Solve the following 6 problems.

1. Prove that if series \(\sum_{n=1}^{\infty} a_n x^n \) converges for all \(x \) such that \(|x| < 1 \), then the series \(\sum_{n=1}^{\infty} a_n \frac{x^n}{1-x^n} \) converges as well if \(|x| < 1 \).

2. Let \(X \) be a nonempty set and \(d \) be a metric on \(X \). Prove the standard theorem that the set of all limit points of \(X \) is closed.

3. Let \(X \) be a nonempty set and \(d \) be a metric on \(X \). We say that \(K \subset X \) is **sequentially compact** if for every sequence \(\{x_n\} \subset K \) there exists a subsequence \(\{a_{n_k}\} \) that converges to a point \(x \in K \). For a fixed \(\epsilon > 0 \), we call \(\{x_\alpha\}_{\alpha \in \mathcal{A}} \subset X \) an \(\epsilon \)-net of \(K \subset X \) if the family of open balls \(\{B_\epsilon(x_\alpha)\}_{\alpha \in \mathcal{A}} \) is an open cover of \(K \). We say that \(K \subset X \) is totally bounded if there exists a finite \(\epsilon \)-net for every \(\epsilon > 0 \). Use these definitions to prove the standard theorem that a nonempty sequentially compact subset of a metric space is complete and totally bounded.

4. Let \(X \) be a nonempty set and \(d \) be a metric on \(X \). Suppose \(f \) is a continuous function on \(A \subset X \) to \(\mathbb{R}^n \) for some \(n \in \mathbb{N} \). Using only the definitions of a set being compact and a function being uniformly continuous, prove that if \(A \) is compact, then \(f \) is uniformly continuous, and provide a counterexample to the converse.

5. Let \(a < b \) be real numbers and \(f : [a, b] \rightarrow \mathbb{R} \). For a partition \(P = \{a = x_0 < x_1 < \cdots < x_n = b\} \) of \([a, b]\), the upper and lower Darboux sums of \(f \) on \(P \) are defined as

\[
U(f, P) = \sum_{i=1}^{n} \left(\sup_{x \in [x_{i-1}, x_i]} f(x) \right) (x_i - x_{i-1}),
\]

and

\[
L(f, P) = \sum_{i=1}^{n} \left(\inf_{y \in [x_{i-1}, x_i]} f(y) \right) (x_i - x_{i-1}),
\]

respectively. We say that \(f \) is Riemann integrable on \([a, b]\) if for every \(\epsilon > 0 \) there exists a partition \(P \) of \([a, b]\) such that \(U(f, P) - L(f, P) < \epsilon \).

Suppose that \(f : [a, b] \rightarrow \mathbb{R} \) is bounded. Using the above definitions, prove that if \(f \) is Riemann integrable, then \(f^2 \) is Riemann integrable, and provide a counterexample to the converse.

Hint: You may find it useful to exploit the fact that for any set \(A \), and any real-valued function \(f \) defined on \(A \) that \(\sup_{x \in A} f(x) - \inf_{y \in A} f(y) = \sup_{x,y \in A} |f(x) - f(y)| \).

6. Let \(C^1([a, b]) \) denote the space of real-valued continuously differentiable functions on \([a, b]\) where \(a < b \) are real numbers. Define the metric \(d \) on \(C^1([a, b]) \) as follows (where \(f, g \in C^1([a, b]) \))

\[
d(f, g) = \sup_{[a,b]} |f(x) - g(x)| + \sup_{[a,b]} |f'(x) - g'(x)|.
\]

Suppose \(\{f_n\} \subset (C^1([a, b]), d) \) is a bounded sequence. Prove that if \(\{f'_n\} \) is equicontinuous, then there exists a subsequence of \(\{f_n\} \) that converges in \(C^1([a, b], d) \).