Name:

Exam Rules:

- This is a closed book exam. Take your time to read each problem carefully. Once the exam begin, you have 4 hours to complete the exam.
- There are 8 total problems. Do all 4 problems in the first part (problems 1 to 4), and pick two problems in the second part (problems 5 to 8). Do not submit more than two solved problems from the second part. If you do, only the first two attempted problems will be graded. Each problem is worth 20 points.
- Do no submit multiple alternative solutions to any problem; if you do, only the first solution will be graded.
- Justify your solutions: **cite theorems that you use**, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write only on one side of paper.
- Write legibly using a dark pencil or pen.
- **Notation:** Throughout the exam, \(\mathbb{R} \) and \(\mathbb{C} \) denote the sets of real and complex numbers, respectively. \(F \) denotes either \(\mathbb{R} \) or \(\mathbb{C} \). \(F^n \) and \(F^{n,n} \) are the vector spaces of \(n \)-tuples and \(n \times n \) matrices, respectively, over the field \(F \). \(\mathcal{L}(V) \) denotes the set of linear operators on the vector space \(V \). \(T^* \) is the adjoint of the operator \(T \) and \(\lambda^* \) is the complex conjugate of the scalar \(\lambda \). In an inner product space \(V \), \(U^\perp \) denotes the orthogonal complement of the subspace \(U \).
- If you are confused or stuck on a problem, either ask a question or move on to another problem.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>20</td>
<td></td>
<td>5.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>20</td>
<td></td>
<td>6.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>20</td>
<td></td>
<td>7.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>20</td>
<td></td>
<td>8.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 120</td>
</tr>
</tbody>
</table>

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:
Stephen Billups (Chair), Julien Langou, Yaning Liu
Part I. Work all of problems 1 through 4.

Problem 1. Let A and B be two real 10×10 matrices. Suppose that the rank of A is 6 and the rank of B is 4. Justify your answers to the following questions.

(a) What is the minimum possible rank of the matrix A^2?

(b) What is the maximum possible rank of the matrix AB^T?

(c) If the columns of A are orthogonal to the columns of B, must the rank of $A + B$ be equal to 10?

Problem 2. Let \mathcal{P}^n denote the real vector space of polynomials of degree strictly less than n. For two functions f and g in \mathcal{P}^n, define the inner product by

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt.$$

(a) Verify that this is an inner product.

(b) Apply the Gram-Schmidt procedure to the basis $\{1, t, t^2\}$ to find an orthogonal basis for \mathcal{P}^3.

Problem 3. Suppose V is a finite-dimensional vector space over \mathbb{F}.

(a) Prove or disprove: if S and T are nilpotent operators on V, then $S + T$ is nilpotent.

(b) Prove or disprove: if S and T are nilpotent operators on V and $ST = TS$, then $S + T$ is nilpotent.

(c) Prove if S is a nilpotent operator on V, then $I + S$ and $I - S$ are invertible, where I is the identity operator on V.

(d) Let N be an operator on an n-dimensional vector space, $n \geq 2$, such that $N^n = 0$, $N^{n-1} \neq 0$. Prove there is no operator T with $T^2 = N$.
Problem 4.

A is a real 3×3 matrix, and we know that

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -3 \\ -3 \end{pmatrix}, \quad A \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad A \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix}.$$

(a) What are the eigenvalues and associated eigenvectors of A? Can we use the set of eigenvectors as a basis for \mathbb{R}^3? Why or why not? If yes, does this basis have any special properties?

(b) Calculate

$$A^{2020} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}.$$

(c) Does the linear system $Ax = b$ have a solution for any $b \in \mathbb{R}^3$? If so, why? If not, for what kind of $b \in \mathbb{R}^3$ is $Ax = b$ solvable?

(d) Determine whether matrix A has the following properties. Explain your reasoning.

(i) diagonalizable

(ii) invertible

(iii) orthogonal

(iv) symmetric
Part II. Work **two** of problems 5 through 8.

Problem 5.

We consider the inner product space \mathbb{R}^n with its standard inner product. \(\langle u, v \rangle = u_1v_1 + \ldots + u_nv_n \) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be defined by

\[
T(z_1, z_2, \ldots, z_n) = (z_2 - z_1, z_3 - z_2, \ldots, z_1 - z_n).
\]

(a) Give an explicit expression for the adjoint, T^*.

(b) Is T invertible? Explain.

(c) Find the eigenvalues of T.

Problem 6.

(a) Let $n \geq 2$ and let V be an n-dimensional vector space over \mathbb{C} with a set of basis vectors e_1, \ldots, e_n. Let T be the linear map of V satisfying

\[
T(e_i) = e_{i+1}, \quad i = 1, \ldots, n-1 \quad \text{and} \quad T(e_n) = e_1.
\]

Is T diagonalizable?

(b) Let V be a finite-dimensional vector space and $T : V \to V$ a diagonalizable linear transformation. Let $W \subseteq V$ be a subspace which is mapped into itself by T. Show that the restriction of T to W is diagonalizable.

Problem 7.

Let V, W be finite-dimensional inner product spaces over \mathbb{C} such that $\dim V \leq \dim W$. Prove that there is a linear map $T : V \to W$ satisfying

\[
\langle T(u), T(v) \rangle_W = \langle u, v \rangle_V
\]

for all $u, v \in V$.

Problem 8.

Let V be a real finite dimensional inner product space and let $T : V \to V$ be a linear transformation. Assume that $\langle T v, w \rangle = \langle v, T w \rangle$ for all $v, w \in V$.

(a) Prove that if \(\lambda \) and \(\mu \) are distinct eigenvalues of \(T \) then the corresponding eigenspaces \(V_\lambda \) and \(V_\mu \) are orthogonal.

(b) If \(W \) is a subspace of \(V \), prove that \(T(W) \subseteq W \) implies that \(T(W^\perp) \subseteq W^\perp \).

(c) Prove that there exists an eigenvector \(v_1 \in V \) for \(T \) in \(V \) with associated (real) eigenvalue \(\lambda_1 \). Do not use a big theorem; prove directly. You may assume the fundamental theorem of algebra however.

(d) Prove that there exists an orthonormal basis of \(V \) consisting of eigenvectors for \(T \).