(solution.problem, lcurr1.landfill, lcurr1.delivery, lcurr1.pickup,  landfill      );

lnext1.set(solution.problem, landfill       , lnext1.delivery, lnext1.pickup, lnext1.landfill);

checkL3();

}

}

}

 

public void checkL3()

{

solution.assign(oldSolution);

 

if (swapD)

{

if (ddriver1 == ddriver2 && dstop1 == dstop2)

return;

 

Leg dleg1  = solution.legs[ddriver1][dstop1];

Leg dleg2  = solution.legs[ddriver2][dstop2];

int d1 = dleg1.delivery;

int d2 = dleg2.delivery;

 

if (d1 < 0 && d2 < 0)

return;

 

dleg1.set(solution.problem, dleg1.start, d2, dleg1.pickup, dleg1.landfill);

dleg2.set(solution.problem, dleg2.start, d1, dleg2.pickup, dleg2.landfill);

}

 

if (swapP)

{

if (pdriver1 == pdriver2 && pstop1 == pstop2)

return;

 

Leg pleg1  = solution.legs[pdriver1][pstop1];

Leg pleg2  = solution.legs[pdriver2][pstop2];



 

int p1 = pleg1.pickup;

int p2 = pleg2.pickup;

 

if (p1 < 0 && p2 < 0)

return;

 

pleg1.set(solution.problem, pleg1.start, pleg1.delivery, p2, pleg1.landfill);

pleg2.set(solution.problem, pleg2.start, pleg2.delivery, p1, pleg2.landfill);

}

 

solution.validate();

 

double newCost = solution.getCost();

if (newCost < oldCost)

{

System.out.println("Found better cost: old=" + oldCost + ", new cost=" + newCost);

}

}

 

@Override

public String toString() {

return "OneMod [oldCost=" + oldCost + "\n\tswapP=" + swapP + "\n\tpdriver1=" + pdriver1 + "\n\tpstop1=" + pstop1

+ "\n\tpdriver2=" + pdriver2 + "\n\tpstop2=" + pstop2 + "\n\tswapD=" + swapD + "\n\tddriver1=" + ddriver1

+ "\n\tdstop1=" + dstop1 + "\n\tddriver2=" + ddriver2 + "\n\tdstop2=" + dstop2 + "\n\tldriver=" + ldriver

+ "\n\tlstop=" + lstop + "]";

}

}

 

public void searchAllLandfills()

{

long startTime = System.currentTimeMillis();

 

OneMod oneMod = new OneMod();

oneMod.oldCost = oldSolution.getCost();

 

oneMod.swapD = false;

oneMod.swapP = false;

for (oneMod.ldriver = 0; oneMod.ldriver < solution.legs.length                ; oneMod.ldriver++)

for (oneMod.lstop   = 0; oneMod.lstop   < solution.legs[oneMod.ldriver].length; oneMod.lstop++)

{

oneMod.check();

}

 

if (false)

{

 

oneMod.swapD = false;

oneMod.swapP = true;

for (oneMod.ldriver = 0; oneMod.ldriver < solution.legs.length                ; oneMod.ldriver++)

for (oneMod.lstop   = 1; oneMod.lstop   < solution.legs[oneMod.ldriver].length; oneMod.lstop++)

 

for (oneMod.pdriver1 = 0; oneMod.pdriver1 < solution.legs.length;                  oneMod.pdriver1++)

for (oneMod.pstop1   = 0; oneMod.pstop1   < solution.legs[oneMod.pdriver1].length; oneMod.pstop1++  )

for (oneMod.pdriver2 = 0; oneMod.pdriver2 < solution.legs.length;                  oneMod.pdriver2++)

for (oneMod.pstop2   = 0; oneMod.pstop2   < solution.legs[oneMod.pdriver2].length; oneMod.pstop2++  )

{

oneMod.check();

}

 

oneMod.swapD = true;

oneMod.swapP = false;



for (oneMod.ldriver = 0; oneMod.ldriver < solution.legs.length                ; oneMod.ldriver++)

for (oneMod.lstop   = 1; oneMod.lstop   < solution.legs[oneMod.ldriver].length; oneMod.lstop++)

 

for (oneMod.ddriver1 = 0; oneMod.ddriver1 < solution.legs.length;                  oneMod.ddriver1++)

for (oneMod.dstop1   = 0; oneMod.dstop1   < solution.legs[oneMod.ddriver1].length; oneMod.dstop1++  )

for (oneMod.ddriver2 = 0; oneMod.ddriver2 < solution.legs.length;                  oneMod.ddriver2++)

for (oneMod.dstop2   = 0; oneMod.dstop2   < solution.legs[oneMod.ddriver2].length; oneMod.dstop2++  )

{

oneMod.check();

}

 

}

 

long endTime = System.currentTimeMillis();

 

System.out.println("Local search took " + (endTime - startTime) / 1000.0 + "s");

}

}

Painter.java

package second;

 

import java.awt.Color;

import java.awt.Graphics2D;

import java.awt.image.BufferedImage;

import java.io.IOException;

import java.io.OutputStream;

import java.nio.file.Files;

import java.nio.file.Paths;

 

import javax.imageio.ImageIO;

 

import second.Solution.Leg;

 

 

public class Painter

{

private static final int WIDTH         = 1000;

private static final int HEIGHT        = 1000;

private static final int CIRCLE_RADIUS =   10;

 

private static final Color[] DRIVER_COLORS = {

Color.blue,

Color.yellow,

Color.green,

Color.GRAY,

Color.cyan,

Color.ORANGE,

Color.pink

};

 

private static Color getDriverColor(int driver)

{

if (driver < DRIVER_COLORS.length)



{

return DRIVER_COLORS[driver];

}

 

return SecondMain.createRandomColor();

}

 

 

public static void drawCircle(Graphics2D g, Location l)

{

g.fillOval(mapX(l.x) - CIRCLE_RADIUS,

mapY(l.y) - CIRCLE_RADIUS, 2 * CIRCLE_RADIUS, 2 * CIRCLE_RADIUS);

}

public static void drawLocations(Graphics2D g, Color c, Location[] l)

{

g.setColor(c);

for (Location loc : l)

drawCircle(g, loc);

}

public static void drawLine(Graphics2D g, Location l)

{

}

 

public static void drawProblem(Graphics2D g, Problem p)

{

drawLocations(g, Color.red,   p.deliveries);

drawLocations(g, Color.blue,  p.pickups   );

drawLocations(g, Color.green, p.landfills );

}

 

public static void drawLine(Graphics2D g, Location loc1, Location loc2)

{

g.drawLine(mapX(loc1.x), mapY(loc1.y), mapX(loc2.x), mapY(loc2.y));

}

 

public static void draw(Solution solution, String file) throws IOException

{

BufferedImage image = new BufferedImage(WIDTH, HEIGHT, BufferedImage.TYPE_INT_RGB);

Graphics2D g = image.createGraphics();

 

g.setColor(Color.black);

g.fillRect(0, 0, WIDTH, HEIGHT);

 

drawProblem(g, solution.problem);

 

int driver = 0;

for (Leg[] route : solution.legs)

{

Color driverColor = getDriverColor(driver++);

 

double time = 0;

int stopNumber = 1;

 

Location prev = solution.problem.landfills[0];

for (Leg leg : route)

{

if (leg.delivery >= 0)

{

Location next = solution.problem.deliveries[leg.delivery];

g.setColor(driverColor);

drawLine(g, prev, next);

 



// g.setColor(Color.white);

g.drawString("stop " + stopNumber++, mapX(next.x)+5, mapY(next.y)+5);

prev = next;

}

if (leg.pickup >= 0)

{

Location next = solution.problem.pickups[leg.pickup];

g.setColor(driverColor);

drawLine(g, prev, next);

 

// g.setColor(Color.white);

g.drawString("stop " + stopNumber++, mapX(next.x)+5, mapY(next.y)+5);

prev = next;

}

// if (leg.landfill >= 0)

{

Location next = solution.problem.landfills[leg.landfill];

g.setColor(driverColor);

drawLine(g, prev, next);

 

// g.setColor(Color.white);

g.drawString("stop " + stopNumber++, mapX(next.x)+5, mapY(next.y)+5);

prev = next;

}

}

 

g.setColor(driverColor);

drawLine(g, prev, solution.problem.landfills[0]);

}

//

// g.drawString("cost = " + solution.getCost(), 10, 20);

 

try (OutputStream newOutputStream = Files.newOutputStream(Paths.get(file));)

{

ImageIO.write(image, "png", newOutputStream);

}

}

 

private static int mapX(double x)

{

return (int) (WIDTH * x);

}

private static int mapY(double y)

{

return (int) (HEIGHT * y);

}

}

SecondMain.java

package second;

 

import ilog.concert.IloException;

 

import java.awt.Color;



import java.io.IOException;

import java.util.Random;

 

public class SecondMain

{

public static final Random RANDOM = new Random(1776);

public static Color createRandomColor()

{

return new Color(RANDOM.nextInt(255), RANDOM.nextInt(255), RANDOM.nextInt(255));

}

 

public static void main(String[] args) throws IOException, IloException

{

Problem problem = Problem.generateRandomProblem();

Solution solution = Solution.createRandomSolution(problem);

 

solution.solveWithCPlex();

}

}
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Hello!

I'm a 2nd year M.S. Stats student with an interest in optimization. I took a 7 year break between undergrad and grad school, and have been working in Data Science since.

During the Fall semester of 2020, Hope Haygood & I worked on Denver Fire Response Distances for a project in our Linear Programming class.

During the Spring 2021 semester, I am working with Michael Burgher and Collin Powell on Vaccine Distribution for a project in our Integer Programming class.
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Semidefinite Programming

From CU Denver Optimization Student Wiki

Semidefinite programming is a generalization of linear programming. Much like linear programming, semidefinite programming is concerned with the optimization of a linear

objective function over an affine subspace. The main difference is that the affine subspace has the additional constraint that it must be contained within the space of positive

semidefinite matrices, denoted as .

Contents

1 Similarities to Linear Programming
2 Restrictions on X

2.1 Positive Semidefinite
3 Solving the SDP
4 Geometry of the SDP

4.1 Difference from Linear Progamming

Similarities to Linear Programming

There are many similarities between semidefinite programming and linear programming. Their standard formulation look vary similar, the main difference being the use of

matrices instead of vectors for the variables, constraints, and objective function. For example, look at this formulation of a semidefinite program:

Where  are matrices in  The similarity to linear programs is apparent, with the exception that instead of element-wise vector multiplication, there is element-

wise matrix multiplication, or multiple vectors being multiplied in a single operation. From these, we can construct a linear program, demonstrating how linear programs are

special cases of semidefinite programs. Let  be strictly diagonal matrices. That is, . This will leave us with the only

interesting values for each constraint and for the objective function being where , so we can identify each component simply by one identifier. This will result in

 for the objective function, and a similar looking sum for each constraint. This is simply a linear function.

S
n

LP : min

s. t.
c ⋅ x

⋅ x = ,ai bi

x ∈ R
n
+

∀i ∈ [m]
SDP : min

s. t.
C ∙ X

∙ X = ,Ai bi

X ⪰ 0

∀i ∈ [m]

X, C, Ak R
n

C, ∀kAk = 0  ∀i ≠ j and = 0  ∀i ≠ jCij Ak,ij

i = j

∑
i

cixi
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Restrictions on X

The variable matrix  must be a positive semidefinite matrix, which is how this type of program gets its name.

Positive Semidefinite

A positive semidefinite matrix  is any matrix such that  for any vector  in . A result of this particular definition is that the eigenvalues for the matrix

 are all non-negative. If the eigenvalues are all positive, then the matrix is positive definite and . The constraint given to the matrix that any v will result in

a non-negative value provides the program with the ability to linearly constrain a non-linear function. This will be demonstrated later in the geometries section. Note that any

diagonally dominant matrix with positive values down the main diagonal is a positive semidefinite matrix, which can be helpful when attempting to find these matrices.

Solving the SDP

Solvers use interior point methods to solve semidefinite programs. Even though all of the matrices in the constraint functions are linear matrices, the simplex method does not

work for solving semidefinite programs. This is because the definition of a positive semidefinite matrix is  for all . The restriction that it must hold for all 

implies in infinite number of constraints, which will be demonstrated below. Because of this, the simplex method does not work because it can take up to an infinite number of

steps, which is computationally expensive to say the least. Therefore, interior point methods are used to solve SDPs because we can guarantee convergence to an optimal

vertex within machine precision of the true optimal vertex. Because semidefinite programs are solved on computers, as interior point methods for problems large enough to be

interesting would not be feasibly solvable by hand, machine precision near the optimal vertex is all we would get from a simplex method. Therefore, interior point methods are

the preferred solving technique for SDPs.

Geometry of the SDP

The feasible set of a SDP is an affine subspace intersected with the cone of semidefinite matrices in . The affine subspace is the subspace in  that contains

all each linear constraint after the element-wise operation  takes place. The semidefinite cone is the collection of all positive semidefinite matrices, and the intersection

of these two subspaces creates another affine subspace in .

Difference from Linear Progamming

In linear programming, each constraint generates a bisecting hyperplane, separating the vector space into two half-spaces. One of these half spaces contains feasible points for

the constraint and the other does not. The same is true for semidefinite programs. The main difference is that there are a finite number of linear constraints in a linear program,

and an infinite number of linear constraints in a semidefinite program. This is because a matrix is positive semidefinite if  for all  in . because there are an

infinite number of constraints. take the example below:

X

X ∙ X ∙ v ≥ 0vT v R
n

X ∙ X ∙ v > 0vT

Xv ≥ 0vT v v

,  or R
n×n

S
n

R
n×n

A ⋅ X
S

n

Xv ⪰ 0vT v R
n
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Let X be the matrix  and the vector  be . Then using every value of a provides a scalar of every possible vector in  except any scalar of the vector .

This is what we need to test if the matrix is positive semidefinite. Doing the matrix multiplication for , which is always positive. For all other

cases, where  is some scalar of , the multiplication gives us

Which gives us the constraint .

Plugging in different values for a gives different constraints. For example, if a is positive, then the constraints are completely contained in the part of the vector space outside

the first orthant. This makes them redundant constraints and therefore not interesting. When a is negative, however, we get constraints that pass through the first orthant. for

example, let a = -1. We end up with the constraint , which looks like this:

∣
∣
∣
x1

1
1
x2

∣
∣
∣ v [ ]1

a
R

2 [ ]0
1

v = [ ], Xv =
0
a

vT a2x2

v [ ]
1
a

0 ≤ XvvT = [ ][ ]vT x1

1
1
x2

1
a

= [ ]vT + ax1

1 + a ⋅ x2

= [ ][ ]
1
a

T
+ ax1

1 + a ⋅ x2

= ( + a) + (a + ).x1 a2x2

+ a ≥ −21
a x1 x2

+ ≥ 2x1 x2
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When , then we get constraints that look like this:a = −3, −2, − , −1
2

1
3
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And when we substitute in more real values for a, we can see that the set of linear constraints approaches the function , which represents a non-linear function.

This is also an example of how non-linear programs can be expressed as a semidefinite program.

=x2
1
x1
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We can also characterize positive semidefinite matrices by their leading principal minors:  is a positive semidefinite matrix if and only if all leading principle minors are

non-negative. As the th leading principle minor is the determinant of the first  rows and columns, we have the following two inequalities:

and

In other words, we need  and , implying that the feasible region for our SDP is in fact  for non-negative , as expected.
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Separable Convex Cost Network Flow Problems

From CU Denver Optimization Student Wiki

This page was created by Eric Olberding and Valentinas Sungaila.

The PDF of the presentation can be found at https://github.com/eric072891/NetworkFlowsProject.

In a minimum cost network flow problem, we have a graph with nodes and arcs. We can send things along the arcs from one node to another. Typically, there are some

constraints on how much can be sent from or to each node. Sending something along an arc costs something. Separable convex cost network flow problems are minimum cost

network flow problems where the cost is convex.

In this project, applications of convex cost flow problems are covered along with algorithms to solve some special cases of the problem. We describe two different types of

convex cost functions: piecewise linear, and concise functions. Then, two algorithms for solving linear cost network flow problems are adapted to solve the piecewise linear

cost network flow problems. The approximation of a concise convex function with a piecewise linear function and the modification of an algorithm to solve this problem is

also covered.
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Separable Cost

A separable cost problem is one in which the total cost cant be written as a linear combination of the costs on each arc. 

The following is an example of a network that does not have separable cost. Let the network have two arcs . The total cost in this network is . This

network, therefore, does not have separable cost.

( )∑(i,j)∈A Cij xij

,x1 x2 + 2 +x1 x1x2 x2
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Convex Cost

In a separable convex cost setting, the cost of sending  units of flow along an arc is . A function is convex if 

for . This means that any line connecting two points on the graph of the function lay above the function. The function  must satisfy this, as it is convex. If

we have the set of arcs  in the network, the total cost for a given flow in the network is .

Applications

Road Networks

In road networks, as the number of cars increases, the road becomes more congested which leads to delay in travel time. This can be modeled as a function of the flow  on

that road.

Where  is the flow of traffic,  is the theoretical road capacity, and  is a constant. As  which is the flow increases and approaches  the delay on the road increases which

makes the delay function on each road segment a convex function. When looking for the flow plan that gives the minimum overall delay in traffic flow, the sum of all the

delays in road segments creates a convex cost network flow model.

Another example of a convex cost network flow model for traffic flow deals with the behavioral assumption that people on the road system will travel from their starting point

to their destination with minimum delay. Here delay can be represented as  on arc  as a function of arc's flow  for each person on the road. Since multiple

people are on the road and each persons flow depends on others the objective function is shown below.

If the delay function is non-decreasing, then the function of each variable  within the summation is convex. Each person will travel along a shortest path with total delay

cost  on the arcs of the path which leads to a convex cost.

Area Transfers in Communication Networks

In the past equipping every phone with a routing ability was expensive. Thus requiring switch centers to be used when routing phone calls. A convex cost network flow

problem arises to see how many customers need to be assigned to switch centers to minimize cost. Area transfers in communication networks can route calls between people in

a switching center and between switching centers as shown bellow.

xij ( )Cij xij f(λa + (1 − λ)b) ≤ λf(a) + (1 − λ)f(b)
λ ∈ (0, 1) (x)Cij

A ( )∑(i,j)∈A Cij xij

x

Delay =
αx

(u − x)

x u α x u

( )Cij xij (i, j) xij

(y)dy∑
(i,j)∈A

∫
0

Cij

xij
( )Cij xij
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Ravindra Ahuja, Thomas Magnenti, and James Orlin, Network Flows, MIT Press (1993)

Here  represents the current demand of district  or the number of lines going to a switching center.  represents the capacity of switch center  or the number of lines

the center can handle.  represents the number of lines currently in use between center  and district .  represents the spare lines connecting to the switch center  to

district  at a cost of  per line.  represents a cost for an additional line beyond the spare ones and the assumption is .  represents the cost to disconnect a

line from switch center  to district  and connect it to another switch center.

A demand for lines at each district can be defined as . Figure a, shows how this communication network would look like. Figure b shows the cost of flow on arc

. If the switch center  supplies  lines to district  then no cost is incurred. But when demand starts exceeding  then the cost increases in a convex fashion first

with  and then .

Two Types of Convex Cost Functions

In this project we cover two types of convex functions. We cover concise functions, like , that can be written using  pieces of information.

We also examine piecewise linear costs. In these problems, the cost per unit (slope of the total cost function) for a single arc will be piecewise constan. Suppose we have an arc

with a capacity of 2, where a different cost is incurred for each unit of flow. The first unit of flow along this arc may incur a cost of 5, while the second unit of flow incurs a

cost of 7. This would be written,

Note that, as these piecewise linear functions are convex, the cost of sending more flow along an arc can only ever increase.

Concise functions can be approximated with piecewise linear functions. Below, we show an approximation of the concise function  with 4 linear segments.

d(j) j b(i) i
wij i j sij i

j λij δij >δij λij μij
i j

d(j) + δ(j)
(i, j) i wij j wij

λij δij

( ) = 10Cij xij x2
ij O(1)

( ) = {Cij xij
5x,

7x + 5,

if 0 ≤ < 1xij

if 1 ≤ ≤ 2xij

C(x) = 1
5
x2
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If we assume that the feasible solutions to a separable convex cost problem are integral, then we lose nothing by approximating the concise function with a piecewise linear

convex cost function. Usually, the integer optimal solution will be worse than the continuous optimal solution. However, this isn't a major issue. We can approximate the

continuous optimal solution to any desired degree.

To do this, we replace  with , where  is some large integer of our choosing. Then, for an integer optimal solution , the solution  is within

 of the optimal flow for the original continuous problem. We are "stretching" the function. Integer solutions in the new function correspond to fractional solutions in the

original problem.

This approximation does have implications for the running time of algorithms, as we outline in the next section.

Network Transformation for Piecewise Linear Cost Functions

One way of solving separable piecewise linear convex cost problems, is to convert the corresponding network into one that can be solved with typical linear minimum cost

flow problems. For an arc from  to  with cost function consisting of  linear segments, we replace it with  arcs between  and . Note that, for a piecewise linear cost

function, the cost per unit of extra flow corresponds to the slope of the line segment. We now have  arcs, where the cost on each arc corresponds to the slope of the line

segment. To illustrate with an example, suppose we have an arc with capacity  such that the cost per unit flow is  on ,  on , and ,  similar. Suppose that

we send  units of flow along the arc. The transformed network looks like the following.

xij /Myij M y∗
ij = /Mx∗

ij y∗
ij

1/M

i j p p i j
p

4 c1 [0, 1) c2 [1, 2) c3 c4

2
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For the first unit of flow, we completely traverse the line segment in the cost function with slope . This corresponds to sending one unit along the arc with cost . We send

another unit of flow, completely traversing the line segment with cost per unit (slope) . Again, the arc corresponding to this line segment is at capacity.

For convex cost functions that were already piecewise, this transformation does not seriously affect running time. For each arc with  segments, we already needed to specify

information proportional to . For concise functions, however, we add information that isn't implicit in the problem setup. The better the approximation we use, the more line

segments we have. This means more added arcs and more information to store. Furthermore, if we analyze the running time of an algorithm on the transformed network for a

concise function, the running time will depend on the number of pieces; these are independent of the original data.

We also note that we have a graph with multi-arcs! If we are searching for a shortest path, we may search through arcs that we are guaranteed not to use in an augmenting step.

An augmenting step involves sending extra flow along an arc. Since the cost function is convex, the slope of the cost function can only increase. This means that

 in the example above. If we have currently sent two units of flow along this arc, we would only ever send an additional unit of flow along the arc with

cost . Thus, we need to somehow disregard the arc with cost  until it is needed. To do this, we use a modification of a residual network.

Residual Network

For the transformed network above, we can construct a modification of the typical residual network that saves computation. We use the fact that, for a given level of flow ,

we only need the arcs with costs equal to the slopes of the line segment from one less than the current flow to the current flow and the line segment between one more than the

current flow and the current flow. For the forward arc , we have the arc with cost . Note that we are using the total cost here, so the

difference corresponds to the slope. Similarly, we include the backwards arc  with cost . The capacities of these arcs corresponds to the

amount of flow we can send forward or back before needing to change the cost per unit of the arc. The picture below contains the normal residual network for the example in

the previous section and the modified residual network. In that example, we had already sent two units of flow.

c1 c1
c2

p
p

< < <c1 c2 c3 c4
c3 c4

xij

(i, j) ( + 1) − ( )Cij xij Cij xij
(j, i) ( − 1) − ( )Cij xij Cij xij
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We only need the arcs that correspond to spending the least when sending flow and saving the most when deciding to no longer send flow.

Pseudopolynomial Time Algorithms

Once we have the modified residual network above, we can use typical linear min cost flow algorithms to solve our problem. For the cycle-canceling algorithm, after finding a

feasible flow we search for a negative cycle in the modified residual network. We then augment flow along this negative cycle to reduce the total cost in the original network.

Note that this modified residual network will have arcs with costs and capacities that change as we augment flow. Because of this, a cycle may still be negative even after

augmenting as much flow as possible along that cycle. If the cycle is still negative, it would be a waste to search for a negative cycle again. To avoid this, we continue to

augment flow along the same negative cycle until it is no longer negative.

The shortest successive paths algorithm can similarly be applied to the modified residual network. Similar to before, we may end up augmenting flow along the same path

multiple times, as the capacity of an arc is "reset" when increasing the cost of the arc in the augmenting path. In fact, in the worst case, this algorithm may only augment 1 unit

of flow per iteration.
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Polynomial Time Algorithm (Capacity Scaling Algorithm)

In this section, we describe an improvement upon the shortest successive paths algorithm mentioned above. We describe a modification that prevents sending small increments

of flow repeatedly. The main idea is to start with course approximations of the concise function and push large amounts of excess to deficit nodes and then refine the

approximation over the course of the algorithm while sending smaller and smaller amounts. We first approximate the concise function with one linear segment. The maximum

capacity of this segment is a power of two. It is the largest power of two less than or equal to the original maximum capacity of the arc. Let  be the size of the interval on

which one of the linear segments is defined. For the different approximations, we have corresponding residual networks  defined in the residual networks section.

We note above that, in the first phase,  will be the largest power of two less than or equal to the maximum capacity. We initialize the node potential and flow to be . Now,

define  as the nodes with excess at least  and at most , respectively. Choose a pair of nodes from these sets and find the shortest path between them.

Push  units of flow from the excess node to the deficit node. Update the residual network. Do this until either  or  are empty.

Once they are empty, replace  with  and repeat the process. At the start of each scaling phase , we may have to add or subtract  units of flow to an arc to make the

arc satisfy the reduced cost optimality conditions. In the graph below, if we start the phase  with a flow of , the slope of the adjacent line segment,  is smaller. This

means that the reduced cost for ,  is smaller and may be negative. We also see that if we increase the flow by , the cost per unit flow

on the forward arc  (slope of the line segment to the right of ) is larger and thus the arc satisfies the reduced cost optimality conditions.

Within each scaling phase, the reduced cost optimality condition is preserved as we are essentially using the successive shortest paths algorithm. This means that, after we have

scaled  down to one and gotten rid of all excess, we will have an optimal solution.

Δ
G(x, Δ)

Δ 0
E(Δ),D(Δ) Δ −Δ

Δ E(Δ) D(Δ)

Δ Δ/2 Δ Δ
Δ = 2 0 cij

(i, j) = − π(i) + π(j)cπij cij Δ = 2

(i, j) = 2xij

Δ
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Shadow price

From CU Denver Optimization Student Wiki

In mathematical programming, shadow prices are a measure of the sensitivity of a program with respect to a constraint. This sensitivity the relative change in the objective

function value when the right hand side value of a constraint is changed. Consider the following linear example:

Friction Tire Company makes 2 kinds of tires, a sport tire and an all season tire. They sell the sport tire for $50 per tire and the all season tire for $40 per tire to their various

distributors. Due to constraints on the size of their warehouse, they can only store up to 1,000 kg of their main rubber compound each week before they get their next

shipment. Likewise, they can only have up to 700 kg of their all season compound and 1,100 kg of their sport compound. Each sport tire takes one kg of the main compound

and 2 kg of the sport compound to make, and each all season tire takes one kg of the main compound and one kg of the all season compound. They know that they will need to

produce at least 300 of each tire, and they can rely on their marketing department to create demand for whatever else they produce. Before Friction can find the shadow prices,

they need to model and solve this program.

It is easy to verify that the optimal point is (450, 550), or that Friction should produce 550 sport tires and 450 all season tires to maximize the profit. That maximized profit

will be $45,500.

With the model and an optimal point, the shadow prices can be found, as well as how they affect the objective function value. These are calculated component-wise, or one

constraint at a time. Increasing or decreasing the right hand side (RHS) value of each component one marginal unit at a time and then re-solving the program will give you the

new objective function value. The difference between these two values, or the change in objective function value, is the shadow price. Imagine that Friction Tire could store

1,100 kg of their main rubber compound instead of 1,000 and they have to take shipments in 100 kg increments, what would the difference in profit be? Start with the first

constraint and increase the RHS value to 1,100. Solving the new model gives an objective function value of 49,500. This gives an increased profit of $4,000 per 100 kg of

increased storage. Because this example is linear, the shadow price for the primal problem on constraint 1 is , or 40. This means that for each increased unit on the right

hand side of the first constraint, the objective function value will increase by 40.

This is relatively simple for linear problems, but it gets a bit more complex for non-linear problems. Non-linear programs require the partial derivative, or gradient ( ), of

the objective function value with respect to the constraint to find the instantaneous shadow price. This should make sense for anyone with a background in calculus, as

derivatives simply describe rates of change. The simplified way of finding the shadow price ( ) in this way is with the formula:

max

s. t

40x1
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+
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This is obtained with the Lagrangian, which is explained in more depth on its own page. The gradient of the objective function with respect to the constraints is a vector equal

to the optimal solution of the dual problem for linear programs. The same is true for the gradient of the dual program. [1] [2]
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2. ↑ Vanderbei, Robert J. Linear programming. Springer US, 2014. International Series in Operations Research & Management Science 196.

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Shadow_price&oldid=247"

This page was last modified on 21 March 2017, at 13:40.
This page has been accessed 12,084 times.

Typesetting math: 100%

https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Shadow_price&oldid=247


Shortest Path Routing Algorithms

From CU Denver Optimization Student Wiki

I have worked on the single source shortest path routing algorithm and all pair shortest path routing algorithm.

Abstract

The shortest path algorithms have many important applications ranging from Google Map, network routing protocols, VLSI chip placement to prediction of infection risk and

exploiting arbitrage opportunities in currency exchange. The purpose of this project is to study the single source shortest path algorithm (due to Dijkstra) and the all pair

shortest path routing algorithm (due to Floyd and Warshall) in a graph. Both the algorithms assume that the graph is connected, the network topology and edge costs are known

and nodes perform computation independent of each other. Dijkstra’s algorithm assumes that there is no negative edge cost while the Floyd Warshall’s algorithm assumes that

there is no negative edge cycle. Dijkstra’s algorithm iteratively finds the shortest path by updating the estimated distance of the unvisited nodes that are connected to the newly

discovered node. This is a greedy algorithm which uses two key observations: (a) the subpath of any shortest path is itself a shortest path; (b) the triangle inequality can lead to

a better distance estimate. The running time of the algorithm is O(V^2) (V: the number of nodes) and can be improved to O(VlogV) by using a Fibonacci heap. Floyd

Warshall’s algorithm is a dynamic programming approach in which the intermediate results are stored in a table. This uses the following key observation: for a shortest path

between i and j, there are two cases. In the first case, the intermediate node is not on the path leading to the shortest path of length �d_ij�^(m-1) whereas in the second case, the

intermediate node is on the path resulting in the shortest path of length �d_im�^(m-1)+ �d_mj�^(m-1). The algorithm runs in O(V^3). While Dijkstra’s algorithm can be

invoked for every node to obtain the all pair shortest path, the algorithm will not accept a negative weight.

Github link

https://github.com/amitsengupta1/shortest-path Amit Sengupta
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Shuo is a graduate student at the University of Colorado Denver studying electrical engineering. Originally from China, completed his undergraduate education with a

bachelor degree in biomedical engineering and attended University of Colorado Denver since 2014. During his studies at CU Denver, he is working with professor Jae-Do

Park on the microbial fuel cells (MFCs) project, focusing on MFCs voltage optimization and energy harvesting.
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Sollin's Algorithm for Minimum Spanning Trees

From CU Denver Optimization Student Wiki

The author of this project is Rebecca Robinson.

Contents

1 Introduction
2 Optimality Conditions
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4 Algorithm
5 Pseudocode
6 Example
7 Complexity of the Algorithm
8 Correctness of Algorithm
9 Presentation Slides
10 References

Introduction

In a network composed of nodes and arcs with costs, a spanning tree is a acyclic subgraph connecting all the nodes together. A minimum spanning tree is the spanning tree

with minimum cost on the network. That is it is the spanning tree with the least sum of the costs of all the edges.

Finding the minimum spanning tree is useful is several different applications. Perhaps the most direct application is designing physical systems. For example, consider isolated

villages that are connected by roads, but not yet by telephone lines. We want to decide where to put the telephone lines to be able to reach every village with using the

minimum length of telephone line.

Another application of the minimum spanning tree problem is cluster analysis. Suppose that we have a network and want to split the network into  different clusters such that

the total cost of all the clusters is minimized. We can take the minimum spanning tree and delete the  arcs with the highest cost. The result is a forest of  trees with

minimal cost.

Optimality Conditions

For the minimum spanning tree problem, we have two different optimality conditions: cut optimality conditions and path optimality conditions . We do not show it here, but

these two optimality conditions are equivalent. We describe the cut optimality conditions here.

k
k − 1 k
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Illustrating the cut optimality conditions

Boruka's one page paper

Cut Optimality Conditions

A spanning tree  is a minimum spanning tree if and only if it satisfies the following cut optimality

conditions: For every arc  for every arc  contained in the cut formed by

deleting arc  from .

Proof. Suppose  is a minimum spanning tree and that  and arc  is in the cut formed by

deleting arc  from . Then  is not a minimum spanning tree since replacing  by  in

 would yield a lower cost spanning tree.

Suppose  satisfies the cut optimality conditions, but  is not a minimum spanning tree. That is, there

exists a tree  that is a minimum spanning tree. Then, since  is not a minimum spanning tree,

it must have some arc  not contained in . Deleting arc  from  creates a cut . We note that in a tree, if any arc is added between the nodes of the tree, it

must form a cycle. Thus, if we add the arc  in to , we must form a cycle .  must contain another arc  such that  and . Since  satisfies the

cut optimality conditions, </math> c_{ij} \leq c_{kl} </math>. Since  is a minimum spanning tree, , otherwise  would have contained  to begin with.

Thus, . If we replace  by  in , we produce a minimum spanning tree with one more arc in common with . We can continue to repeat this argument

to transform  into , giving that  is a minimum spanning tree. Q.E.D.

Note that the cut optimality conditions imply that every arc in a minimum spanning tree is a minimum cost arc across the cut defined by removing it from the tree. We can

reword this by saying that for any cut, the minimum cost edge in the cut must be in the minimum spanning tree.

History

More commonly known as Boruvka's algorithm, Sollin's algorithm was the first algorithm for the minimum spanning tree problem. Borukva first

published his algorithm in 1926 which he designed as a way of constructing an efficient electricity network in Moravia, a region of the Czech

Republic. He published two papers in the same year with this algorithm. One was 22 pages and has been viewed as unnecessarily complicated.

The other was a one page paper that has been regarded as the key paper showing Boruvka's understanding and knowledge of the problem.

It was then independently rediscovered in 1938 by French mathematician Gustave Choquet, and again in 1951 by Florek, Łukasiewicz, Perkal,

Steinhaus, and Zubrzycki. Again, it was rediscovered in 1962 by Georges Sollin.

Algorithm

Sollin's algorithm is a hybrid of Kruskal's and Prim's algorithm. In Sollin's algorithm, we maintain a collection of nodes  and adds

arcs to this collection, a technique borrowed from Kruskal's algorithm. We also add minimum cost arcs at every iteration, a technique borrowed

from Prim. It's important to note that this algorithm requires all arc costs to be distinct, but Boruvka has said "If we measure distances, we can

assume that they are all different. Whether distance from Brno to Breclaw is 50 km or 50 km and 1 cm is a matter of conjecture."

Sollin's algorithm uses two basic operations:

T ∗

(i, j) ∈ , ≤T ∗ cij ckl (k, l)
(i, j) T ∗

T ∗ >cij ckl (k, l)
(i, j) T ∗ T ∗ (i, j) (k, l)

T ∗

T ∗ T ∗

≠T ′ T ∗ T ∗

(i, j) T ′ (i, j) T ∗ [S, ]S̄

(i, j) T ′ W W (k, l) k ∈ S l ∈ S̄ T ∗

T ′ ≥cij ckl T ′ (i, j)
=cij ckl (k, l) (i, j) T ∗ T ′

T ∗ T ′ T ∗

, , …N1 N2
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1. nearest-neighbor( ): Given a tree spanning the nodes , this operation determines an arc  that is a minimum cost arc emanating from . To

perform this operation, we scan all the arcs in the adjacency lists of nodes in  and find a minimum cost among those that have one endpoint not in .

2. merge( ): Given two nodes  and , if the two nodes belong to two different trees, we merge the two trees into a single tree.

Pseudocode

 algorithm Sollin;

 begin

    for each  do ;

    ;

    while  do

    begin

        for each tree  do  nearest-neighbor( );

        for each  do

            if nodes  and  belong to different trees then 

                merge ( ) and update ;

    end;

 end;

, ,Nk ik jk Nk ( , )ik jk Nk

Nk Nk
,ik jk ik jk

i ∈ N := {i}Ni

:= ∅T ∗

| | < (n − 1)T ∗

Nk , ,Nk ik jk

Nk
ik jk

,ik jk := ∪ {( , )}T ∗ T ∗ ik jk
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Example

  

 Consider the network given in the leftmost picture. The second picture gives the result after the first iteration of the algorithm.

The third picture gives the second iteration. Since after the second iteration, we only have one tree left, the algorithm terminates and we are left with the spanning tree shown

on the far right with a cost of 46.

Complexity of the Algorithm

We look at the running time of each of the two major operations that occur in Sollin's algorithm. We note that nodes are stored as a circular doubly linked list. This allows us to

be able to visit each node of the tree starting from any other node. Each node gets a label such that:

1. Nodes of the same tree get the same label
2. Nodes of different trees have different labelsTypesetting math: 100%
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At the start, each label  is given to each . That is, each node is a separate tree. We can see that we check if an arc  has its endpoint in the same tree by checking

the labels of  and . Thus, nearest-neighbor can be performed in .

Merge operations are performed in an iterative scheme. In each interation,

We select an unexamined tree, say . Let  be a minimum cost arc emanating from .  may or may not be in .

Suppose the nodes in  have label .
If node  has label , the iteration ends.

Otherwise, scan through the nodes of the tree containing , say , and assign them label .

Now consider a minimum cost arc  emanating from .

If node  has label , the iteration ends.

Otherwise, scan through the nodes of the tree containing , say  and assign them the label .

Repeat this until eventually the iteration ends.

This procedure assigns a label to each node once, and so runs in  time.

Each execution of the while loop lowers the number of trees by at least a factor of 2, which means we run the while loop  times. This, together with the  time

for nearest-neighbor gives a total running time of .

Correctness of Algorithm

Recall that a different wording of the cut optimality conditions is that for any cut, the minimum cost edge in the cut must be in the minimum spanning tree. Let  be the

spanning tree given by Sollin's algorithm, and let  be the minimum spanning tree. Assume that . Then there is some arc  contained in  but not . Delete

 to obtain the cut . Since  is a spanning tree, it must have some arc  such that  and . By the algorithm, , else  would

have been chosen by the algorithm to be in . But according to cut optimality conditions, the minimum spanning tree  should contain the minimum cost edge in any cut.

But  does not contain  which is the minimum cost arc in . This is a contradiction, and so  given by the algorithm is the minimum spanning tree.

Presentation Slides

Presentation slides can be accessed here: https://github.com/rebrobin/presentation/blob/master/NetworkFlowsPresentationFinal.pdf
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Solving Power Flows Problems Using Network Flows Model

From CU Denver Optimization Student Wiki

Power Grids (electricity networks) are responsible for our daily electrical energy usage. An electricity network usually includes multiple components like generators (producing energy),

utilities (energy consumers), transmission lines (energy transportation), transformers, and some power electronics devices for control purposes. For electrical analysis, like demand

satisfaction, costs optimization, an energy flow calculation is necessary. This is usually a non-linear optimization problem that is solved by numerical methods known as Newton-

Raphson method, an optimal power flow (OPF) to calculate the optimal energy production for each generator in the grid. In this project, the goal is to investigate electricity networks

under the network flows theory, finding out if the general network flows algorithms like maximum flows and minimum costs can have positive impact on optimal power flow

calculations.

Contents

1 Problem Simplification
2 14-Bus Power Grid Test System

2.1 Per-Unit-System
2.2 Power Flows Calculated by Numerical Methods

3 Power Grid Flow-Based Model
3.1 Notes on Model
3.2 Feasible Flows in Model

4 Results and Discussions
5 References

Problem Simplification

The electrical flows in a power grid obey laws of physics, and typically people don' control them in the real network. The amount of the energy produced is forecasted by the previous

year's data. To control the electrical flows in the electrical network, each node or some of the nodes have to be able to distribute the flow according to a given flow. Control devices,

which are able to influence the electrical flow, in general, the flexible alternating current transmission systems (FACTS) are needed. In this project,electricity networks under the

assumption that all of nodes are supplied with such a control device. And the test system used in the project is a 14 bus system which will be introduced in the next section.

14-Bus Power Grid Test System

The electricity network on the right is called a 14-bus system, since this electricity network has 14 buses.

The lines connecting the buses represent the transmission lines and are named branches. An arrow at a bus means that there is a power demand, consists of real power demand and

reactive power demand,the power demand are also called load. Buses which are connected with a generator marked with G or a condenser marked with C represent the generator buses

which are the power supplies in an electricity network. In AC a generator consists of both a real power output and a reactive power output and a condenser has only reactive power

output. The specifications of this system can be find from the Washington University website[1].
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14-bus system

14-bus system in per uint

Per-Unit-System

In practice, the high-voltage lines are commonly used in transmission networks for large distance transmissions and low-voltage lines are used in

distribution network for short distance transmissions. Thus, in an electricity network there typically exist multiple voltage levels.To make the calculation

in an electricity network with multiple voltage levels easier, the per-unit-system is used as a normalization. The system will be separate into different

base zone but with the same normalization level in per unit system.

In this project the base value is set to 100 MVA.

Power Flows Calculated by Numerical Methods

In an AC network power consists of two terms:the real power P (measured in MW) and reactive power Q (measured in MVar). When simulating an

electricity network, then it is necessary to include Kirchhoff's laws. The first Kirchhoff's current law, defines that the sum over all incoming and

outgoing currents at a bus are equal to zero.The second Kirchhoff's voltage law defines that the sum over all voltages in a loop are equal to zero.

The real power demand Pd and reactive power demand Qd for each bus are given. For each generator bus in the electricity network, the power generation Pg and voltage V are given.

And there is the slack bus, which we know the voltage magnitude V and voltage angle θ. The goal is to calculate the voltage magnitudes V and voltage angles θ at each load bus in the

electricity network and voltage angles θ for the generator buses so that the power demands are satisfied.

The linearized equation system is solved for the next iterations by using the next estimation for voltage magnitude V and voltage angle θ. This iteration ends if the error lies in the

tolerance ε. Typical initial guesses are V = 1 for voltage magnitude and θ = 0 for voltage angles. Further more,If there is a real power generation Pg, the cost function is defined by

where k is the amount of generation.

perunit =
valuereal

valuebase
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14-bus system flow model

Power Grid Flow-Based Model

To apply flow models on electricity networks it is necessary to transform these networks to s-t-networks with one source and one sink to generate flows. Therefore, we interpret the

electricity networks with regard to graph theoretical terms and define the sources and sinks of these network structures to connect these sources and sinks to one general source s and

general sink t. This transformation also simplies the work in the graph theoretical area and provides clear mathematical descriptions. Buses connected to generators in G, which are

responsible for real and reactive power, and condensers in C, which are responsible for reactive power, are connected to an additional vertex s, which is called source. Buses connected to

consumers in L (also known as buses with load) are connected to an additional vertex t, called sink. Transformers in T and other components need no special modeling. The cost of each

arc is the power loss if it is a transmission line, none cost for else, the graph model of the 14 bus system is shown on the right.

Notes on Model

The arc capacity is depending on the property of the generator,condenser, transmission line and loads. In this 14-bus system, there may be more than one

transmission line between two buses, as in the graph network model, we merge those line into one arc. The capacity of this arc is the total number of all

lines capacity. As the cost, transmission line power loss is actually depend on line length and voltage level. To simply it, we just consider the line length,

which in this case the same.

Mathematical
Term

Components in Grid Remarks

Nodes Buses, including one general source and one general sink NA

Arcs 
Transmission lines and additional lines from generators to source and loads to
sink

Arc direction must make obey the physical
law

Capacities Maximum load of each electrical component NA

Costs Transmission line loss Have same value in this project

Flows Power flows Only Consider real power

Feasible Flows in Model

To find a feasible flow in the model, the naive approach is just use the maximum flow algorithm, augmenting along each possible path and then trace back for the flow on each arc.

Although topically in a power grid we don't focus on sending as much power as possible, using this approach we can meet the physical law of electrical and keep the whole system

stable.

Results and Discussions

As the flows shows in the figure below (flows marked on the arcs),we can conclude that,

1)some arcs are very close to overloaded
2)generator distribution is not optimal although all nodes meet the physical laws

Furthermore, if we count the transmission loss into consideration, the total flow amount for real power is very close to optimal flow amount calculated by numerical method. Since the

generation distribution is poor in this case, so it can not be the lowest generation cost flows.

N

A(i, j)

u(i, j)

c(i, j)

x(i, j)
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Summarizing, network flow model not ideal to solve the complex network like a electrical network. Even with the good amount of simplifications and assumptions, it is still very hard to

get the optimal power flows.
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Spectral clustering

From CU Denver Optimization Student Wiki

Spectral clustering[1] is a method that uses weighted graphs to partition the network into groups of different sizes and densities. Let  be an undirected graph

with vertex set  and edge at . For each  we define the degree of  as

where  is a weight between two vertices  and ; note that  and because the graph is undirected .
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3.1 Unnormalized spectral clustering algorithm
4 Applying spectral clustering
5 References

Different similarity graphs

For a set of data points , with  let the similarity graph be represented by , where each vertex  in  represents a data point . Given

 i.e., some notion of similarity between all pairs of data points  and , two vertices are connected if the similarity value is positive or larger than a certain

threshold; the edge is then weighted by . There are several constructions to transform a given set  of data points with pairwise similarities  or pairwise

distances  into a graph . We will discuss two alternatives ways and give an example for each. In particular, we take the data set and classify it into different

groups through spectral clustering. The results obtained for different similarity graphs with the same set of data are shown in the following Figures. These figures show the

relationships among artificially generated data and allow us to observe the various advantages of different similarity graph.

The -neighborhood approach
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Given a positive , all points at a distance less than  are connected. As the distances between all connected points are roughly on the same scale (in the sense that they are at

most  units away), weighting the edges would not incorporate more information of the data in the graph. Hence, the -neighborhood graph is usually represented by an

unweighted graph. In the Figure below the points within a distance less than  are joined by an edge. It shows that the middle points on each moon are strongly

connected, while the points in the extremes less so. In general, it is difficult to define a parameter  that is robust, especially when the points are distributed with different

distances among them depending on the space. If we choose a good parameter , we obtain well-defined clusters at the output of the algorithm. As the Figure illustrates the

data is grouped into eight clusters represented by different colors.

The -nearest neighbor approach

Given a positive , vertex  is connected to vertex  if  is among the -nearest neighbors of . Note that, this definition leads to a directed graph, as the neighborhood

relationship is not symmetric. There are two ways of making it undirected:

- One way is to simply ignore the directions of the edges, that is we connect  and  with an undirected edge if  is among the -nearest neighbors of  or if  is among

the -nearest neighbors of . The resulting graph is what is usually called the -nearest neighbor graph, shown in the Figure below. Vertices  and  are connected with an

undirected edge if  is among the 6-nearest neighbors of  or if  is among the 6-nearest neighbors of . The advantage of this approach is that if many points are too

close, it will not generate excessive links (as can be seen at the points in the middle of the moon of the Figure). However, the -nearest approach can break the graph into

several disconnected components and give a wrong number of connected components.

ε ε
ε ε
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- Another way is to connect vertices  and  if both  is among the -nearest neighbors of  and  is among the -nearest neighbors of . The resulting graph is called

the \emph{mutual -nearest neighbor graph} (shown in the Figure below). Compared to the other approaches mutual -nearest neighbor graph does not alter the number of

connected components, being appropriate to detect clusters of different densities.

For the last two approaches, after connecting the appropriate vertices, we weight the edges by the similarity of their endpoints.

The unnormalized graph Laplacian

Let  the weighted adjacency matrix of the graph and the degree matrix  the diagonal matrix with the degrees  on the diagonal. The

unnormalized graph Laplacian matrix is defined as

vi vj vi k vj vj k vi
k k

W = (wij)i,j=1,...,n D , … ,d1 dn

L = D − W.
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Unnormalized spectral clustering algorithm

To be able to formalize spectral clustering, we need to define the similarity matrix. Given a set of data points  and some notion of similarity ,

there is a similarity matrix  which is assumed to be symmetric and non-negative.

Unnormalized spectral clustering algorithm

Input: Similarity matrix  and number  of clusters to construct.

- Construct a similarity graph. Let  be its weighted adjacency matrix.

- Compute the first  eigenvectors  of .

- Let  be the matrix containing the vectors  as columns.

- Let  be the vector corresponding to the -th row of , for 

- Cluster the points  in  into clusters .

Output: Clusters  with  = .

The output of the algorithm returns the partitioned network. Points in different clusters are dissimilar to each other; that is, between-cluster similarities are minimized and

within-cluster similarities are maximized.

Applying spectral clustering

Crime response planning by linear programing gives the optimal police location with regard to a set of crime locations from the Open Data Catalog[2]. The analysis in the

project is focused on murder and robbery data but could be extended to other crimes. The goal is to minimize the expected distance between the crime location and the police

location.

The Denver Open Data Catalog includes criminal offenses in the City and County of Denver for the previous five calendar years plus the current year to date. The data is based

on the National Incident Based Reporting System (NIBRS). The data is filtered in the preprocessing stage of a Python program, avoiding crime locations outside of Denver

area.

In the first part of the project, we implement and compare the Discrete Wasserstein Barycenters models [3] using murder data. Then, we included robbery to the study. This

increases the amount of input data for 2016 from 52 to 1204 cases. To be able to include different types of crime and work with a bigger data set, we apply spectral clustering

to partition the locations of crime incidents in the Denver area into smaller parts. Then, we apply the discrete barycenter models to determine the optimal police location in

each part.
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The main result of the project is a Python code that extracts relevant data from Denver Open Data Cataloge, computes spectral clustering, implements discrete barycenters for

crime data in AMPL, and provides a visualization of results using Google maps. Repository at https://github.com/nataliavillegasfranco/barycenters.

Spectral clustering generates a network that captures the relationships between crime locations, using a similarity matrix , where .

We apply spectral clustering to robbery and murder data from the year 2016 and get partition in the Figure above.

S = (sij)i,j=1,…,n = s( , )sij xi xj
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The Figure above shows the 2-approximation model[4] with 4 clusters with murder and robbery data for January to December 2016, 12 months. The blue markers represent the

suggested police location.
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Stable Marriage Problem

From CU Denver Optimization Student Wiki

The Stable Marriage Problem is an example of a matching problem, a class of optimization problems in which the primary goal is to find some optimal way to pair up

adjacent nodes in a network. In general, matching problems involve an undirected, simple network with weighted edges between pairs of vertices; the optimization involved

usually relates to minimizing or maximizing the sum of the edge weights on a set of independent edges (i.e. a collection of edges in which no two edges have a common

endpoint). Matching problems as a whole can be split into two separate groups: bipartite weighted matching problems, and nonbipartite matching problem; the distinction is

determined by whether or not the underlying network structure is inherently bipartite. The stable marriage problem is an example of the former, in which we wish to

maximize some function of the edges weights in a bipartite network.

Contents

1 Hall's Marriage Theorem
2 Bipartite Weighted Matching Problem

2.1 Runtime for Solution Methods
3 The Problem

3.1 Propose-and-Reject Algorithm
4 Nonbipartite Cardinality Matching Problem

Hall's Marriage Theorem

Let  be a bipartite graph with partite sets  and . We say that  admits an -saturated matching if there exists a matching  for which every vertex in  is

an endpoint of some edge in . Hall's Marriage Theorem is one of many theorems in graph theory described as TONCAS: `The Obvious Necessary Condition is Also

Sufficient.' In this case, the obvious necessary condition for an -saturated matching in  is for  for every , where  denotes the union

of the neighborhoods all of all vertices in .

Therefore, a formal statement of Hall's Marriage Theorem is as follows: an -bigraph admits an -saturated matching if and only if  for all .

One well-known proof of this claim uses -augmenting paths, which are paths in  given some matching  which alternate from unmatched edge to matched edge, where

both ends of the path are unmatched. We call such a path -augmenting because swapping the matched edges for the unmatched edges creates a larger matching, provided

the path was maximal (i.e. the endpoints of the path are unmatched vertices under ). This proof provides the basis for an algorithm to construct an -saturated matching, if

one exists in .

G X Y G X M ⊂ E(G) X
M

X G |A| ≤ |N(A)| A ⊆ X N(A) ⊂ Y
A

X,Y X |A| ≤ |N(A)| A ⊆ X
M G M

M
M X

G
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Bipartite Weighted Matching Problem

Let  with  and arc weights . By convention, we assume that all arcs are directed from  to , but this assumption will not be

important in the Stable Marriage Problem. However, by generating a new source vertex with arcs to every vertex in , and a new sink node which serves as the head of an

arc from each of the vertices in , we can transform these bipartite weighted matching problems into special versions of a flow problem. Therefore, many of the algorithms

and techniques which were developed for solving flow problems can be effectively applied to bipartite weighted matching problems; however, they will generally not account

for much of the assumed structure of the bipartite networks underpinning the problems. Examples of such relevant algorithms are Successive Shortest Path Algorithm, the

Hungarian Algorithm, the Relaxation Algorithm, and the Cost-Scaling Algorithm.

Runtime for Solution Methods

We denote by  the time needed to solve a shortest path problem with nonnegative arc lengths. Then as the Successive Shortest Path, Hungarian, and Relaxation

Algorithms are all modifications of shortest path algorithms, it can be shown that they all run in  time. However, the basic implementation of the Cost-

Scaling Algorithm runs in  time while a modified version which decomposes the scaling computations in the algorithm runs on 

time.

The Problem

The stable marriage problem can be posed via a simple story. Imagine a set  of men and  of women ( ) looking for love; they are provided

portfolios on the members of the opposite sex, meet and discuss their lives, preferences, hobbies, etc. Each person then ranks all of the members of the opposite sex. We aim to

determine an optimal matching, where optimal means something slightly different than most contexts. For a given matching, a man-woman pair is said to be unstable if they

are not matched to each other but prefer each other to their current spouses; an optimal matching consists of no unstable pairs.

The best possible runtime for any algorithm which solves this problem will be linear in the input size, which consists of two  matrices consisting of each individual's

ranking of the members of the other sex. As the numbers in the matrix only have meaning as a ranking system (i.e. 2 is not `twice as good/bad as' 1), we can assume that

without loss of generality that the entries consist of the integers . We describe an algorithm below which achieves a runtime linear in the input size.

Propose-and-Reject Algorithm

The "propose-and-reject algorithm" is an iterative greedy algorithm which can achieve an -optimal stable matching, meaning every member of  obtains their best-

possible stable partner. To initialize the algorithm, we maintain a LIST of thus-far unmatched men, and point each man towards the the woman to whom he will next propose,

"current-woman". At the start, LIST =  and each man points to their most-preferred partner.

The algorithm proceeds by arbitrarily having a man in LIST propose to his "current-woman"; as an example, call this man Ted and suppose his "current-woman" is Robin.

Robin then chooses her preferred partner amongst Ted and her current partner, always choosing to be matched over not. The unmatched man from this scenario, call him

Barney, is then added to LIST and his "current-woman" is his next most preferred woman to Robin. The algorithm terminates only when LIST is empty. As each man's

"current-woman" only moves down his priority list every time he loses his partner, it is clear that eventually the algorithm will select a man whose "current-woman" is

unmatched, thus reducing the number of unmatched women. Since a matched woman never becomes un-matched, LIST must eventually become empty.

G = ( ∪ ,A)N1 N2 | | = | | = nN1 N2 cij N1 N2

N1
N2

S(n,m,C)
O(nS(n,m,C))
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Furthermore, showing that the algorithm produces a stable matching is not difficult. We will assume that some man, Ted, prefers some woman, Robin, to his current partner,

Victoria; as Ted proposed to all of the women he likes as much as he likes Victoria, he must have already proposed to Robin. As a woman's matched partners can only become

more desirable in this algorithm, Robin could not prefer Ted to her current partner. If Robin prefers Barney to her current partner, Sandy Rivers, then Barney must have never

proposed to Robin; hence Barney prefers his current partner to Robin. Therefore, once LIST is empty, the matching must be stable.

Furthermore, as every woman can only reject a man at most once, rejections occur at most  times, whereas the only time a rejection does not occur is the first time a

man proposed to that particular woman, which happens once per woman. Since the algorithm performs  steps per woman, and these operations consist of all steps, the

algorithm runs in  time. As the input data is of size , the "propose-and-reject algorithm" is linear in the size of the input and thus has the best possible complexity

bound. Furthermore, as there are never steps that depend on the nature of any of the rankings, every pair of ranking matrices admits a stable matching.

It should be noted, however, that stable matchings are not unique. As mentioned above, this algorithm results in a matching in which every man is partnered with their best-

possible stable partner; however, if we set up the algorithm so that women were proposing, then we would have that women are matched with their best-possible stable partner

which could potentially be different. Suppose , , and the preference lists are as follows: Ted

prefers Robin, Victoria, Lily; Barney prefers Victoria, Lily, Robin; Marshall prefers Lily, Robin, Victoria; Robin prefers Barney, Marshall, Ted; Victoria prefers Marshall, Ted,

Barney; and Lily prefers Ted, Barney, Marshall. If the men propose, the resulting matching is Ted-Robin, Barney-Victoria, and Marshall-Lily, whereas the women proposal

will lead to Robin-Barney, Victoria-Marshall, Lily-Ted.

Nonbipartite Cardinality Matching Problem

The nonbipartite cardinality matching problem (or nonbipartite matching problem) relaxes the condition that the underlying network is bipartite. In general, augmenting

paths like those used in the proof of Hall's Marriage Theorem are used to solve the bipartite matching problem; these techniques work because the distance between nodes in a

bipartite network maintain their parity always. However, the existence of odd cycles in general networks means that, depending on the order in which a search occurs, the

distance between nodes can have different parity when searching along augmenting paths. In order to resolve this issue, additional terminology and more theory is required.

However, the general solution technique for solving the nonbipartite matching problem mimics that of the bipartite matching problem: start with a feasible matching

(potentially empty) and search for an unmatched vertex; if none exist, we terminate, but if we find one, we search for an augmenting path; if one exists, we augment our

matching, and if not, we delete the vertex. This is because it is possible to show that if a node  is unmatched in a matching , and this matching contains no augmenting

path that starts at node , then node  is unmatched in some maximum matching. As the general technique is the same regardless of whether or not there are odd cycles in the

network, the additional complexity is inherent only to finding augmenting paths along odd cycles. For more information, we suggest the reader search for the "Edmond's

Algorithm."
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A Terran base with the starting

six workers. A seventh is being

created in the Command

Center.

StarCraft II Build Order Optimization

From CU Denver Optimization Student Wiki

The StarCraft franchise developed by Blizzard Entertainment is one of the most popular real-time strategy video games. StarCraft launched in

1998 and gave rise to celebrity-status professionals and prestigious tournaments, and is still updated with new content and expansions.

Essentially a war simulation, the goal of the game is to eliminate your opponent by amassing an army and making your opponent forfeit, or

destroying all of your opponent’s structures. A player has a choice of playing as three different races – Terran, Protoss, or Zerg – all with

unique units, buildings, abilities, and mechanics. A player begins with nothing but a base and six worker units meant for collecting resources

(minerals and gas) that are used to produce structures and more advanced combat and support units. The opening minutes and the timing of

certain actions are crucial to the outcome of a game, as delaying unit production or failing to produce workers for a robust economy can cost a

player a win. With this in mind, linear programming lends itself to finding the shortest time one can implement a rush-based build order,

under 3 and a half minutes, with respect to a simplified model of unit, building, and resource economies.
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The Terran tech tree, showing

building and unit prerequisites.

A close-up of a Terran Supply

Depot

Inspiration and Method

Inspiration comes from Churchill and Buro’s Build Order Optimization in StarCraft[1], an article focused on artificial intelligence advancement with respect to StarCraft. The

authors successfully created a “planner” that when incorporated with a playing agent performed comparable to professionals. Methods included a depth-first branch and bound

algorithm that takes a game state and performs a recursive search on possible build orders that satisfy a particular goal. The goal of this project was to apply linear

programming to their notion of optimizing build orders and assess its efficacy. Regarding a linear programming method for approaching this problem, the critical path method

was the original idea.

Each race has a particular tech tree that describes the prerequisites for constructing certain buildings and which units those buildings may

produce. One can think of the the game as a task scheduling problem. For example constructing a Protoss Gateway, a first tier combat-

producing building, is a critical activity for producing a Protoss Zealot, a first-tier combat unit. The critical path method however does not

suffice due to the added complications of resource generation and management, continuous worker production, supply tracking, and race-

specific mechanics. It is important to note that these models are consistent with game data from the particular StarCraft II expansion Wing of

Liberty, as starting worker values and other parameters change in later expansions.

Model Overview

Definitions

Definition Protoss Terran Zerg

First Tier Building Gateway Barracks Spawning Pool

First Tier Combat Unit Zealot Marine Zergling

Supply Building Pylon Supply Depot Overlord

Supply is defined in-game as the sum of the number of workers and first tier combat units. Each race has a particular supply limit, and once

that limit is reached, a player must build a supply building before they are allowed to produce any more units. The strategy is to construct

such buildings well before the supply limit is reached, so that unit production does not come to a halt.

Basics

The models for the opening minutes of a StarCraft game are discrete in time, and variable are either declared integers or are integers by

nature, other than minerals. For example, the following lines of code for the Protoss race’s model define the total minerals, workers, Zealots,

Gateways (variable named Barracks for consolidation purposes), and supply at time t.

var Minerals {t in 1..T} >= 0;
var Workers {t in 1..T} integer >= 0;
var Zealots {t in 1..T} integer >= 0;
var Barracks {t in 1..T} >= 0;
var Pylon {t in 1..T} >=0;
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A Protoss Zealot

A Terran Barracks

There following are additional integer variables that denote the start of construction of a building or unit:

var build {t in 1..T} integer >= 0; Denotes the start of construction of a first tier building at time t
var create {t in 1..T} integer >= 0; Denotes the start of construction of a first tier combat unit.
var Create_Worker {t in 1..T} integer >= 0; Denotes the start of construction of a worker unit.

The variable "build" denotes the start of construction of a first tier building, "create" denotes the start of a first tier combat unit, and "Create_Worker" denotes the start of

producing a worker. There is also a variable for each race that denotes the start of constructing a supply building. Construction of buildings and units takes time that varies

from race to race which will be shown. The method for tracking unit economies lies in the constraints. The following constraints track minerals and Zealots respectively for

each discrete time point.

subject to Mineral_Count {t in 2..T}:

Minerals[t] = Minerals[t-1] + Workers[t-1]*rate - 150*build[t-1] - 100*create[t-1] - 100*Pylon_Start[t-1] - Create_Worker[t-1]*50;

subject to Zealot_Count {t in 28..T}:

Zealots[t] = Zealots[t-1] + create[t-27];

The coefficients in front of the latter four terms in the "Minerals" constraint correspond to their respective mineral costs of construction. Each

worker collects a certain number of minerals per second. Additionally, notice that a Gateway will take 27 seconds to produce a Zealot, so the

Zealot count is updated using the "create" variable at the time point 27 seconds in that past. The following lines of code implement that tech

tree that dictates a player must have, for example, a Gateway before producing a Zealot.

subject to Available_Buildings {t in 47..T}:

Available[t] = Available[t-1] + build[t-46] - create[t-1] + create[t-28];

subject to Building_Existance {t in 1..T}:

create[t] <= Available[t];

First tier building construction takes 46 seconds to complete and the buildings are ready to produce units upon completion. Supply constraints

are implemented by simply summing the number of workers and first tier combat units and ensuring it is less than the initial race's supply cap

plus the number of supply buildings multiplied by 8, which is the number of supply each supply building provides. Details are discussed in

the following section.

Race Specific Differences

Each race contains slight nuances that present their own challenges with respect to model economies.
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A close up of a Terran worker

Worker Dynamics

The most apparent differences are the worker dynamics with respect to building construction. While Protoss workers simply drop an orb that constructs itself over a certain

period of time (46 seconds for a Gateway and 30 seconds for a Pylon), Terran workers remain occupied for the duration of construction. A Zerg worker is in fact lost when

instructed to construct a building. The following code shows an additional term at the end that reflects Zerg worker loss.

Zerg Worker Economy

subject to Worker_Count {t in 13..T}:

Workers[t] = Workers[t-1] + Create_Worker[t-12] - build[t-1];

Most complicated of course are the Terran worker economies, as 3 additional constraints must be added to account for occupied workers.

Additional Terran Constraints

subject to Worker_Count {t in 13..30}:

Avail_Workers[t] = Workers[t-1] - Supply_Start[t-1] - build[t-1];

subject to Worker_Count2 {t in 31..46}:

Avail_Workers[t] = Workers[t-1] - build[t-1] - Supply_Start[t-1] + Supply_Start[t-30];

subject to Worker_Count3 { t in 47..T}:

Avail_Workers[t] = Workers[t-1] - build[t-1] + build[t-46] - Supply_Start[t-1] + Supply_Start[t-30];

Supply

All races begin with 6 workers. Both the Protoss and Zerg start with an initial maximum supply of 10. The Zerg begin with an Overlord that provides 8 supply, and their base

provides an additional 2. The Protoss' base provides 10 supply. The Terran base provides 11 supply. Each race's supply building provides 8 supply, and the following code

shows the slight differences between how the models track supply.

Terran:

subject to Unit_Count {t in 1..T}:

Workers[t] + Marine[t] <= 11 + 8 * Supply[t];

Protoss:

subject to Unit_Count {t in 1..T}:

Workers[t] + Zealots[t] <= 10 + 8 * Pylon[t];

Zerg:

subject to Unit_Count {t in 1..T}:
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An early-game Zerg base with

a Spawning Pool as well as an

Extractor for collecting gas.

Workers[t] + Zergling[t] <= 2 + 8 * Overlord[t];

Additional Differences

The Zerg race uses larvae produced at their base to produce Zerglings provided a Spawning Pool exists. Only one Spawning Pool is required

as opposed to other races who can take advantage of producing Marines or Zealots from multiple Barracks or Gateways simultaneously.

Additionally, Spawning Pools cost 200 minerals while Barracks and Gateways cost 150. A pair of Zerglings costs 50 minerals, a Marine costs

50, and a Zealot costs 100. Zealots and Zerglings take 27 to complete, and Marines take 18 seconds.

Data

The following data chart is used across all races. Note that T corresponds to in-game seconds.

Parameter Value

T (run time) 200

rate (minerals/worker/sec) 0.625

minerals0 (initial minerals) 0

workers0 (initial workers) 0

marines0 (initial tier1 units) 0

barracks0 (initial tier1 buildings) 0

Objective Functions

The objective functions for each race are essentially identical. The goal is to maximize the following value:

sum {t in 47..T} build[t-46]*150/t + sum {t in 1..T} create[t]*100/t;

Notice that this value is maximal when the nonzero values of "build" and "create" occur at the smallest possible t. The variables are multiplied by their respective associated

mineral costs. The above example is for the Protoss - a Gateway costs 150 minerals and a Zealot costs 100. It was noticed that the variable weights can chosen somewhat

arbitrarily. Ideally, the weights would change so that after producing a Gateway, their is not as much priority on the second one. This was noticed most prominently in Terran's

case where Barracks are prioritized over Marines.
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The desired existing build

order for Protoss

Results

Protoss Build - 2 Gate Zealot Rush

Action Start Completed

Worker 14 26

Worker 27 29

Pylon 49 79

Gateway 78 124

Gateway 108 154

Zealot 128 155

Zealot 154 181

Zealot 168 195

Probe 181 193

Probe 188 200

Zealotx2 200 227

The only difference between build orders is that the linear programming model prioritizes Zealots over workers. Building two workers before beginning Zealot production

would delay the time of completing the first Zealot.
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The desired existing build

order for Terran

Terran Build - 3 Barracks Marine Rush

Action Start Completed

Worker 14 26

Worker 27 39

Worker 38 50

Barracks 67 113

Worker 76 88

Worker 84 96

Barracks 108 154

Barracks 130 176

Supply Depot 144 174

Marine 156 174

Marine 159 177

Marine 176 194

Marine 184 202

Marine 187 205

Worker 188 206

Again, due to objective function prioritization, two Barracks finish before Marine production starts. Dynamic prioritization could possibly produce a similar build, but with

earlier Marine production at the expense of slightly later Barracks timing.
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The desired existing build

order for Zerg

Choosing the placement of the

first Pylon with a visible

potential power field.

Zerg Build - 8-Pool

Action Start Completed

Worker 14 26

Worker 27 39

Spawning Pool 68 114

Worker 80 92

Worker 91 103

Zergling Pair 114 141

Zergling Pair 119 146

Overlord 128 158

Zergling Pair 137 164

Zergling production continues at the following time points: 146, 155, 164, 172, 181, 190, 199, and 200 seconds. This build order only differs from the original in Overlord

timing. This is of course in an effort to produce Zerglings as soon as possible.

Afterthoughts

Hard Coding

Some hard coding was necessary to produce desired results in a timely fashion. Firstly, the Pylon timing was hard coded as a constraint.

subject to PylonReq:

Pylon_Start[49] = 1;

The Protoss have a special condition. Pylons produce a circular power field, and building construction is limited to these power fields. A fix

for this issue would be to implement a conditional variable that equals zero when there are no Pylons, and one otherwise. Multiplying this

conditional variable by the "build" variable in the Protoss' Gateway constraint would ensure a Pylon exists to power buildings.

Another instance of hard coding was the timing of the Zerg Spawning Pool. This was in fact because only one Spawning Pool is required, and

the timing choice is the user's. The particular pre-existing build called for a Spawning Pool at 8 supply, which led to evaluating the worker

output, noting the instant the supply reached 8 and the mineral count 200, and hard coding the Spawning Pool timing accordingly.

subject to 8pooltime:

build[68] = 1;

Additional hard coding included designating a particular number of worker for the build as well as the number of Barracks in the Terran build. These were choices made with

respect to the desired build order, and aided in simplifying consistent worker generation and the objective function. Problems arise when worker terms are included in the

objective function - the function becomes unbounded.
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The Mineral output for the

Terran model

The Zerg Worker count for the

8-pool build order

Output

During model manipulation and testing, the output became invaluable. Displaying worker count and mineral

count provided great insight into how the economies changed given certain actions. The linear program not

only successfully produces comparable rush-based build orders to existing ones, but provides the user with

some useful data such as economic situations at later time points and how one more or less worker can

impact the timing of building and unit creation.

Limitations and Missing Elements

There is a large part of the game that linear programming cannot model, such as various powers and abilities

different units and buildings possess. For example, the Protoss base can accumulate energy, and expend a

particular amount of energy to use the "Chrono Boost" ability which speeds up the production of a unit by a certain percentage. Terran are

able to call down MULEs that mine minerals at an increased rate. Zerg units have a faster movement speed while standing on "creep" - a

slimy substance that surrounds their base and spreads given the existence of certain units. Nonlinearities such as these and probabilistic

actions that depend on game state are beyond the scope of what this basic linear program is suited for. The model's run time is another one of

its disadvantages. This model, written and solved using AMPL and CPLEX, can take an astoundingly long time to run. Some runs had to be

terminated after more than 7 hours. Hard coding became handy in this case, to reduce the amount of iterations required by the algorithm. The

successful Protoss build took 49093070 simplex iterations, and other runs exceeded 220 million iterations. This is most likely due to the

existence of large numbers of integer variables. Player versus player interactions and unit micro-management are other game aspects not assessed by such a linear

programming model.

Future Work

The next steps for the model is to include gas as a resource. This will open up multiple new possible units and buildings, but presents large challenges. Gas is mined by

workers similarly to minerals after a building is constructed on gas geysers. There are two gas geysers per base, and gas is mined at a maximal rate with 3 workers assigned to

the geyser. This means workers must be re-assigned to collect gas from minerals. The following shows initial constraints to implement a simple gas economy.

subject to Gas_Total {t in 2..T}:

Gas[t] = Gas[t-1] + Gas_Workers[t-1]*rate;

subject to Assigned_Task { t in 1..T}:

Gas_Workers[t] + Mineral_Workers[t] <= Workers[t];

However, the addition of such an economy would further reduce efficiency with respect to model solve time. Solve time is another priority, and relaxing integer constraints

might aid in that respect with the challenge of producing plausible results with respect to game strategy. The objective function also requires improvement to reflect the

dynamic prioritization that occurs after first tier buildings complete and unit production is available.

This linear programming model proved to be a useful tool for finding precise timings down to the second for actions rather than supply guidelines for build orders. With

improved run time and a more complete model including gas and a fuller tech tree, this model could be used to develop, alter, and optimize early-game build orders.
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Steffen Borgwardt is an associate professor at the University of Colorado Denver.

My area of research is combinatorial optimization and mathematical programming. More precisely, I study high-dimensional geometric

objects arising in operations research and data analytics. I enjoy an application-driven approach and see optimization as a beautiful blend of

theory and working in applications.
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Support Vector Machines

From CU Denver Optimization Student Wiki

Support Vector Machines

Support Vector Machines (SMVs) are a supervised learning algorithm often employed for pattern recognition.The SVM model considers observations as points in a

mathematical space, mapped so that observations that posses different characteristics are divided by a distinct gap, called a margin. Part of the Support Vector Machine

algorithm is to determine the widest possible margin between the two categories as defined by the best possible separating hyperplane. New observation data are then mapped

into the space and are predicted to belong to one of the categories based on which side of the margin the point falls. Employing the Lagrangian Dual in the SVM model can not

only solve the problem, but also allows us to identify support vectors and make predictions about the other vectors in the set. The points mapped from the original observation

data is called the training set, and are divided into two distinct categories based on whether a point, represented as a vector in , posses the characteristic(s) of interest.

(Please note that the SVM topics covered here are restricted to the linearly separable case, and do not explore the non-linearly separable case that utilizes a Kernel-based

solving method that also utilizes Lagrangian Duality.) When we separate the points among the training set, there will be at least two points among the whole set that define the

margin between the two partitions. These points are called support vectors, and are defined by the fact that if we were to perturb any one of the support vectors, we change the

boundaries of the margin separating the two sets.

.

The vectors belonging to the training set are usually assigned  to distinguish whether they fall to the "top" or "bottom" of the separating hyperplane,

respectively. If a point is very far from the boundaries of the margin, it is much more predictable than a point that lies very close to the boundary. And as the support vectors

define the margin, we would like to maximize the distance between them to more confidently define the categories. This is why the we seek to maximize the margin. To

consider whether a point falls into one category or another, we define a (binary) linear classifier with labels  and parameters  to be:

 [1]. So, .

In general, the SVM model seeks a classifier (a linear separator) with as big a margin as possible. Recall that the distance from a point

 This means that the distance between the separating hyperplane, , and the positive boundary, , is

. This is also the distance between . This implies that the total distance between .

Therefore to maximize the margin with a width of , we seek to minimize  with the constraint that no data points fall between .

And these conditions can be summarized as  and can be combined into the generalized condition:  [2].
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Thus we end up with the following quadratic program:

This optimization problem can be rewritten as:

Now that we have defined the program, we can formulate the Lagrangian Function. For the SVM optimization problem, the Lagrangian is:

 [3]. And to find the Lagrangian Dual, we first minimize  with respect to , fix the

Lagrangian Multipliers  with the constraint  then find the maximum minimum value.

STEPS OMITTED

Therefore the Lagrangian Dual formulation of the SVM program is:

 [1].

min ||w||

s. t. (x ⋅ w + b) =  1 i =  1, 2, . . . , myi

min ||w|1
2

|2

s. t. (x ⋅ w + b) =  1 i =  1, 2, . . . , myi

L(w, b, α) = ||w| − [ (x ⋅ w + b) − 1]1
2

|2 ∑m
i=1 αi yi L(w, b, α) w and b

αi  ≥  0αi

ma  θ(α) =   −  ⟨ , ⟩xα ∑m
i=1 αi

1
2
∑m

i,j=1 yiyjαiαj xi xj

s. t.  ≥  0,  i =  1, . . . , mαi

 =  0∑m
i=1 αiyi
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And it has been shown that the Lagrangian Multipliers, the 's in this case, will all be zero except for at the active constraints, which in this case are the support vectors.

Therefore, by considering the Lagrangian Dual formulation of the SVM problem, we gain insight into the structure of the original problem. This not only helps us to solve for

the optimal separating marginal hyperplane, but the Lagrangian Multipliers also allow us to also "position" the vectors that do not support the margin.
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I worked on trying to create a very basic model for teacher scheduling as my final project for Linear Programming, Fall 2019.
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Teacher Scheduling by Amber Rosacker

I have worked on trying to create a very basic model for teacher scheduling as my final project for Linear Programming, Fall 2019.
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The Circuit Less Travelled: A Path of Gentrification Through Denver

Neighborhoods

From CU Denver Optimization Student Wiki

Hey! Welcome to Angela Morrison and Weston Grewe's page on gentrification.

Abstract

Many factors shape us into the people we are today. Among these factors are the places and people we grew up with or still live with today. The neighborhood block parties,

kids playing together, and the businesses and schools that were within walking distance played a crucial role in your growth and development. All of these helped create a

unique community and culture within your neighborhood that arose naturally as people grew up, moved out, and new families moved in. A common question that arises with

this is “What does natural growth and development look like?” A disruption of organic growth is what many refer to as gentrification. By introducing new, market-rate housing

and luxurious amenities such as high-end restaurants and new parks, the price of rent can increase and inevitably force local businesses and longtime residents who can no

longer afford space in the neighborhood to leave.

We build a model to understand how the neighborhoods of Denver are changing over time. This allows us to predict where gentrification is happening in Denver and where

people move when they are displaced. Using data collected in the American Community Surveys over the last 15 years to derive a clustering of neighborhoods based on

factors that are associated with gentrification, such as average income, demographic breakdown, and level of education. We construct a so-called circuit walk between these

clusters which yields the changes in clusters in smaller time steps than what is possible by looking at just the data sets alone. Using these smaller steps, we can identify when a

neighborhood might be susceptible to outside forces making changes to the community. This allows us to make target policy recommendations such as a tax on vacant

properties, targeted redistribution of community funds for neighborhood improvements, or an increase in affordable housing construction, to help preserve the natural growth

and development of neighborhoods.

Helpful Project Links

GitHub (https://github.com/wgrewe/D2P-Optimization-Fall-2021)
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The amazing Fourier, progenitor of linear systems
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Most often the subject of linear programming is presented by citing a number of apparently disconnected examples with little or nothing in common except that their

mathematical form embodies a system of linear inequalities that optimizes (minimizes or maximizes) the objective function. Conceptually linear programming is concerned

with building a model for describing the interrelations of the components of a system, which researchers have been doing since as early as the 1700s. Its approach to model

building has applications to a broad class of decision problems. Next we look at how linear programming made its debut.

Joseph Fourier (1768-1830) was one of the earliest pioneers of LP. The extent of his conceptual understanding is well illustrated by the following passage, where he described

the general method of solving a problem in three variables:

". . . the system of all these planes forms a vessel which serves them as the limit of an envelope. The figure of this extreme vessel is that of a poly-hedron on which the

convexity is turned towards the horizontal plane. The lower point of the vessel or polyhedron has for ordinates the values X, Y, Z which are the object of the question: that is to

say, that Z is the smallest possible value of the greater variation, and that X and Y are the values of x and y proper to give this minimum . . ." [italics inserted].

Founrer's method. In order to demonstrate Fourier's method we will consider an LP model in a standard form as a maximization subject to ≤ constraints. Clearly any model can

be converted into this standard form. When we try to solve an LP one of three possibilities results:

1. The model is infeasible, i.e., there are no values for the variables which satisfy all constraints simultaneously. 2. The model is unbounded, i.e., the value of the objective

function can be increased without limit by choosing values for the variables. 3. The model is solvable, i.e., there exists a set of values for the variables giving a finite optimal

value to the objective function.

Although case (3) applies to our illustrative numerical example, it will be in the method how cases (1) and (2) manifest themselves. In order to demonstrate the method we will

use the model P above. Since we wish to maximize - 4x1 + 5x2 + 3x3 as well as solve the inequalities we will consider the model in the form: Maximise z subject to:

 4x1 - 5x2 - 3x3 + z        ≤  C0

- x1 +  x2   -x3            ≤  C1 

  x1+   x2 + 2x3            ≤  C2 

-x1                         ≤  C3

       -x2                  ≤  C4

             -x3            ≤  C5 

Constraint C0 is really a way of saying we wish to maximize z ≤ -4x1 + 5x2 + 3x3 which nothing more than maximizing the value of the objective function.

Fourier gives a method of eliminating variables from inequalities which results in the transformed model P2:

Maximise z subject to:

  -x2 -7x3 +z  < 8    C0 + 4C1

 -5x2 -3x3 +z  < 0    C0 + 4C3 

  2x2 + x3     < 5    C1 +  C2 



   x2 +2x3     < 3    C2 +  C3 

 - x2          < 0    C4 

 - x3          < 0    C5

Where the origins of the combined constraints are indicated. We also note that there can be variations on this method.

It was around 1760 that economists first began to describe economic systems in mathematical terms. For the most part, mathematical economists made use of general functions

the parameters of which were as a rule unspecified. It is only fair that we should out in their defense that very little factual information was available on income, quantities of

production, productive capacity, consumption, business investments, savings, distribution, etc., which reduced the purpose of the mathematical equations to an attempt at

describing and analyzing in a qualitative rather than a quantitative manner the perceived interrelations within a system while the manipulation of equations corresponded to

logical deductions from the assumptions. High-scale practical mathematical models to describe an economy came about in the 1930's as a result of the great depression; it was

also the debut of the "New Deal," which was a serious attempt on the part of the government to support certain activities with the intention of speeding up recovery.

Wasslly Leontief, professor at Harvard, brought out his book “The Structure of the American Economy” during this period. It was largely different from earlier model building

approaches because a large number of industries (or sectors) were interrelated and actually interdependent, which constituted a single model that allowed realistic estimation of

the parameters in a quantitative way. Each sector was identified as representing a number of related functions that were “summed up together and called an industry, such as

the food, steel, energy industry and so on. The following yeas saw a generalization of this approach, which allowed it to accommodate dynamic and complicated Air Force

applications.

“About the same time that Leontief was producing his model, John von Neumann, world—famous mathematician, published his "Model of Economic Equilibrium," (1937).

His model (like the Leontief model) was a linear programming model. It was more general, as it allowed for alternative activities”.

There appeared to have been an insignificant amount of interest in the model itself among economists for, the reason for which was explained by T. C. Koopmans in the

following way:"To many economists, the term linearity is associated with narrowness, restrictiveness and inflexibility of hypothesis. However, it was the broad applicability of

the linear programming approach to military logistics and planning that stimulated economists during the post war period to recognize the potentialities of this type of model in

studying economic problems.

It was once possible for a supreme commander to plan operations personally. As the planning problem expanded in general complexity, the inherent limitations in the capacity

of any one individual were becoming increasingly a barrier. Military histories are filled with instances of commanders who failed because they did not take into account some

detail, not because they were essentially incompetent and could not have eventually have considered all the relevant details, but because they could not master all the details

fast enough in a humanly possible way.

In the US Air Force it became unavoidably clear to members of this organization that coordinating quickly and well the vast energies and complex resources of whole nations

in a total war required no less than effective scientific programming techniques. Undoubtedly this need had risen many times in the past but this time the means of

accomplishment were at hand and those means were maturing quickly, that is linear programming.

SCOOP" (Scientific Computation of Optimum Programs) was an intensive-work project that had begun in 1947. At first, the idea was to rely heavily on the use a linear

programming model to develop robust Air Force programs, but it had not been long before it was recognized that even the most optimistic estimates of the efficiency of future

computing procedures and equipment would not be adequate to prepare effectively detailed Air Force programs. Therefore ,in the spring of 1948 this issue led to the

commencing of a second SCOOP proposal which aimed to develop special linear programming models, referred to as triangular models, that would parallel the stepwise staff

procedure.
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Using AMPL and Python to solve the cutting stock integer program

From CU Denver Optimization Student Wiki

AMPL is a modeling language that gives human readable code when solving optimization problems. An issue with AMPL is that there is no debugger in the compiler and

while AMPL handles simple programs well, more complicated solving techniques can start to becoming challenging to code. Many of our usual coding languages such as

Python, C, etc... have built in packages that allow you to code in the host language while implementing AMPL's solvers. In this project we explore 3 different ways to model

the cutting stock problem: AMPL, Python with AMPL background, and Python. Below you will find the link to my code as well as slides used to present the material.

Github link and Presentation slides:Cutting Stock Code (https://github.com/Crawfoni/Cutting-Stock)
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Using After School Activities To Reduce Crime

From CU Denver Optimization Student Wiki

The purpose of this project is to develop a linear program that will identify potential sites to maximize effectiveness of after school programs for at risk teens in the Denver

area. More specifically, we will examine the data identifying the location of crimes that are most often committed by teenagers for 2014 in Denver, as well as the locations of

after school programs for that year. From this information, we will determine the optimal locations for additional after school programs for various integer amounts.

The data that will be used is provided on the Data to Policy Website. Using this information, feasible areas will be identified to suggest possible sites for after school programs.

Using libraries associated with AMPL, we will investigate each feasible area to determine optimal locations for after school programs. The results will be compiled to provide

policy suggestions at the Data to Policy Symposium held in Denver Colorado, in November of 2018.

Contents

1 Motivation
2 The Linear Program
3 Implementation
4 Results
5 Poster
6 Possible Future Improvements
7 References

Motivation

There have been studies done that show that after school programs reduce teenage crime [1] [2]. We were therefore interested in what would be the proper placement of after

school programs to help reduce these crimes. In particular, we wanted to focus most closely on those crimes committed by teenagers, and so we focused just on theft/larceny,

vandalism and alcohol related offenses. Furthermore, we wanted to place these afterschool programs so that they were far away from other after school programs as to help

reach the largest number of teenagers as possible.

The Linear Program

We use the linear program
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where  is the number of after school programs we wish to select,  is the set of all locations of existing after school programs in the Denver area within 2 miles of point ,

 is the set of locations of crimes most often committed by teenagers in the Denver area within 2 miles of point ,  is the set of locations of possible after school programs,

 is a distance functions, and  is an indicator function to decide whether of not we pick a specific location. We use a special distance function for this linear program,

rather than a strict Euclidean distance. Specifically, we if we have two points  where the Euclidean distance is less than about 350 feet, about

the size of a smaller city block, we fix . We do this, because when picking an after school program to help prevent crime, it does not really matter whether that

crime occurred 10 feet from the building or 100 feet. Furthermore, this will also avoid some very large values, which could skew our data, as we are dealing with reciprocals.

We also only consider points within 2 miles of the possible after school programs. This is because after school program will likely not have an effect on teenagers who live far

away, as they probably wouldn't even consider attending the program.

The first term in the series is the average of the reciprocals squared of how far the after school program is from other ones. This term includes both the after school programs

already created as well as the ones we plan to implement, which is included in the  term. This is to make sure that when adding all of the additional after school

programs, we will not add two that are too close to each other. The larger this number is, the closer it is to other after school programs on average. The second part of this

minimize function is the same thing, but with distances from crimes rather than other after school programs. Similar to before the larger this number is, the closer it is to

crimes on average. Therefore we use a minimize, as we try to maximize distance from other after school programs, which corresponds to making the first term small, and

minimize the distance to crimes, which corresponds to make the second term large.

The AMPL code is included below, first the model file and then the data file. The model file can be individually on github here:

https://github.com/toadhkjl/SchoolPoster/blob/master/SchoolProgramAMPL The data file is here:

https://github.com/toadhkjl/SchoolPoster/blob/master/AfterSchoolAMPLData

param N > 0; #number of possible programs

param K > 0; #number of after school programs we want

param avgDisC{1..N} > 0; #AVERAGE recpiricols of distance from crime

param disS{1..N} > 0; #SUM of recipricols of distance from after school programs

param numDisS{1..N} > 0; #number of after school programs considered using distance function

param innerDis{1..N, 1..N} >= 0; #distance between asp we're picking

var y{1..N} binary; #whether or not we pick school i

#Constraint function

minimize distances: 

sum{i in 1..N} (y[i] * ( (disS[i] + sum{j in 1..N} (y[j] * innerDis[i,j]) )/(numDisS[i] + K - 1) 

- avgDisC[i]) );

#makes sure we add the correct number of after school programs

min f(y) −∑
y∈Y

⎛

⎝

d(y, s + f( )d( ,y∑s∈Sy
)−2 ∑ ∈Yy ′ y′ y′ )−2

∣ ∣ + k − 1Sy

d(c,y∑c∈Cy
)−2

∣ ∣Cy

⎞

⎠

s.t f(y) = k,f(y) ∈ {0, 1},∑
y∈Y

k Sy y
Cy y Y
d(⋅, ⋅) f

a = ( , ), b = ( , )x1 y1 x2 y2

d(a, b) ≈ 350

f( )y′
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subject to correctNumber:

sum{i in 1..N} y[i] = K; 

param N := 11;

param K := 3;

#All parameters pulled from excel spreadsheets

param: avgDisC disS numDisS :=

1 1.2852E-07 4.6709E-6 226

2 5.2598E-8 6.3672E-6 219

3 1.1447E-7 4.0132E-6 219

4 1.1868E-7 4.6461E-6 232

5 1.2810E-7 6.1081E-6 230 

6 6.52293E-08 4.1059E-06 197

7 3.96687E-08 7.40798E-06 209

8 1.4143E-08 3.66676E-06 169

9 6.29126E-08 4.07824E-06 198

10 2.14668E-08 2.40147E-06 129

11 9.28353E-08 9.0258E-06 213;

param innerDis: 1 2 3 4 5 6 7 8 9 10 11 :=

1 0 8.38391E-08 7.83163E-07 8.98376E-06 7.67529E-08 1.37545E-08 2.42142E-08 4.0668E-09 1.39433E-08 1.67089E-09 1.62554E-07

2 8.38391E-08 0 1.79911E-07 9.18722E-08 4.13457E-08 8.83414E-09 1.02527E-08 2.7362E-09 9.11994E-09 1.29285E-09 2.917E-08

3 7.83163E-07 1.79911E-07 0 8.70121E-07 6.37104E-08 1.1558E-08 1.76669E-08 3.56013E-09 1.17962E-08 1.52686E-09 8.15912E-08

4 8.98376E-06 9.18722E-08 8.70121E-07 0 9.07506E-08 1.43081E-08 2.28441E-08 3.96488E-09 1.45545E-08 1.65897E-09 1.33112E-07

5 7.67529E-08 4.13457E-08 6.37104E-08 9.07506E-08 0 3.04406E-08 1.70859E-08 3.63768E-09 3.24152E-08 1.75282E-09 3.91868E-08

6 1.37545E-08 8.83414E-09 1.1558E-08 1.43081E-08 3.04406E-08 0 1.49998E-08 4.63979E-09 6.47392E-06 2.6296E-09 1.39916E-08

7 2.42142E-08 1.02527E-08 1.76669E-08 2.28441E-08 1.70859E-08 1.49998E-08 0 1.16401E-08 1.41756E-08 2.92557E-09 5.97507E-08

8 4.0668E-09 2.7362E-09 3.56013E-09 3.96488E-09 3.63768E-09 4.63979E-09 1.16401E-08 0 4.41387E-09 7.65004E-09 5.67739E-09

9 1.39433E-08 9.11994E-09 1.17962E-08 1.45545E-08 3.24152E-08 6.47392E-06 1.41756E-08 4.41387E-09 0 2.5306E-09 1.38052E-08

10 1.67089E-09 1.29285E-09 1.52686E-09 1.65897E-09 1.75282E-09 2.6296E-09 2.92557E-09 7.65004E-09 2.5306E-09 0 1.98329E-09

11 1.62554E-07 2.917E-08 8.15912E-08 1.33112E-07 3.91868E-08 1.39916E-08 5.97507E-08 5.67739E-09 1.38052E-08 1.98329E-09 0; 

Implementation

The data for this project was from the Data2policy website. Specifically, we pulled from two data sets, Afterschool Programs from the Denver Open Data Catalog [3] and

Crime from the Denver Open Data Catalog[4].

Initially the data was too large for our linear program. In order to reduce the size and focus on pertinent data points, we decided to use OpenRefine software. This allowed us to

find the locations of crimes that were likely to be committed by teenagers. It also allowed us to focus the timeline of crimes to match the information we had about afterschool

programs. This greatly reduced the size of the data from a size that was well into the hundred thousands to 8,665 points.

Our linear program examined specific sites that we selected based on high crime density and low after school program density. These sites can be seen in Figure 1 and Figure

2.

The location on the crime data was both in latitude and longitude coordinates as well as x,y coordinates for EPSG:102654 NAD 1983 StatePlane Colorado Central FIPS 0502

Feet, while the afterschool program data only had these x and y coordinates. Therefore we decided to use the x,y coordinate system for the project rather than latitude and

longitude coordinates. This one done for a few reasons. The first of these being that we only had to change 11 coordinates, the feasible locations of the afterschool programs, to
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Figure 1: Focused Area of

After School Programs

Figure 2: Focused Area of

After School Programs

Figure 3: First iteration results

these x and y coordinates, rather than changing the 629 afterschool program coordinates to latitude and longitude. This change was done

using epsg.io, which allowed latitude and longitude to be plugged in and returned the x,y coordinates. The second reason the coordinate

system was preferable was that its units were in feet, which made interpretation of the results, as well as the restrictions on the distance

function, much easier to implement. Furthermore, as it was a plane that points were projected onto, Euclidean distances could be used.

Although the linear program involves many sums, there are only a few parameters needed for the actual program. There is

, and  for each , and  for each pair of . These parameters were all

calculated on an excel spreadsheet and the manually entered into the AMPL. This was partially done because there are a relatively small

number of points, which means that it is relatively easy to enter all of the parameters. This is especially true when compared to using Excel in

connection with AMPL, which from earlier attempts, did not seem easy. However. it was also done this way as Excel is particularly good at

handling conditional statements. This was of use when summing just over distances within two miles of the afterschool program in question,

which was relatively easy with Excel. Since this is a binary linear program, we don't necessarily expect to have any data sizes consisting of

many more than the 11 points we did consider. Therefore with the problem size, manually entering data that Excel calculated was the best

option.

This is a quadratic binary linear program. We know however that any binary quadratic equation can be converted into a linear binary

equation, with the introduction of a few additional variables. This is done automatically in AMPL. To solve the program we use the cplex

solver, which works for binary linear programs.

Results

On the first iteration, the results of Figure 3 were found for our focused region. Specifically, the locations are 1) 1947 Lawrence Street,

Denver CO 80202 and 2) 700 14th Street, Denver CO 80202.

On the final iteration of the program, the one who's code is included above, we ran the program with 11 possible after school programs, and

picked three of them. These 11 coordinates are shown in the table below with respect to the coordinate system EPSG:102654 NAD 1983

StatePlane Colorado Central FIPS 0502 Feet.

, ∣ ∣
d(c,y∑c∈Cy

)−2

∣ ∣Cy
Sy d(y, s∑s∈S )−2

y ∈ Y d(y, )y′ y, ∈ Yy′
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Figure 4: Final iteration

results

X coordinate Y Coordinate

3142785 1699290

3139362 1699749

3141718 1699662

3142581 1699026

3142195 1695729

3145893 1691350

3149194 1698818

3158462 1698936

3145508 1691271

3165332 1689797

3145217 1699777

Our linear program found the locations 1, 4, and 5 were the optimal placements of the after school programs (See Figure 4).

With 11 points the implementation with AMPL and CPLEX took slightly less than one second to run. However, due to the exponential nature of binary linear programs, not

many more additional points could be included before the program would take too long to run. However, not many groups looking to build after school programs would be

examining more than a dozen or so locations, meaning that this binary linear program would still be feasible for many practical applications.

Poster

The pdf of our poster is located on github and can be found here: https://github.com/toadhkjl/SchoolPoster/blob/master/AfterSchoolPoster.pdf

Possible Future Improvements

On a macro scale, our project could be expanded to larger areas, like statewide programs. This would require an adjustment in both code and data files as it's assumptions and

generalizations we made would become less valid. Using further research, we could also expand (or condense) the amount of crimes examined. As mentioned with the original

project, if we were given additional specifications, we could scout the suggested location to find an actual property in which to offer the after school programs from.

It would also be possible to make the program more automatic, so that individual parameters would not need to be copied over from Excel. As we discussed in the section on

implementation this made sense for the size of the program we were working on. If however, the program was much larger, it may be helpful to automate some things. The

amount of variables that need to be entered is quadratic, which means that any increase in the number of possible afterschool programs, greatly increases the amount of manual

entering done. Furthermore if the program was used for different cities, used multiple times, or if the data was updated frequently enough, some automation may be beneficial

to reduce the amount of work.
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In terms of the actual linear program, it would be possible to implement population data, if there exists a sufficiently high resolution population map for the areas of interest.

This would make it possible to consider how many teenagers would possibly be affected by the building of the afterschool program, by examining how many live close to the

program's possible location. This would help make the program even more beneficial for potential participants. It would also be possible to use budgetary constraints rather

than constraining by the number of afterschool programs we wish to build. This seems like a good approach, as renting space in buildings downtown would be more

expensive, but it also seemed as if this is where the linear program tended to concentrate the new afterschool programs. It is also much more realistic, as budgetary constraints

would more often be the limiting factor in real applications.
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Using Total Unimodularity to Solve a Warehouse Problem

From CU Denver Optimization Student Wiki

Abstract

With a daily increase in the usage of online retailers like Amazon, the operations of warehouses are becoming more and more valuable. One way to create an efficient

warehouse is to effectively place items that have yet to be shipped. The primary goal of this project is to develop a mathematical model that could create a scheme of inventory

layout in a warehouse. From a mathematical standpoint, the original model I propose is an integer programming model. In order to solve any integer program of a reasonable

size, one would need a significant amount of memory and a significant amount of time. A natural next step then is to relax the developed integer program for a more efficient

solution. We do so by using a mathematical concept called \totally unimodularity" to prove that the optimal vertex solutions of a linear programming relaxation are integral.

Sources

[1] Cunningham, William H., and Geelen, James F.. "Integral Solutions of Linear Complementarity Prob- lems." Mathematics of Operations Research, vol. 23, no. 1, 1998, pp.

61{68. 8 [2] Chandrasekaran, R. "Total Unimodularity of Matrices." SIAM Journal on Applied Mathematics, vol. 17, no. 6, 1969, pp. 1032{1034.
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Using Trees to Get Into College

From CU Denver Optimization Student Wiki

Hello! You have found the page for an integer programming project by Angela Morrison and Weston Grewe, to find other projects we have worked on just click on our names.
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Overview

College education has proved to be one of the safest bets to ensure a middle class future. There has been no shortage of ideas of how to increase a school's college enrollment

rates. Ideas have ranged from increasing teacher pay, boosting the number of AP classes, shrinking class sizes, and the list goes on. The sheer number of solutions presented

can confound knowledge of which solution works best. For this project, we develop an interpretable, optimal decision tree to understand the most important features for high

college enrollment rates.

We draw data from Massachusetts's Public Schools [1], a dataset which can be found on Kaggle and linked below. For this project, we substantially process the data to have it

be readable for our AMPL program. The data processing can be found in a linked Jupyter Notebook.

We solve for an optimal decision tree using an integer program. We solve this integer program using AMPL along with implementing branch and bound and our own cutting

planes and valid relaxations of variables.

Abstract

With so much information out there about what students need to do in order to get into college, it can be hard to know which things a particular applicant should focus on. This

is true for schools as well, but they are restricted due to budgets and other outside factors such as a global pandemic. One way to narrow down the important college

application features is through a decision tree. Our project creates an interpretable, optimal decision tree based on features that have an impact on college enrollment after high

school. This optimal decision produces a focused list of features which schools can work on adjusting or improving in order to make the biggest impact on their students'

college enrollment. These features are determined via an integer program which maximizes the correct classification of schools which are both “successful” and

“unsuccessful” in getting students to enroll in college directly after high school. For the purposes of this project, the benchmark for success is the average percentage of

students that enroll in college after high school for a state in particular. One notable aspect is that these features can pertain to the specific dataset they originate from instead of

a one-size fits all solution. This allows the model to take into account school community specific features as well as events such as COVID-19 which can impact the required

college application materials.

Mathematics

The model we implement is found in [2]. In short, the authors develop an integer programming based model to compute an optimal decision tree. For this model we need the

following input:

A tree structure specified through leaf nodes, branch nodes, and their connections to each other
A labeled categorical data set

Data Preparation

Our program requires each category of data to be broken into binary variables. Thus, we have a collection of feature groups  where every binary feature  belongs to a

unique group.

G j
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For example, if we have categories Hair_Color = {black, brown, blonde, white} and Shoe_Type = {sandal, sneaker, dress} then this can be broken into a set of 7 binary

features: Hair_Color_Black = {0, 1}, Hair_Color_Brown = {0, 1}, Hair_Color_Blonde = {0, 1}, Hair_Color_White = {0, 1}, Shoe_Type_Sandal = {0, 1},

Shoe_Type_Sneaker = {0, 1}, Shoe_Type_Dress = {0, 1}. An entry of 1 indicates membership of that group and 0 indicates nonmembership. So a person with blonde hair and

sandals can be represented with the vector  The first four features belong to the first feature group and the last 3 features belong to the second feature

group.

Variables

We will define three classes of variables. First, for each leaf node  and each sample  we define the binary variable  where  if sample  is assigned to leaf node 

and 0 otherwise. The second group of variables we define is  for each feature group  and branch node  The variable  if feature group  is selected for branching

at node  and 0 otherwise. Finally, we define the variables  where  if feature  is selected to branch left at node  and zero otherwise.

Constraints

To ensure that our result yields a decision tree, we will need to enforce constraints. First, at every branch node, exactly 1 feature group must be selected for branching.

Therefore, we need the constraint  for all  Next, for each branch node, only features from the selected feature group may be selected for branching

left, therefore, we also have  for each  and where  indicates the feature group which  belongs to.

Next, we will introduce constraints for the structure of the tree. Let  be the value of sample  at feature  Define the function  The function

 is binary, to see this, note that at node  exactly 1 feature group is selected, thus  for all  not in the chosen feature group. By the structure of the binary data,

there is only a single  in the feature group such that  Therefore, for each  Also, we can see that  if and only if sample 

branches (by convention) left. Consider a leaf node  we can define the set  of branch nodes that must branch left to reach leaf node  We can make the

conclusion that  for all  This constraint accounts for the fact that if  then it must be that it branched left at the correct branch

nodes. We can define similar sets and constraints  for all 

For our final constraint, we want to ensure that each sample is assigned to exactly 1 node. To do this we only need the constraint  for all 

Objective Function

For our objective function, we will maximize a weighted sum of correct classifications. Consider the following function  In this

formulation,  correspond to the set of positive (negative) samples and  correspond to the set of positive (negative) leaf nodes. The constant  allows

for control between precision and recall. A large  implies a high precision and a smaller  allows for a greater recall.

Formulation

We can combine the constraints and the objective function to give the formulation of the problem as

(0, 0, 1, 0, 1, 0, 0).
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Implementation

A detailed notebook and AMPL model can be found on our GitHub Repository. (https://github.com/DillWithIt77/D2P-Spring-2021) We began with a dataset from Kaggle

containing data from Massachusetts public schools in 2017. This dataset contains data from all public schools in Massachusetts and contains numerical and categorical

features. We used Python with Jupyter Notebooks to prep the dataset for the model we used. We first selected only data for only schools serving 12th graders. Next, we

removed columns that contained features that we are not interested in studying. We then converted all data into a collection of binary features. This conversion is a two step

process, we first converted numerical data to categorical data through bucketing, second, we converted all categorical features to groups of binary features where a value 1

indicates membership in a category and 0 otherwise.

The other half of the project was creating the AMPL model. Some constraints are straightforward to implement, others take a little more creativity. In this section, we will only

discuss those constraints that are nontrivial to implement. First, in our parameters of the model, we had to define a set of leaf nodes and a set of branch nodes. In the model, we

need access to the sets  for each leaf node . To compute these sets, we created parameters both dependent on the leaf nodes  and the branch nodes  To

account for the sets  we had the  value as 1 if branch node  branches left to meet leaf node  and 0 otherwise. Parameters for the set  is defined

similarly. These parameters define the topology of the tree. Altering these parameters will alter the topology of the tree, this allows us to easily account for other topologies.

Example of Tree Topology

For the decision tree in the image below
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we have the branch nodes  and leaf nodes  By convention, we assume that the nodes for the final branch are

positive instances, that is  likewise  We can also compute sets  for example,  where as

 and 

In AMPL we can organize these sets as a table.

param leaf_nodes_left: k1 k2 k3 k4 k5 := 

b1 1 1 0 1 0

b2 1 1 0 0 0

b3 1 0 0 0 0

b4 0 0 1 0 0

b5 0 0 0 0 1

b6 0 0 0 0 0

When designing the AMPL program, this table can be used to check if a path for a leaf node must branch left at a branch node to reach the leaf node. In practice, it will be

easier to have this table index over  and . For the program to run as desired, it will also be critical to decompose this table into two tables,

one table for the positive leaf nodes and one table for the negative leaf nodes.

Methods

To solve the integer program in an efficient manner, we will implement 3 methods: a linear relaxation of some variables, cutting planes, and a branch and bound strategy.

Linear Relaxation and Cutting Planes

We do not need to require that the variables  be integral. The variables  are bounded below by 0. From our constraints, for each branch node  This

bounds  from above by 1. Moreover, for each branch node  and for each node at least 1  This forces one  and by the sum

constraint, the other  Therefore,  is integral, even when we relax it to a continuous variable.
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Next, we will introduce a couple cutting planes. We will do so by working with the constraints  for all  For a given

 we enforce that there is exactly one  such that  Therefore, we have  This constraint is valid for all integer

solutions, but cuts off some non-integral solutions. We can also build the similar constraint  This allows us to drop the constraints

 and replace them with these new constraints. Moreover, when  is the root node the constraint  is implied, thus we may drop

that constraint as well. With this new formulation, we are also allowed a second relaxation of our variables.

We also do not need to require that the variables  be integral. Since the only bounds on  are  and , both  are integral and

we are maximizing a weighted sum, so it follows that for the maximum,  will be integral.

With these cutting planes, we can rewrite our program as follows:

Branch and Bound

Finally, we implemented a branch and bound strategy. It is important to note that Tree 1 did not need any branch and bound, so none was done on this tree structure. Tree 2 was

used as a small demonstration of implementing our own branch and bound method. Finally Tree 3, Tree 4, and Tree 5 were done using the options within the CPLEX solver.

This is due to their sheer size and computation time necessary to solve these.

The branch and bound strategy for tree 2 begins with the tree below. Ultimately, more branching is required, this is just a subtree of the full branch and bound tree.
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The following table indicates the branching decision at each node. By convention, if Feature  is selected for branch at node  then we branch left for  and right

otherwise.

Branching Strategy (Tree 2)

Branch Node Feature Subproblem Evaluation Integral

1 Feature 5 423 No

2 Feature 19 161 No

3 Feature 6 278.375 No

4 Feature 53 15.5 No

5 Feature 20 147.499 No

6 N/A 7 Yes

7 N/A 2 Yes

8 Feature 35 103 No

9 Feature 16 52.75 No

10 N/A 6 Yes

11 N/A 94 Yes

n k n = 1
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The following pseudocode was used to construct this branch and bound tree:

Solve original problem:

    if integral:

        end

    else: 

        using branching method from below.

Pull subproblem from search set.

Solve the subproblem via an LP relaxation.

Check solution:

    if integral:

        updated global lower bound with cost function of optimal solution

    if non-integral:

        if feature has been used for branching on earlier branch or all samples have same feature value:

            branch on next feature in vector

        else: 

            branch on feature earliest in the vector

    add new subproblems to search set.

    if search set empty:

        end

Only a small portion of the branch and bounding was done the long way for this tree structure because, according to the CPLEX solver, the final tree should have around 47

nodes. This was a bit too much to complete in the time span of this project, but future work could be done to finish this strategy and compare to the CPLEX solver output.

We now take a look at the branch and bounding done for Tree 3, Tree 4, and Tree 5. This strategy was built off of options that already exist within CPLEX. For our project we

tested a few different option combinations in order to gain a better understanding of what CPLEX is doing when using these parameters and how that can affect computation

time of our program.

The parameters that were changed for the CPLEX solver for this project were as follows:

branch : determines the direction one branches on the selected fractional variable
cutpass : determines how many cutting planes are used while solving the source node in branch and bound
display : allows information to be displayed while solving the problem
heurfreq : directive to specify the frequency with which the solver applies a heuristic at the nodes
mipcuts : determines if cuts are used for solving the main problem and subproblems
mipdisplay : decides what gets reported to the screen while solving the problem
mipinterval : controls the frequency of node logging
presolve : determines if the solver applies presolve during preprocessing
varsel : determines how the solver chooses a fractional-valued variable to branch on

These parameters are what allow us to determine the branching and bounding scheme to a certain extent that CPLEX uses while trying to solve our problem. In this section we

will report the number of nodes needed to solve the problem for certain variable settings as well as explain what the output displayed by AMPL means in terms of the problem.

It is important to note that many of the parameters listed remain the same for all cases due to the nature of what they mean. these are the parameters and their values that do not

change throughout these different runs of the CPLEX solver (see [3] for more in-depth meanings of these parameters):
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cutpass = -1
display = 1
heurfreq = -1
mipcuts = -1
mipdisplay = 3
mipinterval = 1
presolve = 0

The parameters that we adjust for testing are "branch" and "varsel". Branching has values that indicate it is either branching up which means we go down the path such that

 or down which means we follow the path such that . For "varsel" there are three choices: selecting a variable with the smallest integer feasibility,

selecting the variable with the largest integer feasibility, or strong branching. The variable with the largest integer feasibility means that the variable we are branching on is

closest to 0.5 since we are using binary variables. Similarly, the variable with the largest integer feasibility is one that is farthest from 0.5. Strong branching, as you may be

familiar with, means that the solver will select the variable to branch on based on which gives the best improvement to the objective function before branching. With these

things in mind, here are the tables for Tree 3, Tree 4, and Tree 5.

Branching Outcomes (Tree 3)

branch varsel
Number of Nodes (without including cutting plane

constraints)
Number of Nodes (including cutting plane

constraints)

Up
Variable with Smallest Integer
Feasibility

38,468 39,101

Up Variable with Largest Integer Feasibility 7,128 9,356

Up Strong Branching 3,194 1,681

Down
Variable with Smallest Integer
Feasibility

115,641 166,909

Down Variable with Largest Integer Feasibility 12,407 15,403

Down Strong Branching 778 845

Branching Outcomes (Tree 4)

branch varsel
Number of Nodes (without including cutting plane

constraints)
Number of Nodes (including cutting plane

constraints)

Up
Variable with Smallest Integer
Feasibility

unable to run unable to run

Up Variable with Largest Integer Feasibility unable to run unable to run

Up Strong Branching 13,608 11,405

Down
Variable with Smallest Integer
Feasibility

unable to run unable to run

Down Variable with Largest Integer Feasibility unable to run unable to run

Down Strong Branching 26,381 4,624

≥ ⌈ ⌉xi xi ≤ ⌊ ⌋xi xi
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Branching Outcomes (Tree 5)

branch varsel
Number of Nodes (without including cutting plane

constraints)
Number of Nodes (including cutting plane

constraints)

Up
Variable with Smallest Integer
Feasibility

unable to run unable to run

Up Variable with Largest Integer Feasibility unable to run unable to run

Up Strong Branching 84,619 75,627

Down
Variable with Smallest Integer
Feasibility

unable to run unable to run

Down Variable with Largest Integer Feasibility unable to run unable to run

Down Strong Branching 146,758 17,4981

When getting these results, the AMPL should output something that looks similar to the following image. The important pieces of information (see [4] for more details) in this

are as follows:

Node Column: indicates which subproblem node is being solved at the moment
Nodes Left Column: indicates how many nodes remain in the search set
IInf Column: gives the number of non-integer values in the solution vector
Cuts/Best Bound Column: explains what the "best" possible objective function is based on the current global minimum.
Asterisk next to Node Column: indicates that this node had a feasible integer solution

Results

We ran our program on 5 different tree structures. By convention, at each branch node, a positive answer will indicate branching left. For each of the following trees we will

present a diagram of the tree and the question asked at each branch node.
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Tree 1

Branching Decisions

Branch Node Branching Decision

2 AP Test 33-66% and 2 AP Test 66-100%

This feature means that of all the AP Test Takers at the schools, if 33-100% of those test takers took exactly 2 AP tests, it had an impact on if they enrolled in college after high

school or not.

Tree 2

Branching Decisions

Branch Node Branching Decision

First Language Not English 0-33%

2 AP Test 33-66% and 2 AP Test 66-100%

k1

k1

k2
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The first node states that if you are part of the 0-33% of the student population where English was not your first language, that had an impact on if you enrolled in college after

high school. The second node is similar to that of Tree 1.

Tree 3

Branching Decisions

Branch Node Branching Decision

1 AP Test Percent 0-33% and 1 AP Test Percent 66-100%

Total Enrollment 500-1000 and Total Enrollment 1500-2000

2 AP Test 33-66% and 2 AP Test 66-100%

For this tree the AP Test features are similar to the descriptions mentioned for Tree 1 and Tree 2. The enrollment feature is stating that schools with a total enrollment of

between 500-1000 and 1500-2000 have an impact on if students enroll in college after high school.

k1

k2

k3
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Tree 4

Branching Decisions

Branch Node Branching Decision

Total Enrollment 500-1000

1 AP Test 33-66% and 1 AP Test 66-100%

Avg Class Size 20-25, Avg Class Size 25-30, and Avg Class Size 30-35

2 AP Test 66-100%

For this tree we see that Average Class Size now plays a part in whether or not students will enroll in college after high school. In particular if the average class size is between

20 and 35 (which is the maximum average class size for this sample of data).

k1

k2

k3

k4
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Tree 5

Branching Decisions

Branch Node Branching Decision

Total Enrollment 500-1000 and Total Enrollment 2500-3000

1 AP Test Percent 33-66% and 1 AP Test Percent 66-100%

Avg Class Size 20-25, Avg Class Size 25-30, and Avg Class Size 30-35

2 AP Test 33-66% and 2 AP Test 66-100%

2 AP Test 66-100%

This is just a culmination of the previous feature described in the other tree structures.

Policy Recommendation

Our results show that schools that have many students who take 2 AP tests are likely to have high college enrollment rates. Even schools with many students taking just 1 AP

test have a high college enrollment rate. Therefore, a multipronged strategy for increasing the number of students taking AP tests would be warranted. At the individual school

level, schools can implement strategies to improve the number of students who take AP classes. This can come through special perks or just teacher encouragement. At the

district level, districts can hire more teachers who are qualified to teach AP courses, this could also come with incentives. Districts can also direct funding towards waivers to

pay for AP tests so that students who come from socioeconomically disadvantaged backgrounds are not put off by the cost of a test. At the state and federal level, officials

should be making sure there is money available for schools and districts to implement this policy.
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What is also interesting is what our results did not show. The number of students taking the SAT test was not used as a predictor. Recently, due to Covid-19, universities have

been dropping their requirement of an SAT test. There has been sizable backlash for these decisions. However, our findings point to the fact that SAT test scores may not

matter that much. It would be more important to focus on the AP test. For this reason, state and federal governments should not worry as much about the importance of the

SAT test and instead focus more on the AP tests. In particular, for Covid-19 social distancing procedures, if only one test can be selected, it should be the AP test.

Other important features we see are class size and school enrollment. The fact that class size between 20-35 is selected lends itself to the idea that class size may not matter. Of

course, this should be studied in more depth. There are large bodies of research arguing that class size matters. In our data it could be that the schools with smaller class sizes

are special programs for students who do not find traditional school to be the right path. These students would also be unlikely to attend college. Due to this, expert knowledge

of Massachusetts Public Schools would be useful.

Resources

GitHub Repository (https://github.com/DillWithIt77/D2P-Spring-2021)
Kaggle Data (https://www.kaggle.com/ndalziel/massachusetts-public-schools-data)
Model Paper (http://www.optimization-online.org/DB_FILE/2018/01/6404.pdf)
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Abstract

Optimizing COVID-19 Vaccine Allocations in Denver

The world has been under the grip of the COVID-19 global pandemic for more than one year. With the advent of Sars-Cov-2 vaccines, the US needs to vaccinate as many

people as possible to reduce risk of severe illness to immunocompromised populations, as well as to start the path forward to normalcy. In this project we investigate convex

optimization techniques to improve vaccine allocation to the county of Denver in such a way that distribution is optimized for demand for the vaccine. We attempt to optimizeTypesetting math: 100%



American Community Survey, 2015-2019. Vaccine Service Providers overlaid in red

this allocation based on availability of service providers, their capacity, as well as by trying to ensure equitable distribution of vaccines amongst Denver’s disadvantaged and

minority populations. Our hope is that by explicitly accounting for the needs of a given census tract, whether by considering its minority population or its proportion of

unvaccinated, we can achieve herd immunity quickly and fairly.

Project Creators

Michael Burgher, Collin Powell, and Sandra Robles.

The Project

Motivation & Overview

Stating the importance of any efforts to fight a global pandemic are beyond

obvious, and therefore unnecessary. We (nationally and globally) agree that

it's a matter of utmost public importance to get as many people vaccinated

against Sars-Cov-2 as fast as possible. Our interest, therefore, lies more in

seeing if we provide an optimized vaccine allocation strategy in such a way

that we achieve herd immunity as quickly as possible, while taking into

account vulnerable communities.

Current vaccine allocation trickles downwards starting from the Federal

government purchasing vaccines directly from vaccine providers. These

doses get allocated to states based on the States' population size. In the case

of Colorado, since the state makes up 1.69% of the country's population, it

receives 1.69% of the available doses at any given time. Once the State has

their allotted doses, it distributes them to Vaccine Service Providers within a

given county based on a myriad set of rules that include county population

size, size of community served by Service Provider, and committee

recommendations.

We believe an Integer Programming approach to the allocation problem will

yield interesting results that will likely differ from those advocated by the

committee recommendations. This is especially true because any time

decisions are made based on human recommendations, they will inherently

be sub-optimal. So our motivation is to show we can provide an optimized

strategy that still takes into account disadvantaged communities.
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At this current point in time (mid Spring 2021), the allocation of vaccines has been streamlined significantly, so results from an IP problem would be less 'interesting'

conceptually now. As such, we sought to optimize allocation at the beginning of the distribution, back in November/December 2020. At this point in time ("time zero"),

vaccine supply was limited and demand was high. Not only that, but there was a need to distribute vaccines in such a way that overall risk of severe illness stemming from

COVID was minimized as much as possible.

Our goal was to approach the problem from a social equity perspective. Meaning, not simply take into account the cost of vaccine distribution or of opening a service provider,

but rather also the cost of not vaccinating disadvantaged subsets of the population that may have been missed by standard vaccine allocation methods. We will discuss this

more in depth in the next few paragraphs. We believe it is important to have this equity mindset to ensure that under-priviledged communities have access to a vaccine, since

there is some proof that their wealthier non-minority counterparts are getting vaccinated at higher rates (https://denverite.com/2021/01/22/wealthier-and-whiter-

neighborhoods-in-denver-have-higher-vaccinations-rates/).

Data

We wanted to focus our vaccine allocation efforts to a manageable, yet still impactful, area. Hence, we chose the 144 census tracts in the county of Denver, Colorado. A census

tract is a way to divide counties into sub-regions, with the boundary of a census tract meant to encompass around 4,000 inhabitants as defined on the census

(https://en.wikipedia.org/wiki/Census_tract). Choosing census tracts over another geographic boundary method allows for easy visualizations and implementations due to its

manageable size.

Next, we needed to define the possible service providers within county boundaries. These ran the gamut of hospitals, clinics, pharmacies, public mass vaccination events, and

even a private company. The list of Service Providers were picked directly from the County of Denver's directory of available providers, with the assumption that these would

have been available at time zero. They are displayed on the plot to the left, alongside population density. As can be seen, there's an interesting juxtaposition between population

density and number of available providers, with some high density areas having very few nearby providers. There are also two providers that fall outside the boundaries for the

County, but since they were marked as in-county providers by County officials, we are accepting them as part of the list of available providers.

Non-Equity Data

The biggest data pieces were defining the census tracts & service providers (above) as well as deriving equity data (below). However, there were still other pieces of data to

research.

The first one is, how many vaccine doses are available to the county of Denver for our purposes? The county has an approximate population of 700,000 individuals

(https://en.wikipedia.org/wiki/Denver), so we decided that there were going to be 70,000 vaccine doses available, accounting for 10% of the population. We wanted to have

enough doses to make the problem interesting (i.e. if Denver only got 1,000 doses, then the problem of allocating them becomes mostly null), while keeping the number low

enough for the vaccines to still be considered scarce.

Next, we needed to know the general capacity at every service provider, as well as general cost to "open" a service provider. These were roughly estimated based on news

articles and our own best guesses, and can be seen defined in the 'Data_Denver_Vaccination_Sites.xlsx' file found in our github repository. We believe the most important

aspect of these variables was that they were proportional to the service provider type. Meaning, a pharmacy needed to have a fraction of the capacity of a hospital, etc.
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Social Vulnerability Index

Equity Data

In order to address the large number of factors which go into determining the equity of various areas, we are using the CDC's Social Vulnerability Index, or SVI. This is an

index that the CDC has constructed and used for many years which takes into account several different variables regarding the population demographics of an area. The index

itself is then given by a number which ranges from 0 to 1 with a higher number representing that a particular area is the most vulnerable to disaster, including a viral pandemic

outbreak. As of 2018, the variables which went into the construction of this index include:

Socioeconomic Status

    Below Poverty

    Unemployed

    Income

    No High School Diploma

Household Composition & Disability

    Aged 65 or Older

    Aged 17 or Younger

    Civilian with Disability

    Single-Parent Households

Minority Status & Language

    Minority

    Speaks English "Less than Well"

Housing Type & Transportation

    Multi-Unit Structures

    Mobile Homes

    Crowding

    No Vehicle

    Group Quarters

Newly added Variables in 2018

ACS Estimates for persons without Health Insurance
Estimate of Daytime Population
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Integer Program

Parameters

List of  facilities and  census tracts

 population of tract 

 number of vaccinated individuals in tract 

 cost of vaccinating no one in tract . Value equal to 

 cost of delivering a vaccine to tract  from facility . Value based on latitude/longitude distance from center of census tract to facility.

 minimum percent of max capacity of facility  for it to open

 maximum vaccines that facility  can distribute

Variables

 if facility  is open, 0 otherwise (binary)

 number of vaccines delivered to tract  from facility 

Objective Function

min 

Constraints

Herd Immunity

Once an area has reached 70% vaccinated, we do not get any more value by continuing to vaccinate that area while others are lower than 70%

 for all 

j i

=pi i

=vi i

=ci i (1 + SV I)(0.7 − )pi
vi
pi

=dij i j

=fj j

=mj j

= 1yj j

=xij i j

( − )∑i∑j dij
ci

2pi
xij

≤ 0.7 −∑
j

xij pi vi i
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Non-Negativity

0 is the minimum amount of vaccines that any facility can distribute to any tract

 for all 

Equity

This can be used to give a tract a minimum amount of vaccines in case certain areas are unintentionally being ignored or to ensure elderly, health care workers and other high

priority individuals can get vaccinated right away.

 for all 

Supply

The total amount distributed must be less than the supply available

Facility Cost

The left inequality ensures that all open facilities will have at least  of its maximum capacity to open. The right inequality ensures a facility will not distribute

more than its maximum capacity.

 for all j

Code

    ############## Data Stes ########################

    set BLOCKS; 

    set FACILITIES;

    

    ############### Parameters ######################

    param pop {i in BLOCKS}; 

    #population of block i

    

    param val {i in BLOCKS}; 

    #vale of the cost of vaccinating no one in block i

    

    param eq {i in BLOCKS}; 

≥ 0xij i, j

≥∑
j

xij bi i

≤ S∑
i

∑
j

xij

∈ [0, 1]fj

≤ ≤fjmjyj ∑
i

xij mjyj
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    #min vaccines to be distributed to block i

    

    param vac {i in BLOCKS}; 

    #number of vaccinated individuals in block i

    

    param mincap {j in FACILITIES}; 

    #between 0 and 1 - min percent of max capacity for a facility to open

    

    param maxcap {j in FACILITIES}; 

    #maximum capacity of facility j

    

    param dist {BLOCKS,FACILITIES}; 

    #cost of distributing a vaccine to tract i from facility j

    

    param supply; 

    #number of vaccines available

    

    ############### Variables #######################

    

    var X {i in BLOCKS, j in FACILITIES} integer; 

    #number of vaccines distributed from facility j to tract i

    

    var Y {j in FACILITIES} binary; 

    #1 if facility j is open, 0 otherwise

    

    ############### Objective Function ##############

    minimize Cost: sum {i in BLOCKS} (sum {j in FACILITIES} ((dist[i,j]-val[i]/(2*pop[i]))*X[i,j]));

    #minimizes the cost of the non-vaccinated individuals

         

    ############### Constraints ##################### 

    

    subject to Positivity {i in BLOCKS, j in FACILITIES}: X[i,j] >= 0;

    #0 is the minimum vaccines a facility can distribute to a tract

    

    subject to Supply: sum {i in BLOCKS} (sum {j in FACILITIES} X[i,j]) <= supply;

    #Total vaccines distributed must be less than the available supply

    

    subject to Population {i in BLOCKS}: sum {j in FACILITIES} (X[i,j]) <= 0.7*pop[i] - vac[i]; 

    #Once Herd Immunity is reached, there is no additional value in vaccinating an area

    

    subject to Equity {i in BLOCKS}: sum {j in FACILITIES} (X[i,j]) >= eq[i];

    #Minimum amount of vaccines to be shipped to tract i

    

    subject to MinCapacity {j in FACILITIES}: mincap[j]*maxcap[j]*Y[j] <= sum {i in BLOCKS} (X[i,j]);

    #ratio of max capacity necessary to ensure a facility is open

    

    subject to MaxCapacity {j in FACILITIES}: sum {i in BLOCKS} (X[i,j]) <= maxcap[j]*Y[j];

    #no facility can distribute more than its max capacity

    

    #reset; model IP_Project.mod; data IP_Project_Big.dat; option solver cplex; solve; display Y;

    #display {i in BLOCKS} sum {j in FACILITIES} X[i,j]; display {i in BLOCKS} sum {j in FACILITIES} X[i,j]/pop[i]; display X;
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Results

We will speak about the results using graphics, though the actual IP output can be found in the file 'Final Problem Solutions.xlsx' found within our github repository. As

mentioned earlier, we ran the Integer Program in two different manners: assuming the 70,000 were available in one batch, and distributing that same quantity over 10 batches

each having 1/10th of that (so, 7,000).

Our programs are clearly targeting the census tracts with the highest SVI first. This is most clearly seen with the single-batch program, whereby only a select handful of census

tracts were allotted a majority of the vaccines, and these happened to be tracts with fairly high SVI. The multi-batch process still targeted vulnerable communities (as desired)

but did so more spread out.
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Future Work

Equity Constraints

The equity constraints (labeled b in the meta code and eq in the code) were not used for our initial runs. For future runs, these ideas could especially be important given the

program seems to be suggesting a concentration strategy. These could also be used to ensure health care workers, elderly and other first priorities get vaccines.

Non-Linear Programming

Currently, due to the linearity of our objective function, the program sees the same value for vaccinating the first and last individual in a certain area. We wish to design a

program where as soon as the first individual is vaccinated, there is less value in vaccinating the second individual. Initial thoughts are that this could be solved with quadratic

programming but there are likely unseen obstacles.

We ran our program iteratively in order to overcome this. We would distribute 10% of the supply through an iteration, then copy the results into excel and use the updated data

for the next iteration. This was a complicated process so a better system (which seems doable though involves improving computer programming skills) would be nice going

forward. This iterative process spread the vaccines out a bit more but would still return to partially vaccinated areas before hitting all unvaccinated areas. This has led us to

conclude the program seems to be suggesting the concentration strategy.
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Different Times

For this project, the program was run at the beginning. This means there were 0 vaccines distributed anywhere before we started. It may be beneficial to run the program with

certain areas already partially vaccinated.

Links & Sources

Github Repository: https://github.com/srobles09/COVIDvaccineAllocationIP2021

Census Tract Data: https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-american-community-survey-tracts-2015-2019

Service Providers: https://www.denvergov.org/Government/COVID-19-Information/Vaccination

CDC Social Vulnerability Index: https://www.atsdr.cdc.gov/placeandhealth/svi/documentation/SVI_documentation_2018.html

Current Allocation Methods: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/distributing.html https://covid19.colorado.gov/vaccine-providers

Vaccine capacity by facility type: https://www.cnbc.com/2021/02/16/biden-administration-increases-weekly-covid-vaccine-shipments-to-states-and-pharmacies-.html

https://www.9news.com/article/news/local/next/covid-vaccine-doses-in-colorado-gone-to-waste-throw-away/73-0619d83e-b38c-474f-8c0d-b1254b588946
Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Vaccine_Distribution&oldid=3324"

This page was last modified on 4 May 2021, at 13:31.
This page has been accessed 2,640 times.
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Valentinas Sungaila

From CU Denver Optimization Student Wiki

I am a Masters Student in Statistics and Economics at CU Denver and plan to graduate Spring 2020. I got my bachelors degree in Economics from Western Washington

University. I enjoy the outdoors and love trying new things.

Follow this link to see my Network Flows class project: Separable Convex Cost Network Flow Problems
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Van der Waerden's Theorem

From CU Denver Optimization Student Wiki

Welcome to Amanda Ward's project page on van der Waerden's Theorem, created for the MATH 6406 final project.

Abstract

This project explores van der Waerden's Theorem through a combination of classical combinatorics and computational experimentation. By combining visual aids, randomized

and exhaustive search strategies, and walkthroughs of classical proofs, this project aims to offer an accessible and self-contained exploration of van der Waerden's Theorem,

focusing on minimal cases to build intuition about the structure and complexity of problems in Ramsey theory, while emphasizing the power of computation in modern

combinatorics.

Much of the project centers on the specific case . The theorem asserts that for any positive integers  and , there exists a number  such that any -

coloring of the integers  will contain a monochromatic arithmetic progression (AP) of length . This is a foundational result in Ramsey theory, and the

goal of this notebook is to illustrate its implications, develop structural intuition, and validate key results through code-driven demonstrations.

We begin by examining a classical upper bound argument showing that . This proof divides the interval  into 65 blocks of 5 elements each

and applies the pigeonhole principle to show that repeated block colorings inevitably lead to a monochromatic 3-term arithmetic progression. The notebook mirrors this

argument in code and highlights how overly generous the bound is in practice.

Next, we demonstrate that  by constructing an explicitly defined 2-coloring of the set . By checking all arithmetic progressions within this

coloring and visualizing the result using color-coded terminal output, we identify a valid counterexample that avoids 3-APs and thus establishes the lower bound.

To support the claim that , we then analyze randomly generated 2-colorings of the set . While this is not an exhaustive proof across all possible

colorings, it offers strong empirical evidence that a monochromatic 3-AP almost always occurs, lending confidence to the minimality of the bound.

Although we do not attempt to confirm  (as the classical bound is far beyond feasible computational limits), we include demonstrations of lower bounds and random

colorings for the 3-color case to show how these ideas naturally extend beyond the simplest case.

Python Implementation Summary

Several reusable Python functions were developed to support this exploration, designed to be general enough for a variety of visualization and analysis tasks related to integer

colorings:

analyze_repeated_block_AP: simulates the pigeonhole-style argument by identifying repeated block colorings and constructing candidate APs from them
colordict: formats a string with an ANSI color code to match a number's assigned color
colorname_dict: returns the color name (e.g., "red", "blue") for a given key, useful in generating readable string output
display_coloring_with_AP: prints the coloring in formatted blocks, optionally highlighting a chosen AP and showing block alignment

W(2, 3) r k W(r, k) r

{1, 2, … , W(r, k)} k

W(2, 3) < 325 {1, … , 325}

W(2, 3) > 8 {1, … , 8}

W(2, 3) = 9 {1, … , 9}

W(3, 3)
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format_coloring (used internally): arranges colored output in a row/column grid with block structure
get_monochromatic_APs: returns a coloring (random or provided) and lists all monochromatic APs of a given length under that coloring
make_AP: generates all arithmetic progressions of a given length within a specified interval

External links

GitHub repository for this project (https://github.com/amandaward1/van-der-Waerdens-Theorem), contains the project notebooks and slide deack
Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Van_der_Waerden%27s_Theorem&oldid=5036"
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This page has been accessed 29 times.
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Weston Grewe

From CU Denver Optimization Student Wiki

Hi! I am a second year PhD student at CU Denver. Currently, I research with Dr. Steffen Borgwardt where we study diameters of polyhedra, especially those arising from

networks and totally-unimodular matrices. I also have a B.S. and M.S. in mathematics from Cal Poly, San Luis Obispo. In my undergraduate I worked on a research project

studying the numerical range of matrices which provides a wonderful connection between linear algebra and classical algebraic geometry. During my master's I had a small

project working on image registration and segmentation. Additionally, I wrote a thesis on homogenizing a model for cardiac tissue. Outside of school I enjoy most physical

activities, in particular, I spend my free time running, biking, practicing yoga, and throwing frisbees. I also love to cook!

Other fun facts:

My favorite board game (card game??) is Moose in the House.
While I do not have a favorite bird, my least favorite bird is the Canadian Goose
I believe in pineapple on pizza
So far the best pizza I have found in Colorado is a tie between Humberto's Pizza Pub in Winter Park and High Mountain Pies in Leadville (please correct me if you think
there is a better pizza)

I'm not a big fan of social media, but if you want sporadic updates on trivial parts of my life and would like to know how fast (or slow) I ran (or biked or hiked) on any

particular day please follow me on Strava (https://www.strava.com/athletes/66532954).

Projects

In the fall of 2020 for Linear Programming, I worked with Angela Morrison on Creating Fair Voting Districts. In this project, we use a clustering algorithm to design voting

districts that are easy to understand and minimize the distance a voter has to travel to a polling location.

In the spring of 2021 for Integer Programming, I worked with Angela Morrison on Using Trees to Get Into College. For this project, we pulled used data from Massachusetts

public schools to develop a decision tree to understand the most important features that lead to a student enrolling in college directly out of high school.

In the fall of 2021, Angela Morrison and I studied gentrification in the city of Denver using circuit walks in our project titled The Circuit Less Travelled: A Path of

Gentrification Through Denver Neighborhoods.

In the spring of 2022, Angela Morrison and I (4/4!!!) analyzed bike paths in Denver using shortest path algorithms in A Wheelie Good Time: Safe Biking in Denver.
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Weston White

From CU Denver Optimization Student Wiki

After growing up in San Diego, CA, Weston went to CSUSM to earn a bachelor's in Economics. He continued his study of economics by attending CSU and earned a Master's

there. After working for a few years, he decided to go back to school to study Applied Math.

Projects

In the fall of 2023 for Linear Programming, I worked with Courtney Franzen on Housing Assistance Program Allocation.
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What are multicommodity flows

From CU Denver Optimization Student Wiki

There is currently no text in this page. You can search for this page title in other pages, or search the related logs (https://math.ucdenver.edu/~sborgwardt/wiki/index.php?

title=Special:Log&page=What_are_multicommodity_flows), but you do not have permission to create this page.
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Zachary Sorenson

From CU Denver Optimization Student Wiki

I started CU Denver in the Fall of 2018. I completed my undergraduate at Colorado School of Mines in Applied Math and I have my Master's in Math education. Outside of

being a student and teaching, I enjoy playing soccer and watching movies.

For my first major project I investigated the how to optimally place after school programs to maximize effectiveness with Connor Mattes: Using After School Activities To

Reduce Crime

For my second project, I investigated the quickest routes to access, and clean, parks in Denver with Connor Mattes: Cleaning Parks for a Safer Future

For my third project, I investigated the min-mean cancelling cycle and its applications with Connor Mattes: Min-mean Cycle Cancelling Algorithm and It's Applications

For my first readings course, I used Total Unimodularity to problem involving Warehouse Layouts: Using Total Unimodularity to Solve a Warehouse Problem

For my fourth project, I investigated the relationship between circuit walks and minimum weight matchings with Nicholas Crawford: Circuits and Bloom's Algorithm

Retrieved from "https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Zachary_Sorenson&oldid=3453"

Category: Contributors

This page was last modified on 28 November 2021, at 19:18.
This page has been accessed 2,291 times.

https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Connor_Mattes
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Using_After_School_Activities_To_Reduce_Crime
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Using_After_School_Activities_To_Reduce_Crime
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Connor_Mattes
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Cleaning_Parks_for_a_Safer_Future
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Connor_Mattes
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Min-mean_Cycle_Cancelling_Algorithm_and_It%27s_Applications
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Using_Total_Unimodularity_to_Solve_a_Warehouse_Problem
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Nicholas_Crawford
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Circuits_and_Bloom%27s_Algorithm
https://math.ucdenver.edu/~sborgwardt/wiki/index.php?title=Zachary_Sorenson&oldid=3453
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Special:Categories
https://math.ucdenver.edu/~sborgwardt/wiki/index.php/Category:Contributors


Zane Showalter-Castorena

From CU Denver Optimization Student Wiki

I have a B.S in Applied Mathematics from University of Colorado Denver. In my free time I enjoy craft beer, reading, and programming. Personal projects include a 3D

rendering of my brain, a 3D Ulam Spiral, and a 2D Ulam Spiral. Currently working on

http://math.ucdenver.edu/~sborgwardt/wiki/index.php/Optimizing_Highschool_Graduation_Rates
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