University of Colorado at Denver - Mathematics Department Applied Linear Algebra Preliminary Exam With Solutions

16 January 2009, 10:00 am - 2:00 pm

Name: \qquad
The proctor will let you read the following conditions before the exam begins, and you will have time for questions. Once the exam begins, you will have 4 hours to do your best. This is a closed book exam. Please put your name on each sheet of paper that you turn in.

Exam conditions:

- Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your six best solutions.
- Each problem is worth 20 points; parts of problems have equal value.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write legibly using a dark pencil or pen.
- Notation: \mathcal{C} denotes the field of complex numbers, \mathcal{R} denotes the field of real numbers, and F denotes a field which may be either \mathcal{C} or $\mathcal{R} . \mathcal{C}^{n}$ and \mathcal{R}^{n} denote the vector spaces of n-tuples of complex and real scalars, respectively. T^{*} is the adjoint of the operator T and λ^{*} is the complex conjugate of the scalar $\lambda . v^{T}$ and A^{T} denote vector and matrix transposes, respectively.
- Ask the proctor if you have any questions.

> Good luck!
1.
2. \qquad
3.
4. \qquad
5.
6.
7.
8. \qquad
Total \qquad

On this exam V is a finite dimensional vector space over the field F, where either $F=\mathcal{C}$, the field of complex numbers, or $F=\mathcal{R}$, the field of real numbers. Also, F^{n} denotes the vector space of column vectors with n entries from F, as usual. For $T \in \mathcal{L}(V)$, the image (sometimes called the range) of T is denoted $\operatorname{Im}(T)$.

1. Suppose that $P \in \mathcal{L}(V)$ (the vector space of linear maps from V to itself) and that $P^{2}=P$.
(a) (6 points) Determine all possible eigenvalues of P.
(b) (10 points) Prove that $V=\operatorname{null}(P) \oplus \operatorname{Im}(P)$.
(c) (4 points) Is it necessary that all possible eigenvalues found in part (a) actually must occur? Prove that your answer is correct.

Solution: $P^{2}-P=\mathbf{0}$ implies that the minimal polynomial $p(x)$ of P divides $x^{2}-x=$ $x(x-1)$. Hence $p(x)=x$, or $(x-1)$, or $x(x-1)$. So in general the eigenvalues are each equal to either 0 or 1 . But $p(x)=x$ if and only if $P=0$, in which case $V=\operatorname{null}(P)$ and $\{\mathbf{0}\}=\operatorname{Im}(P)$. And $p(x)=x-1$ if and only if $P=I$. In this case $V=\operatorname{Im}(P)$ and $\operatorname{null}(P)=\{\mathbf{0}\}$. In these two cases the condition in part (b) clearly holds, and we see that part (c) is also answered.

Finally, suppose $p(x)=x(x-1)$, so that both 0 and 1 are eigenvalues of P. If $v \in$ $\operatorname{null}(P) \cap \operatorname{Im}(P)$, then $P(v)=0$ on the one hand, and on the other hand there is some $w \in V$ for which $v=P(w)=P^{2}(w)=P(v)=\mathbf{0}$. Hence null $(P) \cap \operatorname{Im}(P)=\{\mathbf{0}\}$. But also for any $v \in V$ we have $v=(v-P(v))+P(v)$, where $P(v-P(v))=p(v)-P(v)=$ 0. So $v-P(v) \in \operatorname{null}(P)$ and clearly $P(v) \in \operatorname{Im}(P)$. Hence $V=\operatorname{null}(P) \oplus \operatorname{Im}(P)$. This finishes part (b).
2. Define $T \in \mathcal{L}\left(F^{n}\right)$ by $T:\left(w_{1}, w_{2}, w_{3}, w_{4}\right)^{T} \mapsto\left(0, w_{2}+w_{4}, w_{3}, w_{4}\right)^{T}$.
(a) (8 points) Determine the minimal polynomial of T.
(b) (6 points) Determine the characteristic polynomial of T.
(c) (6 points) Determine the Jordan form of T.

Solution: Let $p(x)$ be the minimal polynomial of T. It is easy to see that $T(1,0,0,0)=$ $\mathbf{0}$, so 0 is an eigenvalue of T and hence x is a divisor of $p(x)$. Also, $T(0,1,0,0)=$ $(0,1,0,0)$, so 1 is an eigenvalue of T and $x-1$ divides $p(x)$. Since $T^{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $\left(0, x_{2}+2 x_{4}, x_{3}, x_{4}\right)$, it is clear that $\left.\operatorname{null}(T)=\operatorname{null}\left(T^{2}\right)=\{a, 0,0,0): a \in F\right\}$, hence the dimension of the space of generalized eigenvectors of T associated with 0 is 1 . This says that the multiplicity of 0 as a root of the characteristic polynomial $f(x)$ of T is 1 . So we check for eigenvalue 1. $(T-I)\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-x_{1}, x_{4}, 0,0\right)$. Repeating this we see $(T-I)^{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0,0,0\right)$, which is in the null space of T. Hence $T(T-I)^{2}=\mathbf{0}$. Since $T(T-I)\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{4}, 0,0\right)$, clearly $T(T-I)$ is not the zero operator, hence $p(x)=x(x-1)^{2}$. This finishes part (a).
Part (b): Since the dimension of the space of generalized eigenvectors belonging to 0 is 1 , it must be that the dimension of the space of generalized eigenvectors belonging to 1 is 3 . Hence the characteristic polynomial of T must be $f(x)=x(x-1)^{3}$.

Part (c) Since the minimal polynomial of T is $x(x-1)^{2}$ and the characteristic polynomial is $x(x-1)^{3}$, the only possibility (up to the order of the diagonal blocks) for the Jordan form of T is:

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

3. Let T be a normal operator on a complex inner product space V of dimension n.
(a) (10 points) If $T(v)=\lambda v$ with $\mathbf{0} \neq v \in V$, show that v is an eigenvector of the adjoint T^{*} with associated eigenvalue $\bar{\lambda}$.
(b) (10 points) Show that T^{*} is a polynomial in T.

Solution to part (a):

$$
\begin{aligned}
T(v)=\lambda v & \Leftrightarrow 0=\|(T-\lambda I)(v)\|^{2} \\
=\langle(T-\lambda I) v,(T-\lambda I) v\rangle & =\left\langle v,\left(T^{*}-\bar{\lambda} I\right)(T-\lambda I) v\right\rangle \\
=\left\langle v,(T-\lambda I)\left(T^{*}-\bar{\lambda} I\right) v\right\rangle & =\left\|\left(T^{*}-\bar{\lambda} I\right) v\right\|^{2} \\
& \Leftrightarrow T^{*}(v)=\bar{\lambda} v .
\end{aligned}
$$

Solution to part (b): Since T is a normal operator on a complex vector space V, there is an orthonormal basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ of V consisting of eigenvectors of T. Suppose that $T\left(v_{i}\right)=\lambda_{i} v_{i}$ for $1 \leq i \leq n$. So by part (a) we know that $T^{*}\left(v_{i}\right)=\bar{\lambda}_{i} v_{i}$, for $1 \leq i \leq n$. WLOG we may assume that the eigenvalues have been ordered so that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are the distinct eigenvalues of T. Using Lagrange interpolation (or any method have at hand) construct a polynomial $f(x) \in \mathcal{C}[x]$ (having degree at most $r-1$, if desired), such that $f\left(\lambda_{i}\right)=\bar{\lambda}_{i}$, for $1 \leq i \leq r$. Then $f(T)\left(v_{j}\right)=f\left(\lambda_{j}\right)\left(v_{j}\right)=$ $\bar{\lambda}_{j}\left(v_{j}\right)=T^{*}\left(v_{j}\right), 1 \leq j \leq n$, so that $f(T)$ and T^{*} have the same effect on each member of the basis \mathcal{B}. This implies that $f(T)=T^{*}$.
4. Let A and B be $n \times n$ Hermitian matrices over \mathcal{C}.
(a) (10 points) If A is positive definite, show that there exists an invertible matrix P such that $P^{*} A P=I$ and $P^{*} B P$ is diagonal.
(b) (10 points) If A is positive definite and B is positive semidefinite, show that

$$
\operatorname{det}(A+B) \geq \operatorname{det}(A)
$$

Solution:

(a) Since A is positive definite, there exists an invertible matrix T such that $A=T^{*} T$. $\left(T^{-1}\right)^{*} B\left(T^{-1}\right)$ is Hermitian, so is diagonalizable. That is, there exists a unitary matrix U and a diagonal matrix D such that $U^{*}\left(T^{-1}\right)^{*} B\left(T^{-1}\right) U=D$. Let $P=T^{-1} U$. Then $P^{*} B P=D$, and

$$
P^{*} A P=U^{*}\left(T^{-1}\right)^{*}\left(T^{*} T\right) T^{-1} U=U^{*} U=I
$$

(b) Let P and D be as defined above. Then $A=\left(P^{*}\right)^{-1} P^{-1}$ and $B=\left(P^{*}\right)^{-1} D P^{-1}$. Since B is positive semidefinite, then the diagonal entries in D are nonnegative. Thus

$$
\begin{aligned}
\operatorname{det}(A+B) & =\operatorname{det}\left(\left(P^{*}\right)^{-1}(I+D) P^{-1}\right)=\operatorname{det}\left(\left(P^{*}\right)^{-1} P^{-1}\right) \operatorname{det}(I+D) \\
& =\operatorname{det} A \operatorname{det}(I+D) \geq \operatorname{det} A
\end{aligned}
$$

5. Let $\|\cdot\|_{\infty}: \mathcal{C}^{n} \rightarrow \mathcal{R}$ be defined by

$$
\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| .
$$

(a) (8 points) Prove that $\|\cdot\|_{\infty}$ is a norm.
(b) (12 points) A norm $\|\cdot\|$ is said to be derived from an inner product if there is an inner product $\langle\cdot, \cdot\rangle$ such that $\|\mathbf{x}\|=\langle\mathbf{x}, \mathbf{x}\rangle^{1 / 2}$ for all $\mathbf{x} \in \mathcal{C}^{n}$. Show that $\|\cdot\|_{\infty}$ cannot be derived from an inner product.

Solution:

(a) We verify the properties of norms:
i. $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \geq 0$, for all $x \in \mathbb{C}^{n}$.
ii. $\|x\|_{\infty}=0 \Longleftrightarrow \max _{1 \leq i \leq n}\left|x_{i}\right|=0 \Longleftrightarrow x=0$.
iii. For any $c \in \mathbb{C}$ and $x \in \mathbb{C}^{n},\|c x\|_{\infty}=\max _{1 \leq i \leq n}\left|c x_{i}\right|=|c| \max _{1 \leq i \leq n}\left|x_{i}\right|=$ $|c|\|x\|_{\infty}$.
iv. For all $x, y \in \mathbb{C}^{n},\|x+y\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}+y_{i}\right| \leq \max _{1 \leq i \leq n}\left|x_{i}\right|+\left|y_{i}\right| \leq$ $\max _{1 \leq i \leq n}\left|x_{i}\right|+\max _{1 \leq i \leq n}\left|y_{i}\right|=\|x\|_{\infty}+\|y\|_{\infty}$.
(b) Assume there exists an inner product $\langle\cdot, \cdot\rangle$ such that $\|x\|_{\infty}=\langle x, x\rangle^{1 / 2}$ for all $x \in \mathbb{C}^{n}$. Then for any $x, y \in \mathbb{C}^{n}$, we have

$$
\|x+y\|_{\infty}^{2}+\|x-y\|_{\infty}^{2}=2\langle x, x\rangle+2\langle y, y\rangle=2\|x\|_{\infty}^{2}+2\|y\|_{\infty}^{2} .
$$

But, choosing $x=(1,0, \ldots, 0)^{T}$ and $y=(0,1,0, \ldots, 0)^{T}$, this yields the following contradiction:

$$
2=\|x+y\|_{\infty}^{2}+\|x-y\|_{\infty}^{2}=2\|x\|_{\infty}^{2}+2\|y\|_{\infty}^{2}=2+2=4
$$

(One of our theorems said that a norm is derived from an inner product if and only if it satisfies the parallelogram equality, so this type of proof should naturally come to mind.)
6. Suppose that $F=\mathcal{C}$ and that $S, T \in \mathcal{L}(V)$ satisfy $S T=T S$. Prove each of the following:
(a) (4 points) If λ is an eigenvalue of S, then the eigenspace

$$
V_{\lambda}=\{\mathbf{x} \in V \mid S \mathbf{x}=\lambda \mathbf{x}\}
$$

is invariant under T.
(b) (4 points) S and T have at least one common eigenvector (not necessarily belonging to the same eigenvalue).
(c) (12 points) There is a basis \mathcal{B} of V such that the matrix representations of S and T are both upper triangular.

Solution:

(a) If $x \in V_{\lambda}$, then $S x=\lambda x$. Thus,

$$
S(T x)=T S x=T(\lambda x)=\lambda T x
$$

so $T x \in V_{\lambda}$.
(b) Let $T_{\mid V_{\lambda}}$ denote the restriction of T to the subspace $V_{\lambda} . T_{\mid V_{\lambda}}$ has at least one eigenvector $v \in V_{\lambda}$, with eigenvalue μ. It follows that $T v=T_{\mid V_{\lambda}} v=\mu v$, so v is an eigenvector of V. And since $v \in V_{\lambda}$, it is also an eigenvector of S.
(c) The matrix of a linear transformation with respect to a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ is upper triangular if and only if $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ is invariant for each $k=1, \ldots, n$. Using part (b) above, we shall construct a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for V such that $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ is invariant under both S and T for each k.
We proceed by induction on n, the dimension of V, with the result being clearly true if $n=1$. So suppose that $n>1$ with the desired result holding for all operators on spaces of positive dimension less than n. By part (b) there is a vector $v_{1} \in V$ such that $T v_{1}=\lambda_{1} v_{1}$ and $S v_{1}=\mu_{1} v_{1}$ for some scalars λ_{1} and μ_{1}. Let W be the subspace spanned by v_{1}. Then the dimension of the quotient space V / W is $n-1$, and the operators \bar{T} and \bar{S} induced on V / W commute, so by our induction hypothesis there is a basis $\mathcal{B}_{1}=\left(v_{2}+W, v_{3}+W, \ldots, v_{n}+W\right)$ of V / W with respect to which both \bar{T} and \bar{S} have upper triangular matrices. It follows that $\mathcal{B}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a basis of V with respect to which both T and S have upper triangular matrices.
7. Let $F=\mathcal{C}$ and suppose that $T \in \mathcal{L}(V)$.
(a) (10 points) Prove that the dimension of $\operatorname{Im}(T)$ equals the number of nonzero singular values of T.
(b) (10 points) Suppose that $T \in \mathcal{L}(V)$ is positive semidefinite. Prove that T is invertible if and only if $\langle T(\mathbf{x}), \mathbf{x}\rangle>0$ for every $\mathbf{x} \in V$ with $\mathbf{x} \neq \mathbf{0}$.

Solution:

Let $T \in \mathcal{L}(V)$. Since $T^{*} T$ is self-adjoint, there is an orthonormal basis $\left(v_{1}, \ldots, v_{n}\right)$ of V whose members are eigenvectors of $T^{*} T$, say $T^{*} T v_{j}=\lambda_{j} v_{j}$, for $1 \leq j \leq n$. Note $\left\|T v_{j}\right\|^{2}=\left\langle T v_{j}, T v_{j}\right\rangle=\left\langle T^{*} T v_{j}, v_{j}\right\rangle=\lambda_{j}\left\|v_{j}\right\|^{2}$, so in particluar $\lambda_{j} \geq 0$.
Then $T^{*} T$ has real, nonnegative eigenvalues, so we may suppose they are $\lambda_{1} \geq \lambda_{2} \geq$ $\cdots \geq \lambda_{r}>\lambda_{r+1}=\cdots=\lambda_{n}=0$. Put $s_{i}=\sqrt{\lambda_{i}}, 1 \leq i \leq n$, so that $s_{1} \geq s_{2} \geq$ $\cdots \geq s_{r}>0$ are the nonzero singular values of T and in general $s_{i}=\left\|T v_{i}\right\|$, for all $i=1,2, \ldots, n$. It follows that $\left(v_{r+1}, v_{r+2}, \ldots, v_{n}\right)$ is a basis of the null space of T and $\left(T v_{1}, T v_{2}, \ldots, T v_{r}\right)$ is a basis for the Image of T. Clearly r is the number of nonzero singular values and also the dimension of the range of T, finishing part (a).
(b) Suppose that $T \in \mathcal{L}(V)$ is positive semidefinite, i.e., T is self-adjoint and $\langle T(v), v\rangle \geq$ 0 for all $v \in V$. Since T is self-adjoint we know there is an operator S for which $T=S^{*} S$. So $\langle T(v), v\rangle=\left\langle S^{*} S(v), v\right\rangle=\langle S(v), S(v)\rangle=0$ if and only if $S(v)=\mathbf{0}$. So T
is invertible if and only if S is invertible iff $S(v) \neq \mathbf{0}$ whenever $v \neq \mathbf{0}$ iff $\langle T(v), v\rangle>0$ whenever $v \neq \mathbf{0}$.
8. Let N be a real $n \times n$ matrix of rank $n-m$ and nullity m. Let L be an $m \times n$ matrix whose rows form a basis of the left null space of N, and let R be an $n \times m$ matrix whose columns form a basis of the right null space of N. Put $Z=L^{T} R^{T}$. Finally, put $M=N+Z$.
(a) (2 points) For $\mathbf{x} \in \mathcal{R}^{n}$, show that $N^{T} \mathbf{x}=\mathbf{0}$ if and only if $\mathbf{x}=L^{T} \mathbf{y}$ for some $\mathbf{y} \in \mathcal{R}^{m}$.
(b) (2 points) For $\mathbf{x} \in \mathcal{R}^{n}$, show that $N \mathbf{x}=\mathbf{0}$ if and only if $\mathbf{x}=R \mathbf{y}$ for some $\mathbf{y} \in \mathcal{R}^{m}$.
(c) (4 points) Show that Z is an $n \times n$ matrix with rank m for which $N^{T} Z=\mathbf{0}$, $N Z^{T}=\mathbf{0}$ and $M M^{T}=N N^{T}+Z Z^{T}$.
(d) (12 points) Show that the eigenvalues of $M M^{T}$ are precisely the positive eigenvalues of $N N^{T}$ and the positive eigenvalues of $Z Z^{T}$, and conclude that $M M^{T}$ is nonsingular.

Solution:

(a) $N^{T} X=0$ iff $X^{T} N=0$ iff X^{T} is in the row space of L, i.e., iff $X^{T}=Y^{T} L$ for some $Y \in \mathcal{R}^{m}$, iff $X=L^{T} Y$ for some $Y \in \mathcal{R}^{m}$.
(b) $N X=0$ iff X is in the column space of R, i.e., iff $X=R Y$ for some $Y \in \mathcal{R}^{m}$.
(c) $N^{T} Z=N^{T} L^{T} R^{T}=0$ by part (a). Similarly, $N Z^{T}=N R L=0$ by part (b). The columns of L^{T} are independent and m in number, so $Z v=0$ iff $L^{T}\left(R^{T} v\right)=0$ iff $R^{T} v=0$. Since R^{T} is $m \times n$ with rank m and right nullity $n-m, Z=L^{T} R^{T}$ must have nullity $n-m$, and hence rank m. It now is easy to compute $M M^{T}=$ $(N+Z)\left(N^{T}+Z^{T}\right)=N N^{T}+N Z^{T}+Z N^{T}+Z Z^{T}=N N^{T}+Z Z^{T}$.
(d) $N N^{T}$ and $Z Z^{T}$ are real, symmetric commuting matrices (both products are 0), so there must be an orthogonal basis $\mathcal{B}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of \mathcal{R}^{n} consisting of eigenvectors of both $N N^{T}$ and $Z Z^{T}$. We know that all the eigenvalues of $N N^{T}$ and $Z Z^{T}$ are real and nonnegative. Suppose that v_{i} is a member of \mathcal{B} for which $N N^{T} v_{i}=\lambda_{i} v_{i} \neq \mathbf{0} . \quad v_{i}$ must be orthogonal to all the vectors in the right null space of $N N^{T}$, i.e., v_{i} orthogonal to the right null space of N^{T}. This says $v_{i}^{T} Z=0$, which implies $Z Z^{T} v_{i}=\mathbf{0}$. Hence each v_{i} not in the null space of $N N^{T}$ must be in the null space of $Z Z^{T} . N$ and Z play symmetric roles, so a similar argument shows that each v_{j} not in the right null space of $Z Z^{T}$ must be in the null space of $N N^{T}$. Hence we may assume that the members of \mathcal{B} are ordered so that v_{1}, \ldots, v_{n-m} are not in the null space of $N N^{T}$ and are in the null space of $Z Z^{T}$. Similarly, v_{n-m+1}, \ldots, v_{n} are in the null space of $N N^{T}$ and not in the null space of $Z Z^{T}$. It follows immediately that v_{1}, \ldots, v_{n-m} are eigenvectors of $M M^{T}$ belonging to the positive eigenvalues of $N N^{T}$ and v_{n-m+1}, \ldots, v_{n} are eigenvectors of $M M^{T}$ belonging to the positive eigenvalues of $Z Z^{T}$. Finally, since all the eigenvalues of $M M^{T}$ are positive (i.e., none of them is zero), $M M^{T}$ is nonsingular.

