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Chapter 1

Introduction

This report summarizes the results of the Spring, 2007 Mathematics Clinic at
the University of Colorado at Denver and Health Sciences Center. The Clinic
was sponsored by Randall Tagg (UCDHSC, Dept. of Physics), in collabora-
tion with Arlen Meyers, (UCDHSC, Dept. of Otolaryngology) who is inves-
tigating a novel approach for early detection of oral cancer that incorporates
information about structural changes of the tissue. A critical component of
this research is to enhance current understanding of how tissue grows and
differentiates.

The focus of the clinic was to develop computational models for tissue
dynamics. The models handle populations of cells, modeling the life cycle of
individual cells, (including mitosis (cell-division), differentiation, and apop-
tosis (cell-death)) as well as interactions between cells (such as cell signalling,
adhesion, and migration) . By manipulating various controls in these mod-
els, we hope to identify hypotheses which will guide experiments in the Tagg
laboratory.

The fifteen students in the clinic were divided into five teams. Two of
the teams developed computational models of the cell cycle; two developed
tissue models based upon populations of cells; and the final team evaluated
various publicly available cell-modeling software packages. The results of
each of these teams are described in the following five chapters.
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Chapter 2

Summary of Cell Cycle and
Dynamical Systems with
Models of the Cellular
Checkpoints

By Asmaa Elmkhanter and Megan Sawyer

2.1 Abstract

Understanding the basics of cellular checkpoints and dynamical systems is an
important pre-requisite for modeling the reproductive behavior of cells. This
paper attempts to present a suitable refresher in biological and dynamical
systems. We also discuss a model of the metaphase/anaphase checkpoint and
extrapolate on ways to create a more biologically accurate model.

2.2 Introduction

The cellular reproduction cycle is an important element in the growth and
differentiation of tissue populations. It is important to model the effects
of both intracellular and extracellular influences on the rate and course of
the cell cycle. Often when observing cellular behavior, the use of dynam-
ical equations is necessary to appropriately model the events. This paper
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will present a refresher on the basic background for the cell cycle, the chem-
istry behind frequently observed reactions, and an overview of the dynamical
systems found in the cell cycle. We also include a model of one of the re-
production checkpoints and hypothesize on the effects of modifying certain
elements of this model.

2.3 Cell Cycle Biology

In modeling cancer, it is important to first understand the biology of a normal
cell. It is not necessary at this stage of research to be able to comprehend the
specifics of the numerous internal and external cellular chemical reactions,
but rather to be able to understand the overall picture of cell reproduction
and its effects on the surrounding cells. This understanding begins with the
comprehension of the cell cycle.

2.3.1 A Broad Overview of the Cell Cycle:

The cell cycle is composed of 5 phases: three gap phases–G0, where a cell
remains in a quiescent state, and G1 and G2, in which protein synthesis
occurs; S phase, in which DNA synthesis occurs; and M phase, where mitosis
and cell division occur [32]. The gap phases and S phase are collectively
referred to as interphase, which takes up a majority of the time spent in a
cell cycle.

Figure 3.1: The Cell Cycle

Certain cells remain in G0 throughout their life; others can be drawn out
of this phase through external factors, such as the binding of growth factor
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molecules to the cellular membrane. Once a cell enters G1, it is generally
committed to one of three paths: DNA synthesis and cytokinesis, differen-
tiation, or apoptosis. G1 is often referred to as the START phase, during
which the cell division and differentiation machinery is switched on. Within
this phase, the concentrations of certain chemicals as well as cellular events
help to determine the path that the cell will take. Growth of the cell in G1 is
a signal that the cell is preparing for division; once a certain size is reached,
the cell moves into the DNA synthesis S phase. In S, the cell employs a
series of nuclear events to transcribe and replicate DNA. A checkpoint at the
end of this phase ensures that all the DNA is synthesized appropriately and
without errors. The G2 phase heralds the final preparations for cytokinesis
with the production of proteins to control the actual division of the cell. A
final checkpoint before mitosis occurs at the end of the G2 phase, confirming
that the cell is ready for division. The M phase is where cell division actually
occurs.

2.3.2 A Closer Look at the Cell Cycle

Transitions between stages within the cell cycle are controlled by the acti-
vation of a complex created by the binding of cyclins and cyclin-dependent
kinases (Cdk). Hereafter, this cyclin/Cdk complex will be referred to as cy-
clin:Cdk. Activation of the complex is achieved through a series of steps,
each requiring phosphorylation or dephosphorylation of certain amino acid
receptor sites, namely threonine [56]. Although there are currently eight dif-
ferent cyclins and nine different Cdks identified, progression through the cell
cycle stages typically relies on only one or two interactions between members
of the two sets at each phase or checkpoint [83]. The total concentration
of cyclins through the duration of the cell cycle oscillates; each type of cy-
clin is identified by the stage in which its peak concentration is reached and
its association with specific Cdks. Accumulation of cyclin is a rate-limiting
step, dictating the passage into subsequent stages. In contrast, the relative
concentration of Cdks remains stable throughout the cell cycle [32].

The relationship between cyclins and Cdks acts as a positive regulator of
the cell cycle. An example of this regulatory effect is the activation of the
cyclin D/Cdk4 complex in the G1 phase. The complex initiates progression
through the stage by phosphorylating other substrates that lead to transcrip-
tion of DNA synthesis and other reactions necessary for movement through
the cell cycle [32]. Along with positive regulators, negative regulators are also
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involved in the cell cycle. These cyclin-dependent kinase inhibitors (CDKIs)
act by either binding to the cyclin:Cdk, blocking molecular sites for phos-
phorylation, or by causing an allosteric change in the structure of the Cdk
molecule. This change in the tertiary structure of the protein alters the
cyclin binding site as well as the ATP binding site, leading to a lower affin-
ity for ATP molecules (see [32]). Other regulatory molecules include wee1,
Cdk-activating kinase (CAK), and Cdc25, a phosphatase that activates the
cyclin/Cdk complex by adding wee1. Cdk forms a positive feedback loop
with wee1 and Cdc25, enhancing the activities of each (see [81]).

Despite the difference in the type of cyclins and Cdks involved in the
progression through each cell stage, the general method of creation, activa-
tion, and degradation of cyclin:Cdk is similar for each cyclin/Cdk pair. The
general methodology can be described by a wiring diagram.

Figure 3.2: Wiring diagram for the cyclin:Cdk complex (Taken from [66])

In this diagram, we can see that there are nine basic steps. The first step
is the formation of the cyclin protein from amino acids. The newly-created
cyclin can be stable, in which case it becomes available for phosphorylation
and subsequent binding to Cdk (step 3; note that in the wiring diagram, cdc2
is a particular type of Cdk), or unstable, in which case it degrades back into
amino acids (step 2). After the formation of cyclin:Cdk, the heterodimer is
then phosphorylated to activate the complex. Steps 4 and 5 are regulated
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by the concentration of CDKIs, which suggest that there is a concentration
threshold established by active CDKIs which the active cyclin:Cdk must
overcome in order to progress through the checkpoint [61]. After a sufficient
amount of cyclin:Cdk is activated, the cell cycle progresses and active cy-
clin:Cdk is rapidly destroyed (step 6). The cyclin is further degraded into
amino acids and its phosphorus molecules taken up by ADPs (step 7). The
Cdk subunit remains inactive within the cell until external triggers signal for
phosphorylation of the kinase (step 8). This actives the Cdk, which is then
ready for acceptance of the cyclin subunit, and the checkpoint cycle begins
again.

Active cyclin:Cdks motivate progression through the checkpoint by en-
hancing the phosphorylation of a number of specific substrates, including
proteins, lamins, and histones. Harper [32] suggests that substrate speci-
ficity is determined by the type of cyclin bound to the Cdk (in the case
where more than one cyclin type is accepted). This allows for contrasting ef-
fects on a common substrate, which can act as a safety mechanism to prevent
premature progression through the cell cycle.

2.3.3 Cell Cycle Checkpoints

Within the cell cycle, numerous checkpoints are built in to ensure normal pro-
gression between phases. The four main checkpoints occur between stages
G1/S and G2/M , as well as within the S and M stages. The G1/S check-
point monitors cell size and checks for damage within the DNA of a cell. If
these conditions are not adequately met, the cell cycle arrests until the proper
modifications have been made. It is also possible to trigger transition into
the G0 phase if environmental conditions, such as restrictions on available
space, prevent checkpoint requirements from being met. The G1/S check-
point is also where the decision for apoptosis and differentiation is made. If
the G1/S conditions are met, the cell proceeds to the S phase and begins
synthesis of DNA. The checkpoint within the S stage evaluates the accuracy
of DNA replication. The next checkpoint, G2/M , monitors the physiologi-
cal conditions of the cell. A further check of DNA replication is performed;
if there is incompleteness or damage of the DNA, the cell cycle is arrested
until corrections are made. The fourth checkpoint occurring within mitosis
between metaphase and anaphase, controls for incomplete spindle formation.
This checkpoint also serves as the last place to stop damaged or defective
cells from reproducing.
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Figure 3.3: Specific cyclin:Cdk pairings and inhibitors for each checkpoint.
(Taken from [32])

Each checkpoint in the cell cycle is associated with unique couplings of
cyclins and Cdks (Figure 3.3) [32]. The behavior of these complexes controls
successful movement through the cell cycle. Over-expression of the cyclin
E/Cdk2 complex, as an example, promotes passage through the G1/S check-
point. Once the checkpoint is passed, the complex rapidly degrades. Both the
disassociated cyclin and Cdk are present throughout the next stage, although
the former is continually being broken down into its amino acid components.

2.3.4 External Motivators of the Cell Cycle

Progression through the cell cycle can be motivated by internal factors, such
as the activation and degradation of cyclin/Cdk complexes, as well as through
external factors. Signal cascades, which help to trigger the internal cellular
reproductive pathway, can be initiated by a variety of molecules and ions.
The primary stages affected by external factors are G0 and G1. Mitogens,
such as growth factors, and the mitogen-activated protein kinase (MAPK)
cascade are the main contributors for signaling the cell to progress from G0

into G1 (see [32]). Within the G1 phase, it is suggested by Crespo [17] that the
Ras protein, whose creation is signaled by the MAPK cascade, helps to drive
progression into the S phase and to the mitotic machinery within the cell.
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Ions are also important factors in the progression of cellular activities. Baran
[5] has identified calcium as a potential effector for transition through G1 and
G2. The Ca2+ ion can either be extracted from extracellular sources bound
to the cell membrane, or absorbed internally from mitochondrial releases.

2.4 The Brusselator

The brusselator is an autocatalytic reaction studied in Brussels by Prigogine
and a group of other scientists [29]. Autocatalytic reactions are an example
of nonlinearities in chemical reactions. The brusselator involves the following
series of reaction steps:

A → X

2X + Y → 3X

B + X → Y + D

X → E.

The concentration of X and Y may change in time. However, this reac-
tion can be controlled from reaching equilibrium by continually adding the
substances A and B and subtracting the substances D and E. We do not
want this reaction to come to a halt because it is used to represent real-
world systems. Prigogine argues that almost any real-world system is open,
characterized by nonlinearities, and maintained out of equilibrium with their
surroundings. An example is an individual’s consumption of material and
energy inputs from their surroundings and their excretion of waste products
and waste heat [29].

In this experiment, the kinetic constants have been set to one for simplic-
ity and D has been eliminated because it does not enter any of the reaction
and is continuously removed from the system. After this elimination, the
following nonlinear equations result:

dX

dt
= A + X2Y −BX −X

dY

dt
= BX −X2Y.

The two conditions necessary for a limit cycle to occur is that the system
must be open and interactions among system components must be nonlinear.
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This system then will ultimately converge to a steady limit cycle. It is helpful
to note that the brusselator model has already been programmed into Matlab
under “brussode”. The Matlab code can be found in Appendix B.

2.4.1 Chemistry of the Brusselator

An autocatalytic reaction is a chemical reaction in which a product (or a
reaction intermediate) also functions as a catalyst. In such a reaction the
observed rate of reaction is often found to increase with time from its ini-
tial value. To further understand what this means, let’s look at the second
reaction step in the brusselator:

2X + Y → 3X.

This reaction says that substances X and Y are reacting to form a larger
amount of the substance X. We say the reactants X and Y reacted to form
the product, in this case, X. The concentration of chemicals is measured in
moles/grams. The molar ratio can be found by taking note of the 2 in front
of the X and the 1 in front of the Y in the reactant side, and the 3 on the
product side. So we say that the molar ratio between the reacting X and Y
is 2 to 1. The molar ratio between the reactant Y and the product X is 1 to
3.

Note that X and Y reacted to form more of the X substance. This is
an example of autocatalytic reaction where X stimulates its own production
from Y .

Let’s observe and understand how the differential equations in our system
were obtained. Again, the complete chemical reaction and the equations are:

A → X

2X + Y → 3X

B + X → Y + D

X → E.

Let’s look at the first equation dX
dt

= A + X2Y −BX −X. The equation
represents the rate of change of X with respect to time. In this equation, the
term A comes from A → X and X2Y comes from 2X + Y → 3X; since both
equations form the product X, they have positive values in the equation.
Note that the equation only represents the concentrates that formed X. We
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can also represent the change in concentration X with respect to time using
the products formed. More details on how to solve for the rates can be found
in the Rate Law section.

The same concept applies to the second equation dY
dt

= BX − X2Y .
BX is positive since it forms the Y substance (B + X → Y + D); while
X2Y is negative indicating the loss of the substance Y and the making of X
(2X + Y → 3X).

Rate Law

The rate of a reaction is often proportional to the concentration of the re-
actants. It is the amount of substance reacted or produced per unit time.
The rate law is an experimentally determined equation of a reaction. It is
an expression indicating how the rate depends on the concentrations of the
reactants and catalysts for the reaction [12]. The power of the concentration
in the rate law expression is called the order with respect to the reactant or
catalyst. Consider the following reaction

2A + B → C.

Let r = the rate and k = the kinetic constant. This constant is dependent
on the temperature at which the reaction occurs, but independent of the
concentration of each variable.

r = k[A]2 ∗ [B].

*Note that the notation [X] indicates the concentration of X.
The rate of consumption of the equation is:

r = −1
2

d[A]
dt

= −d[B]
dt

.

The rate of formation is:

r = d[C]
dt

.

The rate of consumption is negative because the concentration of A and
B substances is decreasing, while the concentration of substance C is being
formed and therefore is increasing. Since all substances are being formed and
consumed at the same rate, the rate of the reactions is:

r = −1
2

d[A]
dt

= −d[B]
dt

= d[C]
dt

.

In summary, the rate r can be represented in all of the following forms:

r = −1
2

d[A]
dt

= −d[B]
dt

= d[C]
dt

= k[A]2 ∗ [B].

11



2.5 Dynamical systems

The study of dynamical systems requires knowledge of bifurcations. In dy-
namical systems, a bifurcation happens when a small change applied to the
parameter values of a system eventually leads to a long-term change in the
system’s dynamical behavior. The dynamical system concept is a mathemat-
ical formalization for any fixed “rule” which describes the time dependence of
a point’s position in its ambient space. The ambient space is defined as the
space surrounding our system of equations. The mathematical models used
to describe the swinging of a clock pendulum, the flow of water in a pipe, or
the number of fish each spring in a lake are examples of dynamical systems
[76]. The following section will go into details about linear and nonlinear
dynamical systems and how different bifurcations can occur in this system.

In order to understand what is meant by the limit cycle in the brusselator
reaction, we must visit the dynamics behind it and explain some basics.
Understanding linear systems will help the reader understand how to classify
the fixed points (nodes) in a nonlinear system. This is important since limit
cycles occur in nonlinear systems. A linear systems basically states that
equal causes have equal affects. Consider the example if you ran out of gas
and had to step out and push the car. If you start doubled the pushing effort
and in return the car moved twice as fast, then that would be an example
of a linear system. In a nonlinear system, if doubled the pushing effort
the car would not move twice as fast. Sometimes it is safe to assume that
the car is moving twice as fast in the non-linear system even though it is
only approximately (but not exactly) moving twice as fast. This process
is called linearizing a nonlinear system. Mathematicians do this because
solving a linear system is much easier than solving a non-linear system which
is generally difficult or impossible to solve. In this case, the approximation
is safe enough to make this assumption.

Let’s consider the following 2 dimensional linear system of the form

ẋ = ax + by

ẏ = cx + dy,

where a, b, c, and d are parameters and ẋ and ẏ represent the derivatives of
the variables x and y. Note that this system is of the matrix form ẋ = Ax
where

A =

[
a b
c d

]
, x =

[
x
y

]
.
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This system is linear; therefore if x1 and x2 are solutions then so is any linear
combination c1x1 + c2x2.

The solutions of ẋ = Ax can be visualized in a phase portrait. A phase
portrait is a geometric representation of the trajectories moving on the (x, y)
phase plane [64].

As an example of a linearized system, consider the following problem:

ẋ = x2 − 1

We will need to graph the equation (see Figure 5.4), classify its fixed point
and their stabilities.

Figure 5.4: Phase portrait

Since we are interested in seeing how ẋ is behaving. We will do this by
treating ẋ as a function and then graphing f(x) = x2 − 1 to see how its tra-
jectories are moving. Trajectories are normally represented by little arrows
in a system of differential equations’ graph. Trajectories can be thought of as
little particles in space moving toward where the attraction is. The points
that these trajectories point to are referred to as attractors or sinks and are
represented by a bold circle on the graph. The points on the graph that the
trajectories point away from are called repellers and are represented by an
empty circle on the graph.

By solving the equation f(0) = x2−1, we getx = ±1. The value of x2−1
is positive if we pick any point less than −1 so the flow is to the right toward
this fixed point. The value of x2 − 1 is negative if we pick any point where
−1 < x < 1. The flow is again to the right where x > 1. As the graph
can easily demonstrate, the flow is toward the stable fixed point x = −1 and
away from the unstable fixed point x = 1.
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2.5.1 Limit Cycles

Linear systems can have closed orbits, but these orbits are not isolated as
they are in the limit cycles in nonlinear systems. Orbit can occur in linear
systems as well. You can actually have one orbit inside the other; an analogy
is that the limit cycles are represented by the inside and outside rings of a
donut. In this case the trajectories will point toward the stable orbit and
away from the unstable one. There are cases where both orbits would be
stable; in this case, they share their trajectories. Limit cycles cannot form
within each other. They are defined as isolated closed trajectories. They
are said to be isolated because their neighboring trajectories are not closed;
they spiral either toward or away from the limit cycle. The limit cycle is
said to be closed because the trajectories inside it can never leave it to go
anywhere else. The limit cycle is said to be stable if the trajectories spiral
toward it and is denoted by a solid black lining, and unstable if they spiral
away from it and is denoted by a dotted black lining.

Let’s consider a simple example of a limit cycle:

ṙ = r(1− r2), θ = 1,

where r ≥ 0 (Figure 5.5). The radial and angular dynamics are uncoupled
and so can be analyzed separately. Treating ṙ = r(1 − r2) as a vector field
on the line, we see that the solution r∗ = 0 is an unstable fixed point and
r∗ = 1 is stable.

Figure 5.5: Radial and angular dynamics graph for ṙ = r(1− r2), θ = 1

Hence, back in the phase plane (Figure 5.6), all trajectories (except r∗ =
0) approach the unit circle r∗ = 1 monotonically. Since the motion in the
θ-direction is simply rotation at constant angular velocity, we see that all
trajectories spiral asymptotically toward a limit cycle at r = 1 [64].
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Figure 5.6: Phase plane image of a limit cycle

2.5.2 Bifurcation

Hopf and saddle-node bifurcation have come up in several papers that we
have attempted to model. This section will explain some of the different
kinds of bifurcations and give an example of a saddle-node bifurcation.

Bifurcation is the qualitative or topological change of the fixed point of a
dynamic system as the result of a varying parameter [34]. Bifurcation occurs
in both continuous systems and discrete systems. There are two classes of
bifurcations: local and global. A local bifurcation occurs when a parameter
change causes the stability of an equilibrium (or fixed point) to change [64].
There are four different kinds of local bifurcations: transcritical, pitchfork,
hopf, and saddle-node bifurcation.

In general, the nullclines (where ẋ = 0 and ẏ = 0) would have to be
defined to know where the stationary points are located. The direction of
the field is to the right where ẋ > 0 and to the left where ẋ < 0. The
attraction is upward when ẏ > 0 and downward when ẏ < 0. Once the
nullcline is sketched, the stationary points are classified and it becomes clear
which point is stable and which one is unstable depending on the direction
of the flow.

Transcritical Bifurcation

A transcritical bifurcation is a particular kind of local bifurcation, meaning
that it is characterized by an equilibrium having an eigenvalue whose real part
passes through zero [76]. There always exists a stable point and an unstable
point in transcritical bifurcation. As the parameter changes, the fixed points
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collide and exchange stability. An example of transcritical bifurcation is the
logistic equation in which the parameter and the x value are both positive
[64]. A typical real-life example could be the consumer-producer problem
where the consumption is proportional to the (quantity of) resource [76].

Pitchfork Bifurcation

Pitchfork bifurcations occur generally in systems with symmetry [64]. There
are two different types of bifurcation: supercritical and subcritical. As
the parameter of our differential equation is varied, the fixed points tend to
appear and disappear in this bifurcation. To understand this better, think
of the case when we only have one equation and the fixed points are found
along the x axis where ẋ = 0. As a simple pitchfork bifurcation example,
consider a system that has 1 stable limit cycle when the parameter is less
than zero. Suppose that we get 3 limit cycles when we increase it to be
greater than zero, then we say that the other 2 fixed points appear when our
parameter is greater than 0 and disappears when the parameter is less than
zero.

Hopf Bifurcation

To understand hopf bifurcation in the simplest qualitative way, we consider
a physical system that settles down to equilibrium through exponentially
damped oscillations (an oscillation decreasing in amplitude). Small distur-
bances decay after time in this system. Now suppose that the decay rate
depends on a control parameter β. If the decay becomes slower and slower
and finally changes to growth at a critical value βc, the equilibrium state
will lose stability . In many cases the resulting motion is a small-amplitude,
sinusoidal limit cycle oscillation about the former steady state. Here we say
the system has undergone a hopf bifurcation.

Saddle-node Bifurcation

Saddle-node bifurcation is the basic mechanism by which fixed points are
created and destroyed. As a parameter is varied, two fixed points move
toward each other, collide, and mutually annihilate [64]. If the phase space
is one-dimensional, one of the fixed points is unstable (the saddle), while the
other is stable (the node) [76].

Consider the following problem:
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ẋ = ε + x2, where ε is a parameter and ẏ = −y.

Note that when we solve the differential equation ẏ, y(t) goes to zero and
disappears as t goes to ∞.

dy
dt

= −dty = ye−t.

The parameter of the parabola in x changes as ε varies. The function ẋ = 0
is shown with different values of ε.

Figure 5.7: Varying levels of ε

The first fixed point is stable at (−ε1/2, 0) and unstable at (ε1/2, 0). As
the parameter increases from ε = −2 to ε = 2, the two fixed points approach
each other and form a saddle at the origin. If you imagine a moving graph
starting from the negative parameter to the point 0 where our object are on
our figure at all time, then you can see that it seems that these 2 fixed points
were moving toward each other until they finally met at point 0. We say that
they formed a saddle point at x = 0. The saddle point is very delicate; as
soon as ε > 0, the point disappears and we’re left with no fixed points. This
is an example of saddle-node bifurcation where the fixed points are destroyed
when the parameter is greater than 0 and created when the parameter is 0
and as the parameter is decreased, the 2 fixed points are apparent.

2.6 Modeling

In a effort to better understand the way cell cycles are controlled by the
interactions between cyclins and Cdks, we have attempted to replicate models
found in a variety of different papers. We have successfully reproduced the
model presented in [66] using Matlab; the coding for this model can be found
in Appendix B.
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2.6.1 Modeling of the Metaphase/Anaphase Checkpoint

The transition between the metaphase and anaphase stages in the M phase
serves as the last major checkpoint in the cell cycle before cytokinesis final-
izes. During this checkpoint, the positions of chromosomes with respect to
the cellular axis, as well as proper spindle formation, are evaluated to en-
sure proper separation during anaphase. If errors are detected, the division
mechanism will stall until either the error is corrected or the cell degenerates.
Cellular determination of spindle alignment is dependent on the activity of
an enzyme complex, maturation promoting factor (MPF), composed of cy-
clin B and Cdk1 [66]. This heterodimer is influential in driving the cell into
and through the M phase, peaking abruptly at metaphase. At the tran-
sition between metaphase and anaphase, barring any complications, MPF
disassociates and the cyclin B is rapidly degraded. This action leads to the
triggering of a signal cascade that allows the cell to finish cytokinesis. Tyson
[66] explores the dynamic nature of the synthesis and breakdown of MPF
and its effects on cell cycle progression.

2.6.2 Description of Model

Our model, based off a system of ordinary differential equations presented in
Tyson [66], focuses on two parameters governing the formation and degrada-
tion of MPF: k4, describing the rate of auto-catalytic activation of MPF, and
k6, describing the rate of breakdown of active MPF. We also explored the ef-
fects of changing parameters from constant to dynamical in order to observe
the effects of a time-dependent chemical reaction; time-dependent reactions
are potentially more biologically accurate. To do this, we changed the rate
parameter k1, which governs the synthesis of Cdk subunits from amino acid
building blocks. We chose to use a sinusoidal function for this parameter to
model the fluctuations that many organisms experience. Results for these
changes are discussed later in the paper.

For the purposes of our model, we assumed that k4 remained unchanged
throughout our testing of different parameter values for k6. Through exper-
imentation, we found that this assumption does not significantly alter our
results. Biologically, when the value of k6 falls between critical value bounds
(roughly determined as between .12 and .34), active MPF induces a massive
dephosphorylation of inactive stores of MPF. This increase in MPF activity
is what presumably drives the cell into mitosis [66]. This burst of activity is
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followed by disassociation of the MPF enzyme and degradation of the cyclin
component. See (Figure 3.2) for a wiring diagram of this sequence.

The chemical reaction, as shown in Figure 3.2, is a modified version of
the Brusselator. Our model uses a pair of ordinary differential equations to
describe the concentrations of the subunits of the checkpoint reactions. We
are most interested in the concentration of active MPF versus the concentra-
tion of phosphorylated cyclins and MPF. This relationship can be described
as follows:

du

dt
= k4(v − u)(α + u2)− k6u

dv

dt
= (k1)− k6u,

where u is the ratio of the concentrations of MPF and total cyclins; v is the
ratio of the concentrations of phosphorylated cyclins and MPF versus total
cyclin; α is the rate of change of k4 over the rate k4; and k1 is a constant
that assumes Cdk1 is continuously synthesized from amino acids to maintain
a constant concentration of Cdk1 subunits.

2.6.3 Analysis of Model

Utilizing the ode45 function in Matlab, we were able to successfully repli-
cate the graphs found in [66]. This model makes a number of assumptions
regarding the behavior of cyclin and Cdks within the cell: this portion of
our model does not take into account a variable rate of synthesis of Cdk
subunits (given by the parameter k1 ∗ [aa] / [CT ]), newly synthesized cyclin
is stable, and inhibition of MPF by re-phosphorylating the subunit (step 5 in
Figure 3.2) is disregarded. However, our model still accurately portrays the
behavior between cyclin B and Cdk1 as observed in laboratory experiments
[66]. Newer papers attempt to model the variable rate of Cdk synthesis by
adding a variable division rate into the ODEs [56]. We allow for our first
assumption due to the general overall concentration of amino acids within
the cell. As mentioned earlier, we modified our model to account for a chang-
ing rate in the availability of amino acids necessary for the creation of Cdk
subunits. The reasoning behind the second two assumptions is that the rate
of activation of the complex should be much higher than the rate of deacti-
vation of the complex and its subunits in order for the signal cascade to have
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a probability of being activated. By leaving out this much smaller rate of
deactivation, the model is not significantly impacted.

We are interested in the effects of changing the rate of activation and
degradation of the MPF complex. With lower values of k4 and k6 than given
as parameters in [66], the model yields more interesting results. We have
found that the value of k4 serves as a stretching factor, and does not affect
the appearance of the limit cycle; for the graphs shown, we allow k4 = 5.
When the rate of breakdown of MPF is low (k6 = .075), the system goes to
a stable point (see Figure 6.8). This can also be seen in the graph of the
dampening oscillations of the concentrations of active MPF and total cyclin
versus time.

Figure 6.8: Concentrations of active MPF and total cyclin: k4 = 6, k6 = .075

For slightly higher values of k6 (k6 = .2), we can see that the concentra-
tions of MPF and cyclin in the system reach a limit cycle (Figure 6.9).

This steady oscillating behavior is reminiscent of laboratory observations
of rapid cell cycling in early embryos [66]. The limit cycle is stable, and does
not show any chaotic behavior in the simulations we have run. The period of
the function, roughly 75 minutes long, corresponds to the transition through
G2 up to metaphase. Notice that as the concentration of total cyclin begins
to drop, MPF becomes rapidly activated. This triggers a breach of threshold
and promotes movement through the cell cycle. This model shows a continual
recycle of cyclin B and Cdk; it does not assume movement into the next sub-
phase, but rather restarting at the beginning of M .

If the rate of breakdown of MPF is increased slightly higher (k6 = .4),
the limit cycles disappear (Figure 6.10) and a stable point is again reached.

20



Figure 6.9: Concentrations of active MPF and total cyclin: k4 = 6, k6 = .2

We can see that the amount of phosphorylated cyclins and MPF approaches
the total amount of cyclins in the system. The consequence of this high
concentration is the decreased availability of cyclins for binding to Cdk1,
which results in fewer MPF complexes created.

Figure 6.10: Concentrations of active MPF and total cyclin: k4 = 6, k6 = .4

2.6.4 Future applications of checkpoint modeling

Each checkpoint is controlled by a different cyclin/Cdk complex. It may
be possible to couple each checkpoint model in the future to produce an
overall picture of cellular reproduction; however, our group was unsuccessful
in achieving this model.
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An understanding of reproduction and growth at the cellular level is bene-
ficial for understanding actions of cells at the tissue level. We have noted that
extracellular influences can affect cell cycle progression from G0 to G1 and
that the cell shows different behaviors depending on rates of auto-catalytic
and degradation activity.

2.6.5 Chaos

As we performed preliminary research, we noted that there were numerous
papers investigating chaos. This led us to investigate chaos within our own
model. Chaos can be defined as having aperiodic long-term behavior in
deterministic systems that exhibit sensitive dependence on initial conditions
[64].

Aperiodic long-term behavior means there are trajectories that do not
settle down to a fixed points, or a limit cycle. As can be seen on the graph,
none of the orbits are attracted to just one point or cycle, they just spiral
around in an irregular way.

By deterministic we mean that the system has no random parameters.
The irregular behavior arises from the system’s nonlinearity. The effects of
the nonlinearities tells us that the effects are no longer proportional to causes.

The nearby trajectories separate exponentially fast in a system that ex-
hibits sensitive dependence on initial conditions. This means by minutely
altering the parameters in our model, a dramatic change of behavior is ob-
served.

By changing parameters in our model, we can see that chaotic behavior
has affected the attractor of our model, leading to orbits that converged to a
chaotic region. An attractor is a closed set to which all neighboring trajec-
tories converge. In our model, this attractor was the stable limit cycle [64].
The conversions occurred when we forced the variable representing the rate
of synthesis into a time dependent sinusoidal function. After manipulating
the constants, a chaotic system was observed. The following graph represents
chaos in our system.

As can be observed in Figure (6.11), there seems to be some type of
controlled parameter since the graph shows cycles that are going all over the
place but within a certain area. By changing k6 from 0.2 to 0.6, our initial
limit cycle converged into a chaotic system. The system’s behavior that
resulted after the small perturbation in the value of the parameter indicated
that the system is sensitive to initial conditions. It is also easy to see that the
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Figure 6.11: Chaos in our model

graph shows an aperiodic long term behavior as it never settles to a stable
point or a stable limit cycle. The right-hand side of Figure (6.11) describes
the aperiodic evolution of MPF and the total concentration of cyclins in the
system with respect to time.

In order to validate our observations, we performed a further literature
search to determine if there were other papers investigating chaos in biol-
ogy. Some of the other research papers we found modeled chaos by forcing
the system to be dependent on time (similar to our model). These types of
models are said to be non-autonomous. The paper that we chose to sum-
marize was the first of its kind [60]. This is due to the fact that it modeled
chaos without coupling the rate of synthesis and time. The paper modeled
the periodic oscillations of cdk1 and cdk2 in the M and S phase in the cell
cycle. The paper focused on the coupling between two enzymatic cascades
controlling the periodic activation of cdk1 and cdk2 by studying the change
in the inhibition rates of the two. They measured the strength of mutual in-
hibition of the two oscillators. The increase of the synthesis of cdk1 and the
inhibition of cdk2 starts the M phase. While the inhibition of cdk1 and the
increased synthesis in cdk2 starts the S phase. The paper goes on to show
how 2 limit cycles were formed. When the parameters changed to represent
a system where the inhibition of cdk1 and cdk2 was mutually increased or
decreased, chaos was observed.
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The Cause of Chaos in Biology

By manipulating the constant in the models chaos was observed. The con-
stants were not determined experimentally but were rather arbitrary. They
were chosen specifically to form chaos. It becomes questionable if it physio-
logically possible that chaos can occur within the cells cycle? Is it possible
for the inhibition rate to ever be high enough to cause chaos? Research shows
that extremely high rates or extremely low levels of cdk within the cell can
occur due to errors in the cell signaling process. genetic errors can cause a
cellular adapter to go missing and can cause disruption in signal transduction
[73]. Signal are transported into the cell by proteins located on the surface
of the cell. These signals control cell functioning. The process in which these
signals are transferred is referred to as signal transduction. One can think
of signal transduction as a domino effect: one signal is sent out and whole
bunch of “things” are affected along the way as the signal continues its travel
within the cell. If the signal transduction is disrupted, the signal will not
carry the correct information. The cell has cellular adapters all over just to
make sure that the signals are good. To simplify this idea, we can think of
the signal transductions as codes, and the cellular adapters as programmers
that are located all over the cell to guard it from errors. As the codes travel
along the cell they have to go through the programmers before they are al-
lowed to make any changes in the system. If there is an error in the code,
the programmer will then recode it before allowing it to pass on to the next
stage.

The existence of the programmers indicates the possibility of bad signal
disruptions. According to research done in Hanover Medical School [73],
there is a gene that was found to be responsible for a cellular adapter protein.
The cellular adapter may go missing if this gene is mutated for example. the
combination of a missing cellular adapter and a disrupted signal transduction
can lead to different disruptions within the cell. depending on the type of
the signal, this disruption could be the cause of the inhibition of the cdks.

The body of course does not only depend on the cellular adapters to fix
errors. It in fact takes many steps to stay healthy and many others to stop
the cell cycle in cases where the error(s) cannot be fixed. We can think of
these steps as cell “guards” that make sure everything is working properly
and take care of business when something looks out of the ordinary. One
of these guards that we found of significance is p53. p53 is a protein that
is responsible for stimulating another protein called p21. p21 runs an error

24



check on the DNA string and when defected, it reduces the synthesis of cdk
and stops the cell signal. In the absence of well-functioning p53 (as in the
case where it is only passed on by one parent) p21 is not stimulated and the
cell cycle is not stopped. The bad DNA is then passed on to the daughter
cells as the cell cycles of the bad cells continue, uncontrollable division is
observed within the cell population.

According to biologist Zinat Ismael [39], cdk was only discovered within
the last few years. It is currently a hot research topic as its reduction or excess
has been observed in cancer cells. this matches our result in both of our
models. in both models the variation of the inhibition synthesis constant of
cdk formed chaos within certain parameters. It is true that we only stumbled
through chaos in our model, but it is amazing to find that not only was
the manipulation worthy of investigating in mathematics, but biologists are
strongly considering the same scenario.

As we can see, chaos in the cell cycle does not directly affect the causation
of the growth of bad cells. When there is something wrong with the cell
signaling, the inhibition or the synthesis of cdk can get a signal to either
increase or decrease causing chaos within the cell cycle. The body then can
go through multiple steps to fix the chaos; when it cannot, it has several
other steps it can take to stop the cell cycle and send the cell to apoptosis.
When all fails, the mother cell would divide, passing bad DNA to daughter
cells. the bad DNA can cause the cells to differentiate uncontrollably. As
the defective cells divide, the population of the surrounding cells will become
infused with defective cells. this is a key step in tumor formation.

It is still not clear if the chaos modeled by forcing the system into a
periodic oscillator is of physiological importance; or if it’s the one where
chaos occurred autonomously. Perhaps it is a combination of both. One
thing for sure, chaos can occur in the cell cycle and it seems that researchers
are focusing on the relationship of the change in the rate of inhibition of cdks
and the formation of chaos. Many researchers are still working on proving
or disproving the fact that chaos also occurs in the health cell cycle [60].

2.7 Future explorations

The micro-model of the cellular reproduction cycle is only as good as its
applications to the macro-model of the tissue environment in which it lives.
We know that different types of cyclins and Cdks are involved at each check-
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point, limiting the amount of overlap in the differential equations we can use
to model the concentrations of each. We also know through manipulations of
the model set forth by [56],[66] that the rate constants of the activation and
degradation of cyclin:Cdk is a major factor in the rate of passage through
the checkpoint. Our model currently holds these as “constants” rather than
accounting for their variable nature. However, there is limited information
on the rate of change of activation and degradation of kinases. It is our
goal in future models to incorporate the rate of activation and degradation
as functions of an arbitrary molecule that fluctuates with time and external
signaling; our hope is that by doing so, we will be able to generate a more
biologically accurate picture of the cell’s reproduction cycle.

Based on our understanding of the cyclin B/Cdk1 complex, we feel that
good molecular candidates for fluctuation are the amino acid threonine and
tyrosine. We have previously mentioned that threonine receptor sites are
essential to the activation of cyclin:Cdk [56]; tyrosine receptors are also im-
portant for activation of Cdk1 (see [20]). If a cell is starved of these amino
acids, threonine in particular, the level of available Cdk units will be lowered.

Chaos played a big impact in our research. It helped us understand a few
possibilities of how a healthy cell can get damaged and how it takes many
steps to stop the damage. It helped us find a path that demonstrated how
a cell damage can lead to tumors. It is concluded that disruptions in cell
cycle and cell differentiation (which can occur due to chaos or they can cause
chaos) play a decisive role in cancer formation. It would be important then,
that the following groups do further research on chaos because we believe it
will help them with the process of trying to model cancer cells.

2.8 Summary

In this paper, we have attempted to provide a refresher on cellular reproduc-
tion and dynamical systems. An understanding of these subjects is important
in the comprehension of current research on cell cycle modeling. Our model
contains many simplifications; with further research, we feel that we will
be able transform some of the assumptions into equations that adequately
model observed situations.
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2.9 Appendix

2.9.1 Definitions

Anaphase: The stage of mitosis and meiosis in which the chromosomes
move from the equatorial plate toward opposite ends of the nuclear
spindle.

Apoptosis: A natural process of self-destruction in certain cells that is de-
termined by the genes and can be initiated by a stimulus or by removal
of a repressor agent. This is also referred to as programmed cell death
in some texts.

Autonomous: Not controlled by others or by outside forces; A reaction in
which a compound stimulates its own making.

Cyclins: A class of proteins that fluctuate in concentration at specific points
during the cell cycle and that regulate the cycle by binding to a kinase.

DNA: Deoxyribonucleic acid. A nucleic acid that consists of two long chains
of nucleotides twisted together into a double helix and joined by hy-
drogen bonds between complementary bases adenine and thymine or
cytosine and guanine. DNA carries the cell’s genetic information and
hereditary characteristics via the nucleotide sequence and is capable of
initiating self-replication and RNA synthesis.

Gap 0 (G0): A phase in which a cell has exited the active portion of the cell
cycle and has ceased to divide. This may either be a temporary resting
period or more permanent. Cells that have reached an end stage of
development (e.g. neuron) no longer divide and remain in G0.

Gap 1 (G1): A cell cycle phase at the beginning of the cell cycle during
which cellular growth and preparation for division occurs.

Gap 2 (G2): A cell cycle phase between S phase and M phase in which
protein synthesis and further preparation for cell division occurs.

Enzyme: A highly specific protein that serves as a biochemical catalyst to
cellular reactions.
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Interphase: A term that refers to the sequence of events occurring in G0, G1, S,
and G2. Interphase generally lasts at least 12 to 24 hours in mammalian
tissue. During this period, the cell is synthesizing DNA and RNA, pro-
ducing protein and growing in size.

Kinase: An enzyme that catalyzes the conversion of a pro-enzyme to an
active enzyme. This can occur through the transfer of a phosphate
group from a donor, such as ADP or ATP, to an acceptor site on the
pro-enzyme.

Metaphase: The stage within mitosis and meiosis, following prophase and
preceding anaphase, during which the chromosomes are aligned along
the metaphase plate.

Mitosis (M): Cell growth and protein production stop at this stage in the
cell cycle and cytokinesis (cell division) occurs. Mitosis is much shorter
than interphase, lasting perhaps only one to two hours.

Non-Autonomous: Depends on it own making. In our chemical reactions
x goes to y is a nonautonomous chemical reaction since y depends on
x for its making.

Phosphorylation: The method by which a phosphate group is added to an
organic molecule.

Protein: A complex composed of chains of amino acids. The generic term
protein can be broken up into many classes, including but not restricted
to: enzymes, hormones, kinases, and antibodies. Protein-protein inter-
actions as well as protein-chemical reactions serve to power the cell.

Synthesis (S): A cell cycle phase where DNA synthesis occurs.

2.9.2 Matlab Coding

The Brusselator function brussode(N)

% BRUSSODE Stiff problem modeling a chemical reaction

if nargin < 1

N = 20;
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end

tspan = [0; 10];

y0 = [1+sin((2*pi/(N+1))*(1:N));

repmat(3,1,N)];

options = odeset(’Vectorized’,’on’,...

’JPattern’,jpattern(N));

[t,y] = ode15s(@f,tspan,y0,options);

u = y(:,1:2:end);

x = (1:N)/(N+1);

surf(x,t,u);

view(-40,30);

xlabel(’space’);

ylabel(’time’);

zlabel(’solution u’);

title([’The Brusselator for N = ’ num2str(N)]);

% ----------------------------------------------------

function dydt = f(t,y)

c = 0.02 * (N+1)^2;

dydt = zeros(2*N,size(y,2)); % preallocate

dy/dt

% Evaluate the two components of the function at

% one edge of the grid (with edge conditions).

i = 1;

dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...

c*(1-2*y(i,:)+y(i+2,:));

dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...

c*(3-2*y(i+1,:)+y(i+3,:));

% Evaluate the two components of the function

% at all interior grid points.

i = 3:2:2*N-3;

dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
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c*(y(i-2,:)-2*y(i,:)+y(i+2,:));

dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...

c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));

% Evaluate the two components of the function at

% the other edge of the grid (with edge conditions).

i = 2*N-1;

dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...

c*(y(i-2,:)-2*y(i,:)+1);

dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...

c*(y(i-1,:)-2*y(i+1,:)+3);

end % End nested function f

end % End function brussode

% --------------------------------------------------

function S = jpattern(N)

B = ones(2*N,5);

B(2:2:2*N,2) = zeros(N,1);

B(1:2:2*N-1,4) = zeros(N,1);

S = spdiags(B,-2:2,2*N,2*N);

end

Tyson’s 1991 Model function tyson91

%This code models the metaphase/anaphase checkpoint

%using code from Tyson’s 1991 paper.

tspan = [0 200];

y0=[.2;.25];

k6 = .075;

k4 = 5;
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k1 = 0.015;

alpha = 0.018/10;

axes = [0 .35 0 1];

%parameters taken from Tyson1991

%alpha = (k4)’/k4

%k1 = rate of synthesis of Cdk1 from amino acids

%k4 = rate of autocatalytic activation of MPF

%k6 = rate of breakdown of active cyclin B/Cdk1 complex

subplot(1,2,1);

options=odeset(’OutputFcn’,’odephas2’);

[t,y]=ode45(@f,tspan,y0,options);

title(’Limit cycle for tyson91 eq., k_4 = 5, k_6 = .075’);

xlabel(’Concentration of active MPF’);

ylabel(’Concentration of total cyclin’);

axis([0 .35 0 1]);

subplot(1,2,2);

plot(t,y(:,1),’-’,t,y(:,2),’--’);

title(’Soln of tyson91 eq., k_4 = 5, k_6 = .075’);

xlabel(’time t’);

ylabel(’Concentration’);

legend(’Active MPF’,’Total cyclin’);

axis([0 200 0 1]);

%y(1) = [M]/[CT] = (conc of active MPF)/(total cdc2)

%y(2) = ([Y]+[pM]+[M])/[CT] =

% (cyclin + preMPF + active MPF)/(total cdc2)

%--------------------------------------------------------

function dydt = f(t,y)

dydt= [(k4)*(y(2)-y(1))*((alpha) + y(1)^2)-(k6)*y(1) ...

(k1)-(k6)*y(1) ];

end

end
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Chapter 3

Cells and Their Dynamical
Systems

By Deborah Batista, Patricia Moll, Sergei Mordovine, and Ena Vu

3.1 Introduction

In order to investigate a novel approach for early detection of oral cancer that
incorporates information about structural changes of cell tissue, our group
has focused on modeling cell growth and cell division. Modeling of cells is
important because cells are the fundamental building blocks of the body.
Therefore a good understanding of cell tissue is required in order to further
medical technology. We have studied and implemented recent detailed cell
models and hope that our findings are able to bring a better understanding
for the development of future tissue models.

In our project, we reviewed several journal articles that describe cell mod-
els and selected one particular model that we felt looked very promising. We
chose the model in Qu et al’s paper, “Dynamics of the Cell Cycle: Check-
points, Sizers, and Timers”, as an application to study and imitate. We like
the model that is in this article for many reasons; first of all, because it can
be used to produce both G1/S and G2/M checkpoints, it can also be used to
depict different species by changing various parameters, and finally, because
it is a generic mathematical model of a cell cycle signaling network. Before
describing the model further, in section 2 we will give a description of the
biology of a cell that is essential to discuss our model. Following the biolog-
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ical background description, in section 3 we will give a detailed presentation
of the mathematical model.

3.2 Cell Cycle Background

From the biologist’s perspective, the cell is life’s most basic unit. Understand-
ing how cells grow and divide is directly relevant to the ability of medical
experts to detect cancer and other medical problems. Some detailed descrip-
tions of the current understandings of cell cycle and cell differentiation can
be found in [1], [28], [41], [52].

Rapidly dividing human cells have a cell cycle that lasts about 24 hours.
Two fundamental parts of the cell cycle are the following: Interphase, which
the cell is in the majority of the time, and Mitosis, which last about 30
minutes. Interphase consists of three phases: G1-phase, S-phase (short for
synthesis phase), and G2-phase. During G1-phase, the cell senses growth
signals, increases in size, produces RNA, and synthesizes proteins. Following
the G1-phase is the S-phase, whose main feature is to replicate DNA. The
last phase of Interphase is the G2-phase, where the cell continues to grow,
produces necessary proteins required for cell division, and is checked to ensure
that the DNA has been replicated successfully. After Interphase is Mitosis,
which is where the cell divides into two daughter cells. Mitosis is the only
place where changes in the cell are visible to the human eye. In a typical
mammal cell, G1-phase lasts about 12 hours, S-phase lasts about 6 hours,
G2-phase! lasts about 6 hours, and mitosis lasts about 30 minutes.

During a cell cycle a cell grows from its birth size to a critical size. This
is referred to as a sizer. After division if a cell is already at its critical size or
larger, then it does not have a sizer phase. After a cell reaches its critical size,
it is ready to divide. The time it takes to divide into two daughter cells is
called a timer, which is a constant time. The cell is regulated by checkpoints
to maintain the conditions of the cycle before moving on to the next stage.
These checkpoints are within the G1-phase (G1/S checkpoint), G2-phase
(G2/M checkpoint), and Mitosis. The mathematical model that we examined
relates the molecular procedure of the G1/S and G2/M checkpoints with the
properties of the cell cycle. Knowledge of these networks is fundamental to
making predictions about cellular conductivity while the ability to model
these phases and processes mathematically saves biologists experimental lab
time and costs.
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Within the cell cycle, checkpoints, cell size, and the sizer and timer phases
are regulated by a signaling network of kinases and phosphates. Kinases are
enzymes that catalyze the transfer of a phosphate group from a donor to an
acceptor. The cell cycle of higher eukaryotes involve the following cyclins
and cyclin dependent kinases: Cyclin A (CycA), Cyclin B (CycB), Cyclin E
(CycE), CDK1, and CDK2. Cyclins are defined as a class of proteins that
fluctuate in concentration at specific points during the cell cycle. Cyclins
also regulate the cycle by binding to a kinase. In the G1/S transition there
is an increase in activity of the binding of the regulating protein Cyclin E
and enzyme CDK2. In the G2/M transition there is an increase in activity
of the binding of the regulating protein Cyclin B and CDK1. Although these
chemical complexes have different functions in the cell cycle, the signaling
networks regulating their activities are similar, as illustrated in Figure 2.1.
For these reasons, Qu et al. utilized a generic model to describe the G1/S or
G2/M transition [57].

3.3 Mathematical Model

Recently biologists have recognized mathematical modeling as an important
tool in understanding cell cycle signaling networks. Molecular biologists and
biochemists, such as Tyson and Goldbeter, have utilized systems of nonlin-
ear differential equations to describe the rate of change of chemical reactions
within a cell cycle , [25], [49], [58], [68]. The above body of work illustrates
that numerical solutions of ordinary differential equations can provide valu-
able insights into the cell’s internal dynamics and enable scientists to form
new hypothesis to guide future laboratory experiments.

The model we chose to study incorporates checkpoints, sizers, and timers.
In past research papers, G1/S checkpoints were modeled using a saddle-node
bifurcation and the G2/M checkpoint were modeled using a saddle-node-
loop bifurcation [71, 68], (See Appendix A for description of the nonlinear
dynamics term). The model in the paper we used utilizes a Hopf bifurcation
to model both the G1/S and G2/M checkpoint. A Hopf bifurcation occurs
when the steady state changes from a stable focus, to an unstable focus.
This happens when a control parameter µ, for the decay rate of the system,
becomes slower and slower and finally changes to a growth rate at a critical
value µc. Then the equilibrium state loses stability and goes from a stable
spiral to a stable limit cycle with an unstable spiral at the origin.
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The sizer and timer phases, which have been overlooked in a number of
mathematical models, are important features. The underlying assumption
that utilizes sizers and timers is the fact that cells, in general, divide asym-
metrically. Therefore, cell birth sizes vary and the time in which it takes
a cell to reach a critical size is different in each case. This model, by us-
ing a Hopf bifurcation, shows the features of sizers and timers as they arise
naturally in this signaling network.

3.3.1 Understanding The Model

The cell cycle engine consists of many proteins where Cyclin Dependent
Kinase (CDK) is the controller of the cell cycle, as shown in Figure 2.1.
CDK is the controller because it initiates crucial events of the cell cycle by
adding phosphate to specific proteins. CDK becomes active when it binds
to a Cyclin protein, and in turn we get a Cyclin:CDK complex. Cyclin is
also activated by binding back to CDK, forming a protein complex. Arrow
3 in Figure 2.1 points at one of the Cyclin:CDK complex. The number of
Cyclin:CDK complexes depend on how many Cyclins are present [18].

The three equations (1a), are part of the whole system that models Cyclin
and CDK regulation. In the G1/S and G2/M transition, Cyclin is being
synthesized at a constant rate of k1 and is broken down at a constant rate
of k2. The complex is inactive because phosphate groups are attached to the
Cyclin:CDK complex (see Figure 2.1 Arrow 3). Recall that CDK belongs to a
group of proteins, and proteins are made up of amino acids. Phosphorylation
occurs as the phosphate groups bind with different amino acids, depending
on which checkpoint the complex is in [57].

In order for the Cyclin:CDK complex to become active, Cell Division
Cycle 25 (CDC25) must remove phosphates from the complex. In order
for CDC25 to become active, it needs to be phosphorylated by an active
Cyclin:CDK complex. This forms a positive feedback loop shown in Figure
3.2. In contrast, wee1 is a protein kinase that inhibits Cyclin:CDK activ-
ity by phosphorylating the Cyclin:CDK complex at the amino acids, and is
deactivated by phosphorylation. The active Cyclin:CDK complex, with one
phosphate group, can deactivate wee1. Thus a double-negative feedback loop
is formed (Figure 3.3)

We assume that the protein synthesis rate and the total CDK are constant
[57]. The breaking down of cell cycle proteins usually occurs through ubiqui-
tanation. Ubiquitination is a process in which Ubiquitin protein attaches to
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cell cycle protein, such as Cyclin. This inactivates the cell cycle protein and
acts as a signal for elimination of the Cyclin. In G1/S transition, S-phase
kinase associated protein (SKP2) tags Cyclin E for ubiquitination. To get
ubiquitinaiton in G2/M transition, anaphase promoting complex (APC) tags
Cyclin B.

The active Cyclin:CDK may also be inhibited by binding to a CDK in-
hibitor (CKI). The bound Cyclin:CDK:CKI complex is only degradable when
it is phosphorylated by an active Cyclin:CDK complex. The degradation pro-
cess breaks the Cyclin:CDK and CKI bond, thus, the Cyclin:CDK is free to
recycle in the system. This forms another positive feedback loop.

TABLE 1 Differential equations, variable defini-
tions, and default parameters.
Differential equations for cyclin and CDK regulation

ẏ1 = k1 + k4y2 − k3y1c− (k2 + k2uy9)y1

ẏ2 = k3y1c + (k6 + y7)y3 − k4y2 − (k5 + y6)y2

ẏ3 = (k5 + y6)y2 − (k6 + y7)y3 − (k7 + k7uy9)y3 − k14y3y10

+ k15y11 + (k16 + k16uy9)y12, (1a)

where c = (c0 − y3 − y2 − y11 − y12)/c0.
Differential equations for CDC25 regulation

ẏ4 = k8 + k−
z y5 − k+

z y4 − k9y4

ẏ5 = k+
z y4 + k−

z y6 − k−
z y5 − k+

z y5 − k9y5

ẏ6 = k+
z y5 − k−

z y6 − k9y6, (1b)

where k+
z = bz + czy3 is the rate constant for CDC25 phosphorylation and

k−
z = az is for dephosphorylation, bz is the rate constant for CDC25 phospho-

rylation not catalyzed by active Cyclin:CDK, and czy3 is for phosphorylation
catalyzed by active Cyclin:CDK.
Differential equations for wee1 regulation

ẏ7 = k10 + k−
wy8 − k+

wy7 − k11y7

ẏ8 = k+
wy7 − k−

wy8 − k11y8, (1c)

where k+
w = bw + cwy3 is the rate constant for wee1 phosphorylation and
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k−
w = aw is for dephosphorylation, bw is the rate constant for wee1 phospho-

rylation not catalyzed by active Cyclin:CDK, and cwy3 is for phosphorylation
catalyzed by active Cyclin:CDK.
Differential equation for SKP2 or APC regualtion

ẏ9 =

(
y2

3

a2 + y2
3

− y9

)
/τ. (1d)

Differential equations for CKI regulation

˙y10 = k12 − k13y10 − k14y3y10 + k15y11

˙y11 = k14y3y10 − k15y11 + k−
i y12 − k+

i y11

˙y12 = k+
i y11 − k−

i y12 − (k16 + k16uy9)y12, (1e)

where k+
i = bi+ciy3 is the rate constant for CKI phosphorylation and k−

i = ai

is for dephosphorylation, bi is the rate constant for CKI phosphorylation not
catalyzed by active Cyclin:CDK, and ciy3 is for phosphorylation catalyzed
by active Cyclin:CDK.
Variable definitions

y1 Free cyclin

y2 Inactive Cyclin:CDK complex

y3 Active Cyclin:CDK complex

c0 Total CDK

c FreeCDK (normalized with c0)

y4 Unphosphorylated CDC25

y5 One-site Phosphorylated CDC25

y6 Two-site Phosphorylated CDC25

y7 Unphosphorylated wee1

y8 Phosphrylated wee1

y9 Active SKP2 or APC

y10 Free CKI

y11 Cyclin:CDK:CKI complex with CKI unphosphorylated

y12 Cyclin:CDK:CKI complex with CKi phosphorylated

Default parameters
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k1 = 300, k2 = 5, k3 = k4 = 30, k5 = 0.1, k6 = 1, k7 = 10, k8 = 100, k9 =
1, k10 = 10, k11 = 1, k12 = 0, k13 = 1, k14 = 1, k15 = 1, k16 = 2, k2u = 50, k7u =
0, k16u = 25, c0 = 200, a = 4, τ = 25, az = aw = qi = 10, bz = bw = bi =
0.1, cz = cw = ci = 1.

Another assumption of the model is that CDC25 controls the entry to the
cell cycle, it can have as few as 2 phosphorylation sites where the phosphate
binds, and it is synthesized at a constant rate k8. We also assume that all
forms of CDC25 have degradation rates proportional to their concentration
with constant coefficient k9, where its regulation is represented by (1b) of
Table 1.

When modeling wee1 regulation, which is represented by (1c), we assume
that wee1 is synthesized at a constant rate k10, and both phosphorylated
and unphosphorylated forms of wee1 have degradation rates proportional to
their concentrations. Since only unphosphorylated wee1 is active, the third
equation of (1a) in Table 1 illustrates that active Cyclin:CDK is impacted
by inactive wee1 y7.

SKP2 and APC have similar roles, they are both proteins that mark the
cyclin proteins for elimination. Recall that SKP2 is an F box type protein
whose role is to catalyze phosphorylation dependent ubiquitination of G1 cy-
clins and other cell cycle proteins. Unfortunately, no information is available
on the regulation of SKP2 in the cell cycle [57]. But we do know that the
levels of SKP2 decrease as cells exit the cell cycle and increase as cells re-
enter the cell cycle. SKP2 is expressed and phosphorylated during the G1/S
transition and S phase of the cell cycle, as shown in Figure 3.4. In addition,
we assume that SKP2 is degraded at a rate proportional to its concentration.

The role of APC in the G2/M transition phase is to target Cyclin B for
elimination. In order for APC to be active, it must be phosphorylated and
bind to CDC20. Active CDK1 can catalyze the phosphorylation of APC and
CDC20 directly or indirectly. APC is inactivated at a rate proportional to
its concentration. This is represented in equation (1d) of Table 1.

In order for Cyclin:CDK:CKI complex to be degraded, it needs to be
phosphorylated by active Cyclin:CDK. Our model assumes that CKI is syn-
thesized at a constant rate k12, and is degraded at a rate proportional to its
concentration. The degradation of phosphorylated Cyclin:CDK:CKI complex
is aided by SKP2 [57]. Equations (1e), in Table 1, model CKI regulation;
bottom part of Figure 2.1 gives us a visual representation.

38



3.4 Simulation and Results

We have 12 differential equations and 31 parameters (see Table 1). We used
Matlab command ode45 to numerically solve our system of differential equa-
tions by using a fourth order Runge-Kutta method with variable step size.
The command chooses the step size at each step to acquire the desired accu-
racy. We also plotted the different variables versus time to try to understand
what is happening in our selected model [8].

In solving these equations with fixed constants, we are able to see that
cell cycle checkpoints are an example of a Hopf bifurcation. The dynamics
of the cell cycle are actually controlled by some parameter p (such as cyclin
synthesis rate k1, cyclin degradation rate k2, cell size, CDK phosphorylation
rate, or a combination of parameters). As the control parameter increases,
the steady state of the system changes from low stable steady state region
(Figure 4.5) to limit cycle region (Figure 4.6), and finally to a high stable
steady state (Figure 4.7). If we choose k1 as our control parameter, and keep
all other Table 1 parameters constant, a Hopf bifurcation occurs when k1

is between 181 and 399. While for the control parameter k2, holding other
parameters constant, a Hopf bifurcation occurs when k2 is between -4.3 and
8.7.

In the top part of Figure 4.6, the active cyclin:CDK (solid blue line),
free cyclin (the dashed green line), and total cyclin (solid red line), are plot-
ted versus time for fixed parameter k1 = 300 and fixed constants, which
are presented in Table 1. It can be seen from Figure 4.6, when we have a
limit cycle, the amount of free cyclin dramatically declines as Cyclin:CDK
is activated. Over an interval of approximately 40 time units, the active
Cyclin:CDK gradually decays and the free cyclin level gradually increases.

We simulated the incorporation of sizer and timer phases of the cell cycle
model as described in Qu et. al. [57]. In order for a cell to begin DNA
replication, a cell must reach a proper critical size. Cell size may impact
the synthesis rate of the cyclins k1, so we now assume that the synthesis of
cyclins is proportional to the cell size and that the cell grows exponentially,
instead of k1 being a constant. The following equations were combined with
the equations presented in Table 1 to simulate the G1/S model:

s(t) = s0 exp (µt), k1 = κs(t)/[sc + s(t)] (2)

where s0 is the cell size at the beginning of the cycle, and µ, κ, and sc are
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constants. In the simulation, the values of µ, κ, and sc are 0.003, 1000, and
40 respectively. Qu et al. neglected how they defined the first cell division
occurrence T . Yet, through correspondence with the author, we discovered
that the timing of the first cell division is defined to occur after the first active
cyclin:CDK peak when the active cyclin:CDK equals 0.3. At this particular
time point, T , the initial cell size, is set to s(T)/2. Then we simulated the
values of the cell size, s(t), and synthesis rate, k1, according to equations
(3.2).

The active cyclin:CDK activity peaks represent passing through a check-
point, therefore the sizer phase is represented by the time from the cells birth
to the peak. Cell division should occur after passing through this checkpoint,
and the time it takes is the timer phase. Note that in the second panel, as
the cyclin:CDK activity (solid red line) increases, the inactive cyclin:CDK
(solid green line) and free cyclin (solid blue line) activity decreases; this
portion of the plot is in reason with our assumptions. Recall that CDC25
must be phosphorylated by active cyclin:CDK to become active. Thus as
the active cyclin:CDK complex increases, so do phosphorylated CDC25. In
general the level of unphosphorylated CDC25 is constant when active cy-
clin:CDK is about zero but the unphosphorylated CDC25 levels drop as the
cyclin:activity is increased. This is exactly what is illustrated in the center
panel. In addition, recall that as active cyclin:CDK compl! ex phosphorylates
wee1. Thus, with increased active cyclin:CDK activity, phosphorylated wee1
is increased. Furthermore, the unphosphorylated wee1 also phosphorylates
active cyclin:CDK complex making the cyclin:CDK complex inactive. The
unphosphorylated wee1 remains at constant levels when there is no active
cyclin:CDK complex but drops as the level of active cyclin:CDK complex in-
creases. In the bottom panel, we see that SKP2 increases as the cell reenters
the cell cycle and as the level of SKP2 decreases, the cell exits the cell cycle.

3.5 Conclusion

We believe that this generic mathematical model of G1/S and G2/M transi-
tions serves as a great stepping stone for the future development of a cell cycle
model. For future Math Clinics, students may consider coupling G1/S and
G2/M equations and study the coupled systems. In addition, we suggest that
future Math Clinics pursue mathematical models developed by these authors.
We see the next step being: to understand Qu et al’s more recent mathemat-
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ical model of the signaling pathways involved in cell growth, which predicts
that cell growth rate is proportional to cell surface area at birth [58]. These
mathematical models appear to successfully reproduce sizer, timer, and re-
striction point features of the cell cycle, in addition to experimental findings.
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Figure 2.1: Wiring Diagram of Cell Cycle

Figure 3.2: Positive Feedback Loop
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Figure 3.3: Double-Negative Feedback Loop

Figure 3.4: SKP2
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Figure 4.5: Steady state of the system with k1 = 181
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Figure 4.6: The active cyclin:CDK, free cyclin and total cyclin versus time
in the system for k1 = 300 illustrated here is in the limit cycle region.
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Figure 4.7: Steady state of the system with k1 = 400
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Figure 4.8: The top panel shows cell size (solid blue) versus time for the
control group. The second panel illustrates the cyclin:CDK activity of the
cell, where the solid red line is the active cyclin:CDK, the solid green line
is the inactive cyclin:CDK complex and the solid blue line is the free cyclin.
The middle panel represents CDK25 regulation. Here the blue solid line
represents unphosphorylated CDC25, green line is one site phosphorylated
CDC25, and the red line is the two site phosphorylated CDC25. The second
panel from the bottom represents wee1 regulation. The blue solid line is
unphosphorylated wee1 while the green solid line represents phosphorylated
wee1. The bottom panel is a plot of SKP2. All of the plots illustrated here
are plotted against time.
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Appendix A: Nonlinear Dynamics

The cell cycle can be mathematically modeled by a set of nonlinear ordinary
differential equations:

dyi

dt
= fi(y1, y2, .., yn; p1, ...pm) for i = 1, . . . , n

where yi = concentration (or activity) of the i-th protein in the reaction net-
work, and pj = value of the j-th parameter rate constant [70]. Each function
fi describes chemical rate equation in terms of synthesis, degradation, acti-
vation, and inactivation of proteins of the cell cycle. In particular, the form
of the chemical rate equation is as follows:

fi = synthesis - degradation + activation - inactivation,

where synthesis, degradation, activation, and inactivation are nonlinear func-
tions of the variable concentrations and constant parameters in the model
[70, 57]. The exact forms of the functions fi is governed by a set of chemical
rate laws and the assumptions made for each reaction. A model is com-
posed of three parts: a set of rate equations f1, . . . , fn, a set of parameters
p1, . . . , pm, and a set of initial conditions y1(0), . . . , yn(0). With the speci-
fication of the functions fj, parameters pk, and initial conditions yj(0), the
differential equations can be solved numerically to give the time-dependence
of each component protein (See Appendix B on how to solve numerically
differential equations) [70].

Nonlinear Dynamics Terminology

When solving differential equations, we are interested in understanding the
long term behavior of the system. Our interest is to find the point at which
the rate of change of all variables is zero. This point is known as the steady
state (equilibrium solution) [57]. To find the steady state of a system of
differential equations, we first set the derivatives of all the variables to zero:
fi(y1, . . . , yn, p1, . . . , pm) = 0 for all i. Then simultaneously solve the re-
sulting set of nonlinear algebra equations algebraically (or numerically). In
terms of mathematical models of the cell cycle, the steady state corresponds
to the point at which protein concentrations are unchanging in time.

We are also interested in ”oscillatory” solutions of dynamical system.
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For an oscillatory solution, protein concentrations change in time, repeating
themselves after a characteristic period.

Steady states or oscillatory solutions can be classified as stable or un-
stable. A steady state is stable if a solution starting at a small change away
from the steady state remains near the steady state. On the other hand, if a
solution deviates from the point, it is not stable and is called unstable.

Figure 5.9: A schematic plot of a stable node (solid circle) and a saddle point
node (unfilled circle).

The location and stability of the steady states of a dynamical systems
depends on the particular values of parameters in the model. For example,
the schematic plots in figures 5.9 and 5.10 of active Cyclin:CDK(x) and
free cyclin show four common types of steady states in a two-variable space
using different parameter values of the model. Figure 5.9 illustrates a stable
node, which is a point in the vector field where all of the trajectories are
attracted. In Figure 5.9, there is also an illustration of saddle point. With
a saddle point, there are some trajectories coming towards the point but
other trajectories are moving away from the point. Thus, the saddle point is
classified as unstable.

Figure 5.10 illustrates a stable focus, which is also known as an at-
tracting spiral since the trajectories are spiraling towards the node, and
Figure 5.10 illustrates an unstable focus where trajectories are spiraling
away from the node. These are just some representatives of possible types of
steady states (equilibrium solutions), and information on the various types
are available in many textbooks [21, 10, 65].
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Figure 5.10: A schematic plot of a stable focus (solid circle),an unstable
focus (unfilled circle) and a limit cycle (thick large circle).

When a parameter value is changed, then the properties of the solutions
may change. For example, a stable steady state may lose its stability or
even no longer exist, and an isolated trajectory enclosing the steady state,
known as a limit cycle, may appear. Qualitative changes in the behaviors
of the dynamical systems are called bifurcations. The qualitative changes
occur at specific values of the parameters, called bifurcation points. Figure
5.9 illustrates the impact of changing parameter value k1, the synthesis rate
of cyclins. By changing parameter the synthesis rate of cyclins, the steady
state changes from a stable node to a saddle. This critical value in which the
change occurs is called a saddle-point bifurcation. Saddle point bifurca-
tions usually lead to bistability, a property of a nonlinear system in which
two different stable steady states coexist in the dynamical system with an
unstable steady state! in between. In a bistable system, when a parameter is
increased, a sudden jump may occur at a particular value of the parameter.
As the parameter is decreased, the jump back to original behavior occurs at
a much lower parameter value. This type of behavior is called hysteresis. In
a nonlinear system, another type is of bifurcation is the Hopf bifurcation.
In Hopf bifurcation, the steady state may change from a stable focus to an
unstable focus of a limit cycle oscillation as the parameter increases.
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Appendix B: Solving Differential Equations with Matlab

Solving a first order differential equation in Matlab is pretty trivial for
the easy equations. We use the command dsolve. As an example:

>> dsolve(’Dy - t^2 + y’, ’t’)

ans =

t^2-2*t+2+exp(-t)*C1

We can also add an initial value:

>> sol = dsolve(’Dy = t^2 + y’, ’y(0) = 3’, ’t’)

sol =

-t^2-2*t-2+5*exp(t)

A lot of times it is a really good idea to plot the solutions to the differential
equation so it can be analyzed further. Here we show Figure 5.11, which is
followed by the code to plot it:

Figure 5.11: Solutions of dy/dt = t2 + y with various initial values

>> sol = dsolve(’Dy = t^2 + y’, ’y(0) = c’, ’t’);

>> figure; hold on

>> syms t

>> for cval = -3:3

ezplot(subs(sol, ’c’, cval), [0 2])

end
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>> axis tight

>> title ’Solutions of Dy = t^2 + y with y(0) = -3, ..., 3’

>> xlabel t, ylabel y

>> hold off

The first line solves the equation and stores it in the variable sol. Notice that
we specified the initial condition as c; this gives us the means to plot the so-
lutions with different initial values. figure command opens a new graphics
screen and hold on command keeps graphing new solutions without erasing
the old ones. Then we make a loop to graph the solutions with different
initial values starting with −3 to 3 with step sizes 1. So, our initial values
are [−3,−2,−1, 0, 1, 2, 3]; that means that we should get seven solution lines
and that’s exactly what we got. The command axis tight eliminates white
space at the edges. We added a title and labeled the axes. Notice how with
different initial values our solutions differ. Graphing is a good tool to see
how the solutions differ instead of looking at the numerical solutions.

Plotting Direction Fields

Figure 5.12: Direction Field for Equation 3.1

To plot Figure 5.12, we need to use quiver in conjunction with meshgrid.
Here’s an example:

>> [t, y] = meshgrid(-2:0.2:3, -1:0.2:2);

>> s = exp(-t) - 2*y;

>> quiver(t, y, ones(size(s)), s), axis tight
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Figure 5.13: Improved Direction Field for Equation 3.1

To explain the code, meshgrid creates points where the function will be
evaluated and in turn, the arrows are going to be put at those coordinates.
In our example we have the t-values start at −2 and go up to 3 every 0.2
spaces. So the t vector looks like [−2,−1.8,−1.6, . . . , 2.8, 3]. The y-values
go from −1 to 2 in the same 0.2 increments.
Next line has our function defined as:

s = e−t − 2 ∗ y (3.1)

We use quiver to plot the direction field. It takes the values of t and y, then
we create an array of ones the size of s, and then we put in our function.

We can see from Figure 5.12 that some of these vectors are small and
hard to read. To get the arrows to the same size, so it’ll be easier to read,
we input these commands:

>> [t, y] = meshgrid(-2:0.2:3, -1:0.2:2);

>> s = exp(-t) - 2*y;

>> l = sqrt(1 + s.^2);

>> quiver(t, y, 1./l, s./l, 0.5), axis tight

>> xlabel ’t’, ylabel ’y’

>> title ’Direction Field for dy/dt = exp(-t) - 2y’

In Figure 5.13, it is a lot easier to see the arrows and their directions. We
just rescaled the arrows to the same magnitude by dividing each vector by
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its length,
√

1 + s2. We also cut the size of the arrows in half by putting 0.5
in the quiver command. Finally, we added a title and a label for the axes.

Figure 5.14: Direction Field and Solution Curves for Eqation 3.1

In addition to the most recent code we can draw the solution curves to
the equation and see how the direction fields compare to the solution curves:

>> sol = dsolve(’Dy = exp(-t) - 2*y’, ’y(0) = c’, ’t’);

>> hold on

>> syms t

>> for cval = -2:0.5:2

ezplot(subs(sol, ’c’, cval), [-2 3])

end

>> axis([-2 3 -1 2])

Figure 5.14 shows that the solutions and direction fields are in sync with
each other.

Next, we look at a non-linear equation. Consider the differential equation:

dy/dt = y2 + t (3.2)

The following code plots the direction field for Equation 3.2:

>> [t, y] = meshgrid(-2:0.2:2, -2:0.2:2);

>> s = y.^2 + t; l = sqrt(1 + s.^2);
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>> quiver(t, y, 1./l, s./l, 0.5), axis tight

>> xlabel ’t’, ylabel ’y’

>> title ’Direction Field for dy/dt = y^2 + t’

Figure 5.15: Direction Field for Equation 3.2

The code produces Figure 5.15. Matlab plots direction fields for both linear
and non-linear equations using the same commands.

A lot of differential equations cannot be solved analytically, so we have
to use different methods to approximate the solutions. Matlab has several
functions that do just that, and the most used for approximating differential
equations is ode45. This takes in the function, the domain on which to
approximate, and the initial value. There are two ways to define our equation
as a function. These are:

>> f = @(t, y) t./y

and to make an M-file that could be called, for instance, ourf.m. This M-file
would contain:

function z = ourf(t, y)

z = t./y;

There are three ways that ode45 can take in a function. The first way just
takes in our f that we created:

>> ode45(f, [0 2], 1)
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The next uses our M-file:

>> ode45(@ourf, [0 2], 1)

And yet the third way is to write our function in the ode45 command itself:

>> ode45(@(t, y) t./y, [0 2], 1)

Figure 5.16: Numerical solution of dy/dt = t/y, y(1) = 1

All these commands automatically draw the solution curve as shown in Fig-
ure 5.16.

To use ode45 without plotting the curve, one just has to assign it to a
couple of vector variables:

>> [t y] = ode45(@(t, y) t./y, [0 2], 1);

Now we move to systems of first order differential equations. We show how
to plot a single trajectory. Consider the system:{

x′ = −3x + 2y, x(0) = 1
y′ = −x, y(0) = 0

First we let dsolve solve the system and then plot it:

>> ivp = ’Dx = -3*x + 2*y, Dy = -x, x(0) = 1, y(0) = 0’;

>> [x, y] = dsolve(ivp, ’t’);

>> xf = @(t) eval(vectorize(x));

>> yf = @(t) eval(vectorize(y));
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We’ve used vectorize to vectorize our symbolic expressions for x and y, and
then use eval to evaluate those expression with respect to t. We also made
two function of t which we can plot with respect to time. The commands are
as follows:

>> t = -0.3:0.1:5;

>> plot(xf(t), yf(t))

>> xlabel ’x’

>> ylabel ’y’

Figure 5.17: A Single Trajectory

We used the command plot because we need to plot x vs y. Figure 5.17
gives us a single trajectory because we only used one initial value for both
y(0) and x(0).

We can also plot multiple trajectories by specifying a set of initial values
for either y(0) or x(0) or for both y(0) and x(0). This example shows how
to use a set of initial values for x(0) and the result is Figure 5.18:

>> ivp = ’Dx = x + 2*y, Dy = -x, x(0) = a, y(0) = 0’;

>> [x, y] = dsolve(ivp, ’t’);

>> xf = @(t, a) eval(vectorize(x));

>> yf = @(t, a) eval(vectorize(y));

>> figure; hold on

>> t = -10:0.1:10;
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Figure 5.18: A Family of Curves

>> for a = -4:4

plot(xf(t, a), yf(t, a))

end

>> hold off

>> axis([-15 15 -10 10])

>> xlabel ’x’

>> ylabel ’y’

We can also use ode45 for the equations that dsolve can’t solve:

>> figure; hold on

>> f = @(t, x) [x(1) + 2*x(2); -x(1)];

>> for a = -4:4

[t, xa] = ode45(f, [0 10], [a 0]);

plot(xa(:,1), xa(:,2))

[t, xa] = ode45(f, [0 -10], [a 0]);

plot(xa(:,1), xa(:,2))

end

>> axis([-15 15 -10 10])

Figure 5.19 looks exactly like Figure 5.18. From this example, we can con-
clude that ode45 does a pretty good job at approximating the solution.

To plot vector field for systems of differential equations is not that much
different from the previous examples:
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Figure 5.19: A Family of Curves using ode45

>> [x, y] = meshgrid(0:0.2:6, 0:0.2:4);

>> u = x.*(5 - x - y);

>> v = y.*(-2 + x);

>> l = sqrt(u.^2 + v.^2);

>> quiver(x, y, u./l, v./l, 0.4)

>> axis equal tight

>> xlabel ’x’

>> ylabel ’y’

As one can see, all we did is add another equation u or v instead of having
a vector of ones. Figure 5.20 shows the popular predator-prey ploblem.
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Figure 5.20: Vector Field for Predator-Prey Problem
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Appendix C: Matlab Code

function QuOdeTimer

clear

%close

% Initiate time vector

tspan = [500 750];

% Initial values - select 13 initial values

% Look into some good initial values the initial values

y0 = [0; 0; 0; 0; 0; 0; 0; 0; .4; 0; 0; 0];

% Generic Model of G1/S or G2/M

% This code models 13 differential equations in Qu et. al 2003

% Default parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

k1 = 400;

k2 = 5;

k3 = 30;

k4 = 30;

k5 = 0.1;

k6 = 1;

k7 = 10;

k8 = 100;

k9 = 1;

k10 = 10;

k11 = 1;

k12 = 0;

k13 = 1;

k14 = 1;

k15 = 1;

k16 = 2;

k2u = 50;

k7u = 0;

k16u = 25;

c0 = 200;

a = 4;

61



tau = 25;

az = 10;

aw = 10;

ai = 10;

bz = 0.1;

bw = 0.1;

bi = 0.1;

cz = 1;

cw = 1;

ci = 1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Variable definitions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% y1 Free cyclin

% y2 Inactive Cyclin:CDK complex

% y3 Active Cyclin:CDK complex

% c0 Total CDK

% c Free CDK (normalized with y4)

% y4 Unphosphorylated CDC25

% y5 One-site phosphorylated CDC25

% y6 Two-site phosphorylated CDC25

% y7 Unphosphorylated wee1

% y8 Phosphorylated wee1

% y9 Active SKP2 or APC

% y10 Free CKI

% y11 Cyclin:CDK:CKI complex with CKI unphosphorylated

% y12 Cycle:CDK:CKI complex with CKI phosphylated

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dydt = f(t,y)

dydt = [ k1 + k4*y(2) - ( k3*y(1)*( c0 - y(3) - y(2) - y(11) - y(12) ) ...

/c0 ) - ( k2 + k2u*y(9) )*y(1)

( k3*y(1)*( c0 - y(3) - y(2) - y(11) - y(12) )/c0 ) + ( k6 + ...

y(7) )*y(3) - k4*y(2) - ( k5 + y(6) )*y(2)

( k5 + y(6) )*y(2) - ( k6 + y(7) )*y(3) - ( k7 + k7u*y(9) )* ...

y(3) - k14*y(3)*y(10) + k15*y(11) + ( k16 + k16u*y(9) )*y(12)

k8 + az*y(5) - ( bz + cz*y(3) )*y(4) - k9*y(4)
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( bz + cz*y(3) )*y(4) + az*y(6) - az*y(5) - ( bz + cz*y(3) )* ...

y(5) - k9*y(5)

( bz + cz*y(3) )*y(5) - az*y(6) - k9*y(6)

k10 + aw*y(8) - ( bw + cw*y(3) )*y(7) - k11*y(7)

( bw + cw*y(3) )*y(7) - aw*y(8) - k11*y(8)

( (y(3)^2/( a^2 + y(3)^2) ) - y(9) )/tau

k12 - k13*y(10) - k14*y(3)*y(10) + k15*y(11)

k14*y(3)*y(10) - k15*y(11) + ai*y(12) - ( bi + ci*y(3) )*y(11)

( bi + ci*y(3) )*y(11) - ai*y(12) - ( k16 + k16u*y(9) )*y(12) ];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% plot

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure

subplot(2,1,1);

[T,Y] = ode45(@f, tspan, y0);

plot(T, Y(:,3), T, Y(:,1), ’--’, T, ( Y(:,1) + Y(:,2) + Y(:,3) ) )

title(’Active Cyclin:CDK versus Time’);

xlabel(’Time t’);

ylabel(’Active Cyclin:CDK’);

axis( [500 750 0 65] )

subplot(2,1,2);

options = odeset(’OutputFcn’, ’odephas2’);

[t,y] = ode45(@f, tspan, y0, options);

xlabel(’Free Cyclin’);

ylabel(’Inactive Cyclin:CDK’);

end
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Chapter 4

Cell Population Model I:
Modeling of Healthy Tissue in
the Oral Cavity

By Jesse Gilbert, Nathan Kurtz, Megan Van Dyke, and Lea Wesbrook

4.1 Introduction

Randall Tagg is the current sponsor of the Math Clinic. He is trying to grow
in vitro tissue samples and model healthy tissue. In particular, he would like
to model what goes wrong in a healthy tissue sample when cancer develops.
In order to understand exactly what the limitations are of in vitro tissue
growth, we built a model of tissue growth that is completely abstract, but
captures most of the physical and chemical forces behind cell proliferation,
movement, and adhesion. To this end, our task was to research and write a
MATLAB program that modeled, in two dimensions, a three-cell deep layer
of epithelial tissue with a basal layer, a mucosal layer, and a squamous layer.
Our program is supposed to incorporate realistic models of cell growth, death,
division, adhesion and differentation. We found it necessary to define and
track certain attributes of each cell in order to make the model realistic as
well as dynamic. Our attributes included cell volume, integrins, cadherins,
and diffusible promoters. After creating a two dimensional model of a static
tissue, we were able to build several functions in MATLAB and apply those
functions iteratively in order to see how our tissue evolved over time. Our
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model has several functions, which set up a cell population and modeled cell
death, cell movement, cell division, and cell signaling. Our model records
certain characteristics, which can be displayed cell by cell after each iteration
of the program. There is also a pictorial display of the tissue as a whole which
can be used to track a cell’s movement and growth over time. Our main goal
was to create a model that remained in equilibirum over time, by which we
meant the appearance of the tissue in our pictorial display remained similar
throughout many iterations of the program.

Through research and our MATLAB model we were able to describe and
illustrate how a system of cells changes over time. We first present the
necessary mathematical and biological background for our program, then we
outline the program.

We describe the following biological aspects of the cell cycle: division,
growth, death and movement. We briefly describe how we tried to model
these aspects using MATLAB and various cell attributes which change over
time. As we outline the MATLAB program, where we implemented our
model, we give a general overview, then describe the functions of the program
one by one. There are several functions and we break our description of these
functions into four parts: we describe the purpose of the function, analyze the
relationship between our model and the function, describe how the function
works and conclude how the function could be improved.

4.2 Biological Background and Overview

We modeled a 3 layer cell population. In order to model this multi-layer cell
population or tissue, we had to model various attributes and functions of in-
dividual cells. We did this by organizing the cells into layer and building the
functions and attributes that controlled their ability to signal, move, grow
and die accordingly. The first layer was called the basal layer, the second
layer was called the mucosal layer, and the outer, surface layer was called
the squamous layer. Our goal was to have a set of rules that governed cell
death, movement, growth, and division so that the number of cells and the
appearance of the cell layers remained in an equilibrium called homeostasis.
Meanwhile, the user could track an individual cell’s path of growth and differ-
entiation. We incorporated various cell signaling mechanisms which modeled
ways in which a cell communicated with the population and the population
communicated with individual cells. These included integrins, cadherins, and
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diffusible promoters which encouraged movement or chemotaxes.
The cell population was modeled by a linked list which was essentially a

queue of the cells which stored information about each cell. The attributes
we stored were an x-location, a y-location, a left and right neighbor, top and
bottom neighbors, an integrin and a cadherin level, a left boundary, a right
boundary, a cell space and an actual space.

We also wanted to model the extracellular matrix. To do this, we allowed
the cell space and the volume to be separate parameters. We let volume be
a percentage of the cell space and actual space be the product of cell space
and cell volume. We assumed the empty percentage of the cell space did
not affect the individual cells except to promote cell growth, division and
movement in a healthy way.

The integrin level was based on contact area with the lamina(|left bound-
ary - right boundary|). We assumed that integrin level was a linear function
of this contact area. The cadherin level was based on the number of neigh-
bors. We assumed that cadherin level was a linear function of the number
of neighbors of a cell. The integrin level governed adhesion, while the cad-
herin level governed movement. We assumed that cell death, division and
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movement were governed by cell volume, integrin levels, cadherin level, and
the life cycle of the nieghboring cells. Once a cell reached critical mass, it
divided, died or moved. The location to which a cell moved was affected by
whether neighboring cells had died. We called one attribute the diffusible
promoter or just promoter. It caused cells to move towards the top layer
where cells sloughed off.

The main function was cell step. It iteratively increased cell.volume and
cell.promoter at different levels depending on which layer contained the cell.
Cell death was the first function called in cell step. A cell died if

1

cell(n).cadhedrin
+ cell(n).promoter + cell(n).volume ≥ 1.95.

When a cell died its promoters were dispersed evenly to its neighbors. A cell
moved from layer 1 to layer 2 if

1

cell(n).cadherin
+ cell(n).promoter + cell(n).volume ≥ .8.
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Figure 1.1: Our population of cells.

A cell moved from layer 2 to layer 3 if

1

cell(n).cadherin
+ cell(n).promoter + cell(n).volume ≥ 1.25.

A cell divided if

.4cell(n).cellspace + .6cell(n).integrin− cell(n).promoter ≥ .4.

In the first case we assumed that the cadherin level would inhibit cell
death and the volume and promoter level would encourage cell death. In the
second case we made the same assumptions about movement. In the last
case we assumed that the promoter level would inhibit cell division and an
increase in cell space or integrin level would promote cell division.
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4.2.1 Cell Signaling

An important aspect of our model was the ability of cells to communicate
among and between one another and the tissue. Our main tool in modeling
cell signaling was the collection of attributes accorded to each cell. We as-
signed to each cell a cadherin and integrin level and these controlled, along
with promoter level, cell volume, cell space, and actual space, the time at
which cells died, moved, and divided. The functions and attributes that
acted on a cell and were linked to the cell are described throughout the rest
of the section and the report.

4.2.2 Cell Death

When looking at the shape of the human body, one might never suspect that
cellular death is responsible for a healthy life. Apoptosis, or programmed
cell death (”PCD”), is a unique reaction many cells undergo to prevent dis-
ease and damage to the human body. Its signaling, cycle, and completion
are carried out in an ordered fashion, and it is a command many cells are
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Figure 2.2: Our population of cells.

required to do at some point during their life. In order to comprehend this
programmed cellular suicide, it is best to understand its basic functions and
importance, and also the reasons why it may fail. [79]

A cell cycle contains of 4 stages, each of which help the cell to prepare for
mitosis. After mitosis has occurred, a cell may enter what is known as phase
G0. This phase occurs when a cell no longer readies itself for mitosis, but
instead continues carry out its function until it either re-enters the cycle, or
dies. Should the cell die, it can undergo two types of death: a death caused
by damage that in turn damages the surrounding tissue, or apoptosis.

When a cell is subjected to some kind of damage (DNA or trauma) that
results in death, the human body suffers the consequences. The plasma
membrane, which is a sort of ”skin” for a cell, is no longer able to control
the passage of essential fluids, and thus causes a swelling of the cell. Cellular
contents begin to leak and cause inflammation in the surrounding tissue.
This is why we see swelling of an injury site. Chronic inflammation, which
can occur due to damaged DNA causing cellular death, can lead to tissue
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Figure 2.3: A an iteration of cell step.

destruction. Because this can be so damaging, it is best that we rely upon
PCD to rid the body of potentially harmful cells.

Apoptosis can be generated by signals within the cell itself, or by ex-
ternal cellular triggers. Internal signals begin the process by withdrawing
all signals that the cell relies upon to continue its cycle or function. Next,
the cell receives negative signals, which can be caused by molecular binding,
protein accumulation, or high levels of oxidants, among many reasons. These
negative signals tell the cell to first begin shrinking. The DNA and protein,
called chromatin, become tightly packed within the cell. This condensation,
called pyknosis, is trademark of apoptosis. Next, the mitochondria, which
are responsible for converting food into energy, begin to degrade along with
the chromatin during a process known as karyorrhexis. The cell membrane
will then form bubble-like structures known as blebs, and eventually the cell
begins to break apart. In order to rid the body of these floating cell bits,
specialized cells called phagocytes begin a process called phagocytosis, or
”cell-eating”. This process literally consumes the bits of dead cell, keeping
the body free of necrosis.

Should cells not undergo apoptosis, we may begin polluting our bodies
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with potentially cancerous cells. At its core, cancer is uncontrolled cellular
division that can form into tumors and invade other tissues. Apoptosis helps
to regulate cell division, and is associated with a tumor-suppressor protein
called p53. A precancerous cell undergoes DNA mutations. p53, located
on chromosome 17, begins to accumulate as the mutated DNA is replicated
during mitosis of the altered cell. This protein will then stop the cell cycle at
phase 1 (the growth phase) and allow the cell to repair itself. If it does not
repair, then p53 induces apoptosis, thus killing off the harmful cellular body.
However, there are certain types of cancers, such as melanomas, leukemias,
lung, and colon cancer amongst others that have developed ways to inhibit or
even block the signal altogether. By expressing high levels of certain proteins,
these cancer cells can become immune to PCD.

Apoptosis is an extremely important function within the body. An aver-
age adult may lose 50 billion to 70 billion cells each day due to apoptosis. We
rely on cellular suicide to provide a homeostatic environment, and without it
would have a proliferation of potentially dangerous cells. The link to apop-
tosis malfunction and cancer has been proven in many types of malignancies.
By understanding its full potential and the unique structure PCD follows, it
may demonstrate a better understanding of homeostasis and the eradication
of cancerous cells altogether.

The attributes which governed cell death were similar to the attributes
which governed cell movement. Our model only allowed for cell death on the
third and outer layer to model cells sloughing off the outer surface of the
tissue. We will discuss cell death more in the next section in the overview
and the description of the function cell death.

4.2.3 Cell Division

Cyclin and cyclin-dependent kinases (CDKs) are the two main classes of
molecules that regulate cell cycle progression. The two molecules act together
to cause the cell to move through its cycle. The CDKs are activated by a
bound cyclin and once activated perform phosphorylation of that activates
target proteins and usher the cell into the next phase of its cycle. The main
function of cyclin-CDK complexes where the two molecules are stored and are
activated is to insure that each piece of the genome is replicated once and only
once. At each stage some types of complexes are activated and torn down
and other complexes are built up. This cycle of regeneration and activation
mimics and promotes the cell cycle and is tied heavily to phosphorylation
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of certain proteins due to the action of stable DNA. As DNA transcriptase
moves along the DNA it blocks or allows this phosphorylation which leads
either build-up or to the activation of the cyclin-CDK complexes respectively.

One of the most important part of the cell cycle for our model is cell
division. In order for new cells to be created in a skin tissue, older cell
s must divide. Cells are not just created but are instead replicated. The
division of a cell is incorporated in the cell cycle. The cell cycle includes
interphase and mitosis. Interphase is the process in which a cell replicates
its DNA; mitosis is the process by which a cell actually splits in two.

Our group had to incorporate cell division into our model in order to
model a dynamic healthy tissue. Cell division in our model takes a cell and
creates two replicas that are half the size of the original. A cell will divide if it
has high integrin levels and enough room. The newer cell won’t be as likely
to divide as an older cell, thus we tracked a diffusible promoter attribute
which we increased at each iteration of the cell step function.

In our model the attributes which affected cell division were cell space,
integrin levels, and promoter levels. The equation governing cell division
is .4cell(n).cellspace + .6cell(n).integrin − cell(n).promoter >= .4. If this
equation is satisfied then the program creates two identical cells (in every
attribute except location) which replace the mother cell. The only cells that
can divide in our model are the basal layer, or bottom layer of cells. We
take the old location of the mother cell and place the new cells at semi-
randomized positions centered around the old location. The cell boundaries
of the two cells are computed in the usual way, using the midpoint bwteeen
cell locations. One of the new cells recieves 3

4
of the mother cell’s promoter

levels while the other cell receives 1
4

of the mother cell’s promoter levels. This
was meant to model the idea that one of the two cells will be less likely to
remain in the basal layer. A cell will divide if it has high integrin levels,
enough room, and low promoter levels.

4.2.4 Cell Growth

Cell growth is a function of cell metabolism. Cells metabolize glucose to build
up chemical energy which is stored for processes like cell division and higher
order cell functions in differentiated cells. Cells increase their volume by al-
lowing oxygen, CO2, water, glucose and other compounds to pass through
their cell membrane. These processes are explored in Section 3. There is evi-
dence to show that while yeast cells grow exponentially in time, mammalian
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cells grow more linearly in time [14].
Our model did not track cell growth continuously, but rather discretely

using a linearly growth function. The cells grew linearly at each iteration of
cell step.

4.2.5 Cell Movement

Cell receptors called ligands bond with cAMPs and the interaction causes
actin and myosin filaments in the cytoskeleton to contract. Because forces
are opposed equally and oppositely, this causes the cell to move forward
in some direction. Because the cells are oriented towards the squamous
cells, and because the chemicals involved in necrotaxis are attractive rather
than repulsive, cell death causes migration of a replacement cell towards the
cell surface. There is also, in addition to the chemical gradient a pressure
gradient. The density of cells causes cell migration and growth towards the
surface [3].

We decided to represent cell movement through a specific taxi, called
chemotaxis. There are many different taxis that also affect movement in-
cluding haptotaxis, and necrotaxis. Haptotaxis are directional responses to
a gradient of substratum adhesiveness; while necrotaxis is a type of chemo-
taxis employed specifically to attract white blood cells and some response to
cell death from the nervous system [11] [33].

Chemotaxis is not the only cell function which governs cell movement in
our model. Integrins and cadherins are also very important cell attributes in
the model we designed. Integrins are integral membrane proteins that allow
a cell to communicate with the outside world. Integrins bond basal cells to
cartilage and bone. Integrins allow information to flow in both directions
between the extra-cellular matrix and a cell, making them bidirectional sig-
nalers. Cadherins are similar extra-cellular structures, except that they are
responsible for cell-cell connections.

Bonds between cells allow for communication between and among cells.
There are two bonds that our group dealt with: integrins and cadherins.
They are both very similar, but for our model integrins partially control
division and cadherins partially control movement between layers. Integrins
and cadherins can be considered to be like Velcro on the outside of the cell
that allows the cell to attach to the basal membrane. The integrin and
cadherin levels can increase and decrease based on whether the cell moves or
remains static.
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In our model integrins are based on the contact area between basal cells
and the surface. The more contact area a cell has, the less likely it is to
move. The only cells with integrins in our model are the basal cells; these
basal cells are also the only cells that divide in our model.

We applied our research on diffusion and motility of cells to our model
in a very fundamental way. We assumed that cell movement was based on
chemical and pressure gradients created when a cell dies. The mechanisms
by which a cell becomes motile is based on the cadherin and integrin levels.
Precisely, our basic movement algorithm is based on the inequality

1

cell(n).cadherin
+ cell(n).promoter + cell(n).volume ≥ 1.95.

We assumed that the fewer neighbors a cell has the more likely it would
be to move. Again, the cadherin level is a linear function of the number of
neighbors a cell has. The next factor we consider was the promoter level.
We assumed that the higher the diffusible promoter level was the more likely
it would be to moce. The final factor we considered was cell volume. We
assumed the more volume a cell had, the older it was and thus more likely to
move or undergo apoptosis. We describe the relationship between movement,
death, and division in more detail in the overview of the next section.

4.3 The Program

Our task for this semester was to program a model of a healthy cell popula-
tion using MATLAB. We were given a few guidelines as to what we should
incorporate in the program: model at least 3 layers of cells, try to incorporate
integrins, cadherins, diffusible promoter, and diffusible inhibitors, model cell
movement, cell division, cell death, and cell signaling. We will give a brief
overview of what our program does and then describe in more detail how
each function works.

4.3.1 The Functions

Now that we have given a brief overview of what the program does we will
explain in detail what each function does, what assumptions are made, what
rules we used, why we did what we did, and any possible errors or unrealistic
characteristics of the function.
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Cell Structure

Cell Structure is the first function used in our program. The idea of cell struc-
ture is to create a population of cells, each containing unique characteristics.
Cell structure gives us the population we will use for the rest of the functions.

Cell Structure sets up an array of 30 cells. It creates 3 layers of cells, each
layer containing 10 cells. To each cell it assigns:

• x-location, y-location

• left boundary, right boundary

• left neighbor, right neighbor, top neighbors, bottom neighbors

• integrin level, cadherin level, diffusible promoter level, volume

• cell space, actual space

After all these characteristics are stored a plot of the cells is displayed.
Here is an example of using cell structure, type in cell structure into the

Matlab window and you will get a picture as follows. Once the cell array is
created we can access any individual cell by typing cell(n), where n is the
number of the cell you want to access. Below shows us what each cell has
stored in it.

We assigned semi-random x-values so our model would be a little more
random and realistic. We created boundaries at the midpoint between cells
to give us an equal boundary for both cells to grow or move within. Integrins
are base level ties from layer 1 to the basal layer. We decided the more actual
contact area the cell has with the basal layer the more integrins it should
have. The formula for integrin level calculates the exact contact area a cell
has with the basal layer. Cadherins are ties between cells and its neighbors,
the more neighbors a cell has the more cadherins it is likely to have. The
diffusible promoter is a random chemical that makes a cell want to move or
die. A cell in layer 1 is not as likely to move or die as a cell in layer 3, so
we adjusted levels accordingly. We determined 60% is the minimum amount
of space the cell will actually use of actual space. Cell space is the distance
between the boundaries, or the area a cell can move or grow within. The
actual space formula is the amount of area the cell actually uses.

Each of the values are stored as and determined by the following:
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• x-location: a number between .5 and 10.5 with initial values assigned
randomly for cell(n) within the interval [n-.5, n+.5] (mod 10)

• y-location: a number, 1,2, or 3 depending on the layer the cell is in,
there are 10 in each layer

• left boundary and right boundary: half the distance between the x-
location of its left and right neighbor respectively

• left, right, top, and bottom neighbors: any cell who’s boundary is
touching the boundary of the cell is a neighbor of the cell, left is the
closest cell to the left, right is the closest cell to the right

• integrin level: 0 if in layer 2 or 3, determined by the formula cell(n).integrin
= cell(n).volume * cell(n).cellspace if in layer 1

• cadherin level: the number of neighbors a cell has

• diffusible promoter level: layer 1- a random number between 0 and
.4, layer 2- a random number between .25 and .75, layer 3- a random
number between .5 and 1

• volume: a random number between .6 and 1

• cell space: cell(n).rightboundary - cell(n).leftboundary

• actual space: cell(n).volume*cell(n).cellspace

It would be nice if we could find some research to validate the levels that
we assigned. We made a guess at what levels seemed reasonable, but that
does not mean they are accurate. For example our measurement of integrins
and cadherins has almost nothing to do with the chemicals themselves, but
rather what affects these chemical levels. The cell boundary attribute might
be improved by considering volume and some other factors. We determined
a lot of these levels by running the program several times and seeing the
results. If a factor was not acting like we wanted it to we adjusted it.
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Cell Adjust

Cell adjust is the most used function. It is called on by cell structure, cell
death, cell move, and cell division. It is called after every change in the
population. The purpose of cell adjust is to update the population and plot
the population.

Cell adjust redefines each cells’ boundaries, neighbors, and updates its
cadherin levels, cell space, and actual space. After these levels are updated
a plot of the population appears.

After each change in the population we need to make sure all the values
stored are accurate. This function updates any of the items that might have
changed.

Cell adjust calls cell boundary to update the boundary of each cell. It calls
topbottomneighbor to determine the new neighbors of the cell. Cell adjust
sets the cadherin level to the number of neighbors the cell has. It sets the
cell space as the distance between the right and left boundaries of the cell.
It calculates the actual space by multiplying the volume of the cell times
the cell space. After it has done this it calls cell plot to plot the changed
population.

Once again we are not very happy with our definition of cadherins. It
would be nice to be able to determine cadherins a different way than by
counting the number of neighbors the cell has. It would also be nice to
determine cell boundaries using a different and more accurate method.

Cell Boundary

Each cell has an area it can move, grow, or divide in. The purpose of cell
boundary is to determine this space.

We needed to define some type of boundary for each cell so it only has
a finite space to work with. Using the midpoint is the simplest way to
incorporate this.

If the cell is on the far left then its left boundary is .5. If the cell is
on the far right then its right boundary is 10.5. Otherwise the boundary is
determined by the midpoint between the cell and its left or right neighbor
using their x-locations.

Cell boundary determines a left and right boundary for each cell.
We think this definition is the “easy way out”. If we had more time we

would try to incorporate things like volume in determining where to put the
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boundaries between each cell. Even though it possibly is not the best way
to define the boundaries it is effective and gives us the results we wanted.

Top and Bottom neighbor

The purpose of the topbottomneighbor function is to determine the top and
bottom neighbors of each cell.

Assigns top and bottom neighbors for each cell.
One of the things we needed to model was cell communication. If two

cells overlap, or are neighbors, then they can communicate. This function
determines the neighbors so we can determine who it communicates with.

Uses subroutines to determine if the cell boundaries overlap at all. If they
do, it adds the neighbor to the list of neighbors.

This function is pretty straight forward. The only problem with it is it
uses cell boundaries overlapping, not the actual cell space. Maybe two cells
boundaries overlap but possibly the actual cell space does not and therefor
they could not communicate. We did not incorporate this in the model.

Cell Plot

The purpose of cell plot is to plot a graphic picture of our population so we
can investigate visually what is happening.

Cell plot plots a visual representation of our population.
It is nice to be able to see the population and how the cells are reacting.

With a visual representation of the population we can determine many things
including the validity of our model.

Cell plot plots a line at y=.5, y=1.5, y=2.5, and y=3.5 to represent the
different layers. It plots a line at x=.5 and x=10.5 to represent the sides of
the population. It plots the location of each cell and the cell number for each
cell, then it plots the left and right boundary for each cell.

This function is straight forward and produces the graph desired. It might
be nice to incorporate some GUI to the plot so the user could click on a cell
and see the properties of it without having to type in the cell number in the
Matlab command window.

Cell Step

Cell step is the heart of this program. A user will start the program by setting
up a population with cellstructure, after that the user will use cell step see
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how the model reacts over time.
Once the user calls cell step the program asks how many steps do you

want to do. After they enter the number the program will complete that
many steps.

A “cell step” has cells perform the following operations:

1. Some cells die in Layer 3 (the exterior layer).

2. Some cells move from layer 2 to layer 3 to replace the dead cells.

3. Some cells move from layer 1 to layer 2 to replace the missing cells in
layer 2.

4. Some cells divide to replace the missing cells in layer 1.

5. Volume and Diffusible promoter grow in each cell.

Once a cell dies, moves, or divides there is a new plot showing this and a
line appears saying which cell died, moved, or divided.

Here is an example of the calls and the outputs of the program. We first
call cellstructure.

Now we call cellstep and do 1 step. Here are the results:

Here are some plots of some populations after 10, 20, 50, and 100 steps:

This as a normal cycle for a healthy tissue to go through: something dies,
things move up to replace it, and then cells divide. With each step a cell
is alive, it grows and transforms. The last step of a cell step represents the
growth in both the volume of the cell and the diffusible promoter (or desire
to move or die). The rate at which it grows is according to its previous level
and a constant which varies with the step number. We assumed the rate of
growth to be exponential and picked constants according to what made our
model stay in equilibrium (the number of cells remained close to constant).

Cell step calls cell death, then cell move, then cell divide. After it has run
through all of these programs it updates the volume and diffusible promoter
level in each cell as follows:

• Layer 1

– cell(n).volume= cell(n).volume∗e.009∗j where j is the step number
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– cell(n).promoter= cell(n).promoter∗e.003∗j where j is the step num-
ber

• Layer 2

– cell(n).volume= cell(n).volume∗e.006∗j where j is the step number

– cell(n).promoter= cell(n).promoter∗e.006∗j where j is the step num-
ber

• Layer 3

– cell(n).volume= cell(n).volume∗e.003∗j where j is the step number

– cell(n).promoter= cell(n).promoter∗e.009∗j where j is the step num-
ber

Determining the growth constants was a trial and error process based on
running the program. It would be nice to delve more deeply into how growth
rates are determined (biologically) and see how those growth rates match up
with our model.

Cell Death

The first process of a cell step is the death of cells in the third layer. The
purpose of this function is to determine when a cell dies and then zero out
or delete the cell.

Cell death is a function that determines when a cell dies. If a cell meets
the requirements then the cell dies. Once a cell dies all of its entries are
zeroed out, the left and right neighbor absorb the space of the dead cell. We
reasoned that the vacuum created by the flaccid dead cell would be filled by
its neighbors. Each one of the dead cell’s neighbors receive a portion of its
diffusible promoters (using cell signaling). A plot shows which cell is going to
die and then shows the population after the cell dies. A line appears saying
which cell died.

Here is an example of what the plot looks like before and after a cell dies.

A cell will die if it does not have too many neighbors connecting it to
the model, if it has a high diffusible promoter level, and if it has a high
volume. We put these factors together knowing the maximum sum is 2.5 so
we adjusted it to a level where we saw cells dying at approximately the rate
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we thought they should. We researched the concept of chemotaxis [47] and
determined once a cell dies it signals its neighboring cells to get them to move,
that is modeled with our concept of distributing the diffusible promoters.

A cell will die if 1/cell(n).cadherin + cell(n).promoter + cell(n).volume
>= 1.95. Once a cell dies all of its entries are zeroed out and its old left and
right neighbors absorb the space (we adjust the volume accordingly). If the
cell had neighbors on all 3 sides (left, right, and bottom), then each side will
receive 1/3 of the diffusible promoters (divided evenly on bottom) else the
one side neighbor will receive half and the bottom neighbors will divide half.
All the counters are updated and the new cell population is plotted.

We do not know exactly why a cell dies. It would be nice to have more
research about exactly why a cell dies and get some realistic levels.

Cell Move

After cells die cells from the second layer need to move to the third layer to
replace the dead cells and cells from the first layer need to move to replace
the cells in the second layer. The purpose of cell move is to determine which
cells move and actually move them.

If a cell meets the criteria outlined below, the cell will move up a layer.
All the cells above it will shift to allow the new cell to move up and the old
neighbors will absorb the space where the cell was. A plot will show which
cell is moving and then show a plot of the modified population.

Here is an example of a few cells that moved. A cell moved from layer
2 to layer 3 and then a cell replaced that cell by moving from layer 1 to layer 2.

A cell is likely to move if it does not have ties to too many neighbors, it
has a high promoter level, and a high volume. A cell cannot move if it does
not fit so that is what the second check is for. Once a cell has moved we
need to adjust the surrounding cells and that is what the program does. We
divided the extra space equally.

A cell will move from layer 2 to layer 3 if 1/cell(n).cadherin + cell(n).promoter
+ cell(n).volume >= 1.25 and if the sum of the cells top neighbors actual
space + cell(n)’s actual space fits within the boundaries of the cells top
neighbors. A cell will move from layer 1 to layer 2 if 1/cell(n).cadherin +
cell(n).promoter + cell(n).volume >= .8 and if the sum of the cells top neigh-
bors actual space + cell(n)’s actual space fits within the boundaries of the
cells top neighbors. When a cell moves its old neighbors will absorb the space
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and we adjust the volumes proportionally. We determine whether cell(n) is
closer to the left or the right boundary of its top neighbors and move it to the
closest area. We take all the extra area within the left and right boundary
and spread it evenly between each cell. We adjust the neighbors, boundaries,
and volume for each cell involved.

Although we do have the key characteristics as to why a cell would move
we are not sure if our model is that accurate. We interpreted levels for each
aspect of the function logically at first and then adjusted them a little until we
had something that we believed was accurate. It would be nice to have more
concrete research on exactly what affects cell movement. Another problem
with this function is when a cell moves up a layer it can effect neighboring
cells boundaries because the way our boundaries are defined. It does not
effect it by much but if it changes then there should be changes made to that
cell (such as volume) which we do not consider.

Cell Divide

An important part of a healthy population model is having regular cell divi-
sion to replace the cells which have moved and/or died. The purpose of this
function is to model cell division.

If a cell meets the criteria it will divide. A new cell is created which is a
replica of the previous cell and they split the area of the original cell. A plot
shows which cell is going to divide and then what the model looks like after
the cell divided.

Here is an example of what it looks like when a cell divides.

A cell will divide if it has high integrin levels, enough room, and the lack
of desire to move. The newer cell won’t have as much desire to move as the
old cell so we adjusted the promoter levels accordingly.

If .4*cell(n).cellspace + .6*cell(n).integrin -cell(n).promoter >= .4 then
a cell divides. A new cell is created that is identical to cell(n). We take the
old boundary of cell(n), divide it into two, and place each cell in the middle
of their half. Cell(n) receives 3/4 of the promoter level while the new cell
only receives 1/4. The cells’ volumes are divided in half for each cell.

There is not much as far as population modeling as to when and why a
cell divides. If we had time we would incorporate the cell model’s program
to more accurately depict division. We are fairly certain that all of our
elements effect cell division, but once again are not sure at the rate for which
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they should effect it or if there are any other elements we need to consider.
Another problem with this program is when a cell divides, it slightly affects
its neighboring cells’ cell boundary which would change the volume of the
cell.

4.4 Conclusion

Our model is a fairly accurate depiction of how cells signal, move, divide,
growand die in a tissue population. The biggest limitation of our model
is the small number of attributes recorder at each cell. The fundamental
aspects of how the cell cycle progresses and the mechanisms by which the
tissue population remains ate equilibrium were well accounted for, though
not neccessarily biologically accurate. The program needs to be run and
rerun so that atypical cell formations can be explained and functions can be
designed which will lead to such atypical formations being eliminated.

We set out to model healthy tissue so that we might model cancer and in
turn develop tools for early diagnosis of cancer. Only once we are convinced
that we properly understand the mechanisms by which a tissue population
holds itself in homeostasis can we interpret and explain the nature of disrup-
tions in this equilibrium. Because our model does not account for wounds
which can sometimes lead to cancer, we can only can to have accurately
depicted a healthy tissue population.
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Figure 2.4: An example of how cadherins bond together like Velcro.

85



Figure 2.5: When cells die, they lose volume.
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Figure 2.6: An example of chemotaxis that promotes cell movement

Figure 3.7: An initial population of cells
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Figure 3.8: A population of cells after 100 steps

>> cellstructure
>> cell(1)
ans =
xlocation: 0.8477
ylocation: 1
leftneighbor: []
rightneighbor: 2
promoter: 0.0600
volume: 0.8344
integrin: 0.6717
leftboundary: 0.5000
rightboundary: 1.3049
topneighbor: 11
bottomneighbor: []
cadherin: 2
cellspace: 0.8049
actualspace: 0.6717
>>

Figure 3.9: A set of characteristics for a typical cell
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>> cellstructure

Figure 3.10: Cell Replacement
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>>
[cell,a,b,c,k]=cellstep(cell,a,b,c,k);
How many steps do you
want to go through? 1
cell step 1
cell 22 died
cell 12 moved
cell 2 moved
cell 3 moved
cell 1 divided
cell 4 divided
cell 5 divided
cell 6 divided
cell 7 divided
cell 9 divided
cell 10 divided
>>

Figure 3.11: A list of cell movement and death

90



Figure 3.12: A population after 10 and 20 steps

Figure 3.13: A population after 50 and 100 steps
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Figure 3.14: Before and after the cell dies

Figure 3.15: Before and after the cell moves from 2 to 3
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Figure 3.16: Before and after the cell moves from 1 to 2

Figure 3.17: Before and After the cell divides

93



Chapter 5

Cell Population Model II:
Tissue Modeling

By Chris Comiskey, Don McCuan, and Kim Story

5.1 Introduction

This report will explain in detail the model we created. The model
attempts to represent epithelial tissue dynamics. It seeks to incorporate the
important factors, while simulating the main processes that occur within
epithelial tissue.
Our efforts are part of the larger objective of developing computational
models to guide research in the area of epithelial cancer. It is hoped that
structural changes in the tissue can be understood and thereby offer early
cancer detection. Our project is important because it contributes to the
growing body of knowledge available to researchers looking for direction in
the lab environment. Even further, it contributes to future groups attempts
to do exactly what we attempted to do. In other words, they can use the
model we developed to pick up where we left off.
Just as the bulk of our efforts were aimed at developing this model, the
bulk of the report will aim to explain this model. The explanation will be
broken into three main parts: the biology of epithelial tissue, a detailed
description of the model, and the code itself. The relevant biology will be
integrated with the description of the model, where possible. Additional
information gathered but not included in the code will also be provided,

94



and integrated where possible. A concluding section will summarize the
report and its relevance to the overall researching efforts being made.

5.2 The Model

Our model attempts to simulate healthy epithelial tissue, in particular the
tissue of the mouth and esophagus.

5.2.1 Overview and Motivation

Epithelial tissue separates the interior of the body from the exterior world.
As such it includes in part the skin, lining of the mouth, esophagus,
stomach, intestines, and respiratory track.
Epithelia are classified as simple (one cell thick) or compound (more
than one cell thick). If the shape of the cells in the outmost layer are
flattened and thin they are called squamous. If approximately square they
are cuboidal. If taller than wide they are columnar [59]pg.52.
In our model we are concerned with compound squamous epithelia.
The tissue geometry in the model will be represented in two-dimensions (for
simplicity) and consist of 3 cell layers, restricted to a finite width but
allowing for layer thickness to vary within defined limits. Cells in layer 1
are generally cuboidal, in layer 2 are more flattened, and in layer 3 even
more flattened; by which we mean that the height to width ratio of cells
becomes smaller as we move up in the layers.

Figure 2.1: Tissue Geometry

While the model (for simplicity) is two dimensional. We may refer for
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clarity to cell volume and area of contact as if the model were 3
dimensional.
The function of epithelial tissue is to protect the internal environment of
the body from the external environment while at the same time allowing for
passage of selected chemicals both ways.
Epithelia in general are composed only of cells with little or no extracellular
space, fibres, or blood-vessels. This forces the exchange of chemicals
between exterior and interior environment to go through the cells and be
regulated by cellular control mechanisms. In other words the epithelial
tissue is very selective about what gets in and what gets out [59]pg.43.
Our model reflects this in consisting only of cells with no extracellular
space.
The bottom layer of cells in the tissue attach on their basal surface to a
carpet of fibres called a basal lamina. This basal lamina acts as physical
support to the epithelium. While not rigid it is not fully elastic. [59]pg.44.
We model this and simplify our model by limiting the number of cells along
the basal lamina to be very limited (only 10 to 20) within this limit we
considered the basal lamina to be rigid and flat. While the epithelial cells
can allowed to slide along the basal lamina they cannot penetrate or deform
it.
Cells in the tissue in general age, die, grow, divide, move, and differentiate.
These actions are modeled by specific rules to be described later.
Not all cells can divide in the epithelia. Cells closer to the hostile external
environment are more subject to cellular damage and as such generally do
not divide [59]pg.46.
We model this by allowing for different cell types. Some allow for cell
division and are restricted to the lower layers and some do not and they
appear in the outer layers.
Because cells die and in particular are shed (rubbed off) from the top layer
of the tissue, we must have a movement from the lower layers where cells
are created to the upper layers where death is more frequent.
The model will execute multiple cycles in time. Within each of these cycles
cell aging, death, growth, division, differentiation, and movement will
occur. Each of these actions will be governed by rules, some of which will
depend on parameters of the model.
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5.2.2 Cell Types

The cells in the model will be of 6 types: Stem Cells, Transit amplifying
cells, Layer two (non-dividing) cells, squamous cells, shed cells, and dead
cells.
Stem cells can divide, have very long lives, and are restricted to layer 1.
Stem cells divide to create either new stem cells or transit amplifying cells.
Transit amplifying cells are shorter lived, can divide, and can exist in layers
1 or 2. Cell division creates either transit amplifying cells or “Layer two”
cells.
“Layer two” cells are non-dividing cells which occur generally in layer 2 but
are allowed to be created in layer 1 from which they will move up to layer 2.
Squamous cells are the highly flattened cells in layer 3, are non-dividing.
Cells are removed from the tissue either by dying or being shed from layer
3. To distinguish how they were removed from the tissue they are assigned
a cell type of either “dead” or “shed” when this occurs.

5.2.3 Cell State

Each cell in the model is identified by a unique number and has a cell state
which consists of

• layer a cell is in
• sequence within the layer the cells is at
• cell size
• cell type
• cell age
• factor x
• the cell that created this one

The cell states of all of the cells completely determine the current geometry
of the model tissue. Cell state and the model rules determine how the
model will evolve in time.

5.2.4 Output

The layer, sequence, and size of all of the cells uniquely determine the
tissue geometry and the implementation of the model in Matlab will display
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this. This display at various points in the cycles is the primary form of
output for the model.
For example, figure 1 shows a possible initial state for the model. Within
each cell the cell number and cell type are displayed.

5.2.5 Cell Aging

Cell age is the number of model cycles occurring since cell creation. Cell
age is incremented by one at the start of each cell cycle.

5.2.6 Cell Death

Cell death occurs after a set age that is dependent on cell type. Upon cell
death cell type changes to “dead” and that cell is no long included in cell
geometry or any cell actions.

5.2.7 Cell Growth

Cell growth occurs at a fixed rate limited by a maximum cell size that is
dependent on cell type.

5.2.8 Cell Division

Only Stem cells and transit amplifying cells can divide. Cell division occurs
when a cell reaches it’s maximum size. Cell volume is divided equally
between parent and daughter cell. Daughter cell is assigned a new number,
is inserted into the tissue to the right of the parent, and is assigned a cell
type based on parent cell type and a probability distribution.

5.2.9 Cell Differentiation

Cell differentiation is the change in a cells type. This occurs when cells
move from one layer to another. Stem cells are normally in layer 1 and
become transit amplifying cells if they move to layer 2. Transit amplifying
cells may become nondividing layer 2 cells when moving to layer 2 or may
stay transit amplifying based on a probability distribution. All cells in layer
3 are squamous cells.
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5.2.10 Cell Movement

Movement is by far the most complicated aspect of the model. To do this
we create an abstraction called factor x. Factor x controls cell movement.
Factor x is a hypothetical combination of one or more chemicals. It is
motivated by the following. Epithelial cells are tightly bound together. In
order for them to move something must trigger a set of events resulting in
the temporary breaking of these intra cellular bonds.
A cell can move by either forcing itself between two cells in the level above
or by replacing a cell above it and pushing that cell into the level above
(possibly causing it to shed).
In the first case, the factor x level per cell area in the cell to move must be
high enough (exceed some set value, say X2) to break all of its intra cellular
bonds. Also the factor x level per cell area of the cells to move between
must be high enough (exceed some smaller value,say X1) to break the
bonds between those two cells. That is these cells don’t require quite as
much factor x since we aren’t breaking all of their intra cellular bonds.
In the second case, since both cells must move they both must have the
higher level of factor x and we have a cascading sequence of events since the
cells above the cell to be pushed up must have sufficient factor x to allow
this.
The models accounts for creation, diffusion, and destruction of factor x.
Factor x is split equally between cells during cell division.
Every cell has an ideal shape whose measure is its height to width (h/w)
ratio. Factor x is produced in response to the amount of cell distortion from
this ideal shape. We model growth in factor x within a cell as being
proportional to the deviation from ideal shape times the volume of the cell.
The proportionality factor is a function of cell type.
We allow for factor x to diffuse between cells. We think this is necessary
since cell movement is a cooperative process between cells, so we expect the
“stress” on a cell to move to affect the cells around it. This diffusion is
modeled to be proportional to the product of the difference in factor x
concentration between cells times the area of contact between cells. Based
on the biology we expect diffusion within a layer to be greater than
diffusion across layers and so will have different proportionality constants
for these two cases.
The process of breaking of bonds and moving consumes all of the factor x
in a cell. Moving between cells consumes half of the factor x in the cells
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moved between.

5.3 Implementation of the Model

The model is implemented using Matlab. It consists of a m-file with one
primary function containing numerous sub functions. This architecture was
chosen for simplicity and allows the primary data arrays of the model
”Cell” and ”Type” to be accessible by all of the functions without having
to pass them as parameters.
The model is highly parameterized with respect to data that define the
rules. Array ”Type” is used to contain type Cell type dependent
information. Type specifies whether a cell can divide and how, its
maximum size, growth rate, life span, factor x growth rate, and ideal shape.
Several other rule control variables that are not type specific are coded for.
”Cell” is an array that contains the cell state for each cell. This data
changes constantly as the tissue evolves from cycle to cycle.
Both ”Type” and ”Cell” are setup when the tissue model starts execution.
This simplest way to execute the model is to open it in edit mode and run
it. The model was written with the expectation of adding a GUI interface
at some point (not done for this version). This would mean the rule
parameters could be adjusted via GUI controls.
The setup for ”Cell” defines the initial state of the model. The variable
”net” define the initial number of cells in layers 1,2, and 3 and the rest of
the information is assigned randomly.
The number of cycles to perform is specified and an options suppress
display, display after each cycle, or display after every action is provided.
Then model then executes the functions for the tissue actions in succession
for the specified number of cycles. These functions are f age, f death,
f grow, f divide, f produce x, f diffuse x, and f move x.
These functions are generally very simple with the exception of f diffuse x
and f move x.
f diffuse x allows for different diffusion rates within a layer and across
layers. In both cases the amount of diffusion within between 2 cells in one
cycle depends on the amount of contact area between the cells. For the case
where the cells are in different layers this must be handled by a comparison
of left/right cell wall positions.
f move x also faces this problem of computing contact area and has to
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handle multiple movement scenarios depending on whether we can move a
cell via pushing a cell above up or pushing between two cells above. Note in
particular the usage of routines f get geometry to obtain cell positions and
f adj seq to recompute cell layer sequences after movement.

5.4 Biology of Integrins

Primarily, these molecules bind the basal layer cells to the basal lamina.
The basal lamina, also sometimes called the basement membrane, is the
wall upon which the structure of epithelial cells are built. Less prominently,
integrins also act to bind cells to other cells.
An important facet of integrin function lies in how they operate. Integrins
only bind when they are in concentration at certain focal points [38]. In
other words, while still “sticky” when diffusely distributed over a cell
surface, actual adhesion will not occur unless the integrins sufficiently
cluster together on the cell surface [38]. This adhesion strategy seems to
allow cell movement without completely breaking a cell’s bond to its
immediate environment. In this way integrins seem to allow a cell to be
neither completely attached, nor completely detached from the surrounding
environment. They are strong, flexible, and adaptable molecules that are
very effective in achieving their goals.
The primary mode in which integrins will be incorporated into the model
will be through cellular adhesions to the basement membrane. While we
know integrins play a role in cell to cell adhesions, these ideas will not be
addressed at this time. Given that only basal layer cells rest against the
basement membrane, it is only these cells that will be given integrin based
characteristics.
Our model contains two types of basal layer cells: stem cells, and transit
amplifying cells. Each cell type will be assigned an integrin level at the
beginning of the model. Along with the other characteristics loaded into
the “Cell” array and called by the Type Array structure, now “v7” will be
included. The variable “v7” will denote a given cell’s integrin level. This
level is going to influence a cell’s likelihood of movement from layer one to
layer two.
Research indicates that stem cells are less likely to advance to layer two
than their sister transit amplifying cells, so we would expect them to have
higher levels of integrins. Consequently, we’ll probabilistically assign a

101



slightly higher level of integrins to stem cells than TA cells. The v7 array
will contain rules for assigning these levels. For cell group 1, stem cells,
we’ll assign a random number between .40 and 1.00. For Cell group 2, TA
cells, we’ll assign a random number between 0.00 and .59. Cell groups 3, 4,
5, and 6 will get integrin levels of 0.00.
For groups one and two we’ll want to establish a relationship between this
semi-random level and that particular cell’s surface area. It is inconclusive
what this exact relationship would be, but based on intuition we’ll assume
a larger surface area means more integrins, thus more stickiness.
In this fashion, each cell will have an integrin level between 0.00 and 1.00.
Using this parameter, now in tandem with the other movement determining
variables, the cell will make a movement decision. In the model’s earliest
incarnations, the height to width ratio determined movement. Now the cell
would have to pass the test on both the h/w ratio requirement, and the
integrin level requirement. This integrin test would consist theoretically, of
three categories of movement likelihood. An integrin level from 0.00 to 0.39
would confer a high likelihood of movement. A level from 0.40 to 0.69
would allow movement, but not encourage it. A level from 0.70 to 1.00
would positively prevent movement.
In conjunction with a cell’s h/w ratio (or other determining characteristic),
a decision would be made by the cell about its movement. Here we would
probably want to establish categories of likelihood for the other determining
factors so they would be able to interact probabilistically. We model
fluctuations in integrin levels from cycle to cycle with an unobtrusive set of
fluctuations, perhaps plus or minus 0.10 per cycle, each half the time. Or
perhaps stem cell integrin levels would go up by 0.10 slightly more than
half the time, discouraging movement, while the integrin levels of TA cells
decrease by 0.10 slightly more than half of the time, encouraging
movement. Division also needs to be addressed. In its present state, the
model allows horizontal and vertical division. Quite simply, integrin levels
would be divided equally between two cells resulting from a vertical
division, and the bottom cell would retain all of its integrins in the even of
a horizontal division.
The literature indicates that integrins play a role in signal transduction.
For instance: “The integrins also act as cellular sensor and signaling
molecules.” [48] This idea of integrins as a signaling molecule abounds in
the literature. However, the details are consistently fuzzy. No thorough
description of this part of integrin’s function was to be found. This is an
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area future groups could explore further. Another prevalent function of
integrins not incorporated into the programming ideas described is their
role in cell to cell adhesion. While we know cadherins act heavily in this
fashion, it is clear integrins contribute. What is not clear is how, and to
what extent. Once again, future research could be usefully devoted to this
topic. Another unknown is what drives the integrin fluctuations between
cell cycles? In our model, as described, a rather arbitrary mechanism would
govern this activity. Other questions include: do the strength of adhesions
(ie their stickiness) determine movement, or is the stickiness a function of
cell signaling meant to carry out a “decision” the cell has already made. In
other words, which came first: differentiation or stickiness. Does the
stickiness inform the decision, or does the decision inform the stickiness?

5.5 Biology of Cadherins

A specific focus for our project, as recommended by Randy Tagg, was the
function and influence of cadherins. A basic definition of cadherins is that
they are a chain of proteins connected together for the purpose of joining
the body’s cells together. More specifically, they “provide the glue that
gives form to our different tissues” [26]. A cadherin reaches from the
surface of a cell and comes into contact with a cadherin coming from the
surface of another cell. The structure of a cadherin is that of a chain of
proteins. The cadherin molecule is comprised of three major regions [84].
These are; an extracellular region that controls specific adhesion, a
transmembrane domain that spans the cell membrane, and a cytoplasmic
domain that extends into the cell. The extracellular area is of particular
importance. This is the region that contains the adhesive properties. As a
visual, the appearance of two adjacent cells could be stated as that of a
zipper. Each cell could be represented as having strings coming out of it
towards another cell with its own strings. The strings from these two cells
then lace together to form a bond.
There are some basic facts about cadherins that should be noted. There are
4 different basic types of cadherins. The focus of this project focuses on the
E-cadherin or ones found in epithelial tissue. The cadherin type is
important because of the fact that cadherins functioning properly will only
join to those of the same cadherin type. This results in cell clusters.
Another important fact is that they are dependent on Calcium. The
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Figure 5.2: Cadherins

Cadherin Resource states that the removal of calcium abolishes adhesive
activity and renders cadherins vulnerable to proteases [46]. Another
important point is that cadherins are mainly located at cell junctions.
Changing the amount of amino acids can also affect the cadherin
functioning properly.
The primary function of the cadherin is the cell to cell bonding. Cadherins
have an impact also on cell differentiation, individual cell growth, and cell
to cell signaling. As quoted by Ivanov, et al, “To Date, numerous data
indicate that cell adhesion receptors can affect cell form, motility, and
growth not only due to mechanical attachment of the cells to each other or
to the substrate, but also by activating internal signaling” [40]. This
appears to be due to the affect the cadherin has over β-catenin. β-catenin
has been shown to play a role in cell to cell signaling. According to Ivanov,
Philippova, and Tkachuk,

“It was shown that over expression of cadherins in the
embryos Xenopus laevis and Drosophila inhibited signal
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transduction via β-catenin. In Xenopus embryos, the inhibition
is due to β-catenin binding with C-cadherin on the inner surface
of the cell membrane. As this takes place, β-catenin is removed
from its cytoplasmic pool, becoming inaccessible for
participation in signaling. Thus, cadherins can regulate
β-catenin signaling activity by changing it’s distribution in the
cell” [40].

From this, one can clearly see the importance of cadherin function not only
for it’s primary job of cell to cell bonding but also it’s affects on other cell
functions.
Loss of cadherin production and/or a breakdown in cadherin function have
shown detrimental effects. Studies have shown that low adhesion
capabilities relate directly to individual cell movement or drifting. Once
cadherins fail to work properly, the cells will lose their ability to bond to
those adjacent. In the case of cancer, this allows individual cells to separate
from a solid tumor. They are free to wander through the body and form
metastases [26]. People have also been found to develop pemphigus
vulgaris. This is a disease where the cell to cell adhesion capabilities fail
and the epidermal cells fall off the body [84]. Other instances of cadherin
function failure are mutations in the proteins, mutation of the cadherin
itself, and the creation of a protein-cutting enzyme that actually attacks
cadherin. Overall, any of these failures result in the loss of the adhesion
function of the cadherins.
Unfortunately we were unable to find specific cadherin levels in either a
healthy/stable condition or in a test subject with failing cadherin levels.
While studies have identified 4 specific cadherin types and some of the
molecules involved in these complex chains, the quantities were not found.
For further progress in this area, research for future groups must be focused
on finding actual test data which demonstrates:

• cadherin levels in a normal system

• amount of Ca++ (calcium) present

• source/amount of Ca++ available

• source/amount of amino acids

• further research into the β-catenin
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• exchange possibilities cell to cell

With this information, an addition to the model could be created to
represent the importance of cadherin function in tissue. An amount for each
cell in the model could be determined and depending on the level of the
surrounding cells a number could be associated to represent the strength of
the bond between the adjacent cells. If the cell to cell bond were a high
level the cells would remain where they are located. If the cell to cell bond
is a moderate level a cell would be able to possibly differentiate or move up
a layer. This would happen if there were the proper cadherin levels on the
next layer up so that it could bond to the adjacent cells on that layer.
However, if the bond is way too low, a cell would have the tendency to
break apart from all those surrounding it and thus migrate out of the model
(representing a possibility of metastases). To begin to represent this in the
model more research is needed in the areas listed above.

5.6 Summary/Conclusion

One measure of success of the model is that it reaches stability. By stability
we mean that The number of cells in each layer does not show wide
variation.
This model does not achieve that. It is very sensitive to the various rates
chosen. If cell division is too slow cells move up faster than they can be
replenished and this leads to complete destruction of the lower layers. If too
fast with respect to cell movement they pile up in layer 2.
The problem seems to be that we need feedback loops between the division
rate and movement rate.
The model described in this paper was Version 2. The original Version did
achieve stability, but required an assumption (relief of height to width ratio)
on movement that not appear to be realistic from a biological perspective.
We can now see that it achieved this stability due because movement rate
was driven by division rate, in fact was tightly coupled to division rate.
Cell division may occur at some low steady rate and this likely does drive
cell movement somehow to keep the cell density in layer near a steady
value. But it seems probable that opposite is also true. Should the cell
density fall below a certain level it stimulates cell division.
While it still seems reasonable to postulate a factor x that is required to
break the cell bonds and allow for movement, it may be that enough factor
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x is produced in a short period of time to do this, and that its production is
a respond to local densities and not the driving factor in cell movement.
That is once some threshold of density is reached cells must move to relieve
it.
However, the conditions defining local density (height/width ratio) in
Version 1 still do not seem reasonable in that this leads to a very strong
preference for moving up the cells smallest in size.
One of the desires of client was to have a model that might demonstrate
“interesting behavior”. In this sense the model is partially successful. It
gives insight into tissue dynamics, what works and what doesn’t, and it is
insight that is not readily apparent without running the model to see what
happens.

5.7 For Future Groups Pursuing this Prob-

lem

Where possible we have let the biology inform our choices. Not surprisingly,
this left quite a few holes in our model. As this was expected, one of our
main goals in writing the program was to achieve flexibility. We hope the
program can accommodate future changes due to an increase in the next
group’s understanding of the underlying biology.
The model could be modified in the following ways.
More than 3 tissue layers. The behavior in a 3 layer is probably too limited.
Cell gaps should be allowed, that is there might be empty spots within the
tissue or on the surface where cells are missing. Right now the model allows
for an arbitrarily wide cell. This is not realistic. There must be some limit
on how wide a cell can be. This being the case cell gaps must naturally
occur as cells are shed or die, either due to age or damage. The model needs
to handle these gaps both in the display and by filling them as rapidly as
possible. Repair of tissue damage is a necessity for modeling healthy tissue.
A mechanism should be coded for creating cell damage (possibly via GUI
interface). The model should then be able to repair it.
The growth and division algorithms are too simple. Both of these actions
must respond in some way to cell damage and cell movement. This implies
some kind of diffusion of chemicals between cells which acts as feedback
loops affecting these processes.
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Finally, a word of advise to the next group. Whatever the solutions you
come up with, program it and check it out as fast as possible.
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5.8 Appendix: Glossary of Terms

The following general terminology was found useful in working our way
through some of the literature on the subject.
Morphology: outward appearance, including shape, color, structure,and
pattern
Amplifying Cells: cells whose function is to increase the number of cells
available for subsequent maturation and mitosis
Cytokine: signaling compound
Desquamation: shedding of outer layers
Masticatory: Chewing
Integrin: Responsible for attachment to extra cellular matrix (ECM) and
other cells. Plays vague role in signal transduction, especially from ECM to
the cells
Epithelium: lining tissue/cells, and layers of cells; one of four primary
types of body tissues
Differentiation: process whereby cells acquire a type, and the cell
morphology changes
Squamous Epithelium: epithelium named after top, surface layer of cells
Squamous Cells: flat, outermost cells
Cadherin: responsible for cell adhesion, plays role in ensuring that cells
within tissues remain bound together
Growth Factor: Cells that stimulate cellular proliferation and
differentiation
Kinase: type of signaling protein
Transit Amplifying Cells: An alternative to the more pure stem cells,
existing usually within one of the lower layers, close to the basal lamina.
This cell type is slightly more differentiated than the true stem cells, with
less capacity for indefinite division
Basal Lamina: foundation, or “bottom”, upon which the epithelial cells
are built/situated
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Chapter 6

Review of Net Logo and V-Cell

By John Boren and Jon-Michael Brinkerhoff

6.1 Introduction

For the entirety of the spring 2007 semester, The University of Colorado
at Denver’s Math Clinic (4/5779) has been researching models of cells and
tissue to suit the task of Dr. Randall Tagg (UCDHSC, Dept. of Physics.)
His efforts to develop and improve computational models for tissue dynamics
are important in his research of early oral cancer detection.

As a whole, the clinic’s objectives were to develop a rudimentary modeling
system with which further investigation by other Clinics could be built upon.
Specifically, this was achieved by breaking the clinic into five groups. Four of
these groups would begin the challenge of creating these modeling systems
using the research of cellular biologists and their mathematical models of cell
division and tissue dynamics.

Our group’s (group 5) task was to find, test and review programs which
already exist and determine their feasibility as suitable alternatives to MAT-
LAB, the programming language that had been chosen by the clinic to model
tissue and cells. This review is specifically helpful at the beginning of this
modeling process as it may reduce the number of work hours needed to
program models in the future, giving more time for researchers to develop
models.

This report is a review of these programs, it is our group’s opinions of
functionality as we mimicked the four other group’s programming, using
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outside software. There is no theoretical nor empirical data in this report to
speak of. However, these reviews are important as they may help guide the
direction of future clinic’s programming languages and in turn, determine
the amount of time they spend programming rather than modeling.

Our key findings show the limitations of the current software available
and potential advantages of using these software packages. In general, we’ve
found certain outside programs to have large initial setup times but reduced
programming times for beginner programmers once those initial setups have
taken place. However, to the astute programmer, none of the programs tested
had a major advantage over MATLAB. Many times it was in fact the case
that MATLAB was a superior programming language.
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Objectives of the Review Our objectives in reviewing outside software
were to answer five main questions of each language or application we en-
countered.

• What are the capabilities and limitations of this programming lan-
guage?

• What is the learning curve of this programming language?

• What applications of this language may be helpful for further clinics?

• Should this language be further studied or does this language have
potential for use?

6.2 Methods

To review, we found two outside languages with which we would program
those models found by the four other research groups. Each model was
programmed an run using the perspective software and notes were made
during those sessions which lead us to our conclusions. The two models
of interest were those which were discussed in the clinic by both cellular
modeling groups. Namely, we programmed the models found in:

• Modeling the Cell Division Cycle:cdc2 and Cyclin Interactions” [67]

• Dynamics of the Cell Cycle: Checkpoints, Sizers, and Timers” [55]

The latter paper being more important to us as reviewers because of its
breadth of differential equations which were required for the model to work.
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6.3 Results

Our testing began with an initial screening of available software. From the
myriad of collaborative projects on cellular modeling found, few had imple-
mented working programs with which to model. There were however, four
programming packages which seemed to be comprehensive and well devel-
oped, suited for our needs in the math clinic. These were:

• Net Logo

• Virtual Cell (V-Cell)

• E-Cell

• Cell Electrophysiology Simulation Environment (CESE)

Unfortunately, there was not enough time to test all of the programming
packages. Net Logo and V-Cell seemed to be best for our time constraints
and both were seemingly designed to accomplish different tasks. Net Logo
had the potential to be the better program for tissue modeling and V-Cell for
cells. E-Cell, though our impressions led us to believe it had potential, was
put at the bottom of our list for testing and regrettably never tested due to
time constraints. CESE was never investigated further because of its lack in
development compared to the others listed. However, CESE is highly active
and should develop greatly in the coming years. Hence, it is worth noting in
this review.

The two programs which were reviewed in the course of this semester
were Net Logo and V-Cell. Both are freely available to the general public
and were created out of an apparent need for them to exist. However, many
of the features outlined in these programs are not unique to them.

Net Logo This program was developed by Uri Wilensky as a way to dy-
namically change variables and constants to see real time results and graphs.
It is based heavily on Java. The idea of this program is that it’s open to
model anything the user wants. That is to say the user creates his program
for a specific model. This is a start from scratch language in that whatever
the user would like the program to do needs to be coded specific to that task.
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Trials and Experimentation In our review of the Net Logo, we did
not have a tissue model with which to code. We evaluated this software
by creating and using a user’s interface that may have potential for future
Clinics.

Capabilities

• GUI- The Graphical User Interface was set up very well. Not only was
the editor easy to comprehend but the user defined GUI was easy to
set up and is the reason for the existence of this software. Whereas
setting up visuals and user interfaces in MATLAB is quite difficult,
only simple commands and buttons were needed to do so in Net Logo.
An example of the editor is shown as Figure 1.

• Sliders- The programming language is designed to use mouse-drag slid-
ing scales. We found the ability of the user to set up a slider and slide
the rates of change and constants of his equations, almost infinitely
within a user defined interval, to be a valuable option. In witnessing
the cellular group’s need to ”play around” with these numbers to find
a suitable limit cycle, we began an attempt to implement these sliders.
If these sliders were implemented before other groups completed their
tasks, this process could have greatly reduced the trial and error time
the other groups lost.

• Real Time Animated Graphs- Use of the sliders can determine the speed
at which an animated graph is running. This made it easy to manip-
ulate the visuals for better interpretation by an audience. The graphs
could just as easily be sped up to witness long term results.

• Multiple Graphs- Since Net Logo’s primary function is a GUI, it is easy
and potentially helpful to the user to set up multiple graphs running at
user defined rates. Though this isn’t something MATLAB cannot do, it
is very easy to set up and can be done to produce very understandable
and good looking graphs. Whereas a MATLAB graph is simple, these
graphs can be extravagant and organized in a way that is clearest to
the audience.

• Ease of Use for End User- Once a program is created, it is extremely
simple for the end user to enter in the information they wish to model
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and push a button to begin the program. For broader research, such
as the kind performed in this clinic, functionality such as this would
be very helpful. If the program was implemented before the semester
begun, either of the models mentioned above would have been pro-
grammed in a few simple clicks. Considering the time used to program
the models, this type of programming is very advantageous.
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Limitations

• Java Based- This application is Java based and comes with all the
same limitations as Java. It is not well designed to handle the sorts of
mathematics which could be programmed in MATLAB. For example,
the matrix functions are not nearly as effective in Net Logo nor are
there as many solvers as are in MATLAB.

• Steep Learning Curve- Although this is arguable because Java is less
difficult to learn than many languages and widely used throughout the
world, the product intended for the end user is not easy to change
without heavy coding. This means that should someone be using an
end product made specifically for ease of use as described above, the
user would not be able to change the capability of the program without
new code. Though the end product is made to resemble and indeed
functions like other easy to use programs, there are no GUI options to
change its capabilities.

• Poorly Documented- Net Logo is freeware and like most freeware, there
is no incentive to make the product marketable or well documented
for users. There is documentation but compared to the thousands of
pages of manuals and bound books describing MATLAB, Net Logo is
severely lacking.

Virtual Cell (V-Cell) V-Cell was developed by the National Resource for
Cell Analysis. It is a unique modeling environment developed for quantitative
cell biological research. The modeling language, like the program, is unique
but similar to many modeling languages being used in the numerous fields
of mathematics.

Trials and Experimentation In our trials, we tested a few systems of
differential equations. Some were very basic systems to test our understand-
ing of the language and we also coded the larger ones found in the ”Dynamics
of Cell Cycle”, ”Modeling the Cell Division Cycle” and some which were pre-
sented during class by group 2. You can see an example of our code and some
of our graphs in figures 2-4. A more advanced graph is shown as an example
in Figure 5.
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Capabilities

• Effective Differential Equation Solver- Each system tested was solved
quickly with very little coding. Comparatively, the amount of coding
was less that that of MATLAB to solve the same problem. The user
need not include commands to produce solutions, plot graphs etcetera.
Rather, he simply plugs in the equations he wishes and runs the pro-
gram. See Figure 2 for sample code.

• Easy to Learn Language- Because of the simplicity in entering systems
of differential equations, the basics of the program can be conquered
quickly by novice users with the help of an example. There exist higher
functions, but we’ve seen no use for these in testing the models pre-
sented during the clinic and hence, they were not used.

• Excellent Graphs- Once the program solves a system of differential
equations, the data is output to a cached file and graphs can be created
using the graphing function. This allows the user to select the plot he
requires from mouse activated drop down menus. Each variable can
be plotted against another with the push of the button and conse-
quently, the data and graphs are easily exported to other applications
if required. Figure 3 and 4 show some examples of these graphs.

• Organize and Draw Functions- The cell is represented as a picture
in the software. To keep track of items the user wishes to model, he
can draw these in the cell using the tools available within the software.
These drawings are not animated but in larger systems do a good job
of keeping order visually of what’s going on should the user invest the
time to create them. There are also system drawing tools with which
the user can draw reactions and movements but again, these are not
animated and are up to the user to produce rather than being produced
automatically.
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Limitations

• Limited Programming Capabilities- The software and its language are
very useful for solving equations and plotting solutions however it is
limited to these sorts of models and doesn’t have the breadth of pro-
gramming opportunities that MATLAB or Net Logo have. The useful-
ness of the software ends at what the limited modeling language can
accomplish.

• Does Not Solve Locally- V-Cell is not a software package but is actu-
ally an application that connects and transmits to a solver on a server
at the University of Connecticut Health Center. This has two implica-
tions. First, the user must have a working internet connection to solve
problems and the server on which the solver resides must be up and
running. Second, the user is at the whim of application changes made
by the National Resource for Cell Analysis. Upgrades to language and
solvers are forced rather than acquired as in MATLAB and Net Logo.

• Poor Editor- The application uses a very poor editor. Unless a program
is written flawlessly on the first try, an inevitable error checking tool
will begin to run. The error checker gives a line and error name but
it’s up to the user to find which line and what went wrong. This is not
easily accomplished because there are no line numbers on the editor nor
is there a readily accessible or mentioned description of the error name.
Further, no color coding or animation to indicate parentheses sets or
anything else, makes writing out lengthy differential equations difficult,
ensuring you will receive an error message. This could be solved with a
copy and paste from another editor, however our attempts to do so were
unsuccessful, creating fake spaces. This is one of the largest drawbacks
of V-Cell and added lots of wasted time to the modeling process.

MATLAB Though MATLAB was never actually used by our group, as a
standard among many university math departments, it is well documented
and heavily used. The functionality is directly related to solving the math-
ematical problems which arose in our clinic’s research. The other teams in
our clinic were able to successfully code their problems and obtain data and
graphs suitable for export. Now that the hurdle of initial coding has been
passed, testing future models using similar code will only be a matter of code
editing, rather than code writing. There has been nothing our group was able
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to achieve with Net Logo and V-Cell that the other groups using MATLAB
weren’t able to do.
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Conclusions Through our testing we’ve seen a potential in each of the
programming packages. Some though, are better than others.

V-Cell is the quickest to learn and makes wonderful graphs with little
effort but its lack of documentation, time consuming editor and dependency
on external solvers may make it a difficult program to implement in future
math clinics.

Net Logo has the most potential to become an integrated part of future
clinics. It is dynamic, feature rich and produces very good looking output.
The caveat being that a large amount of initial work would need to be done
in order to get a proper program coded and running. This is the best long
term solution for future math clinics where a turn key system would help
students discover more about the problem and less about the coding.

MATLAB has shown to be the most reliable solution. It was implemented
within the time constraints of our clinic and was able to produce very good
results with minimal coding. It has a strong network of users, documentation
and availability. Should future clinics wish to run similar models, the coding
infrastructure is already at their disposable for editing, decreasing the initial
learn time by new students.

6.4 Recommendations

Based on our review and findings we recommend MATLAB be the primary
language used for further study of cellular and tissue dynamics. However,
future clinics may also want to consider a few other options:

• Research the possibility of using E-Cell. Its programming language is
based in C++, similar to that of MATLAB and is directed towards
complex systems in cellular biology.

• Consider setting up an easy to use Net Logo program designed to
quickly solve systems of differential equations through a GUI to assist
novice programmers in expanding their cellular and tissue dynamics
research.
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Figure 4.1: Creation of buttons and sliders are done in this editor. Everything
is click, drag and label. Here, I’m making a switch labled ”swi...”
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Figure 4.2: Sample Code for system of Diff EQ’s found in ”Dynamics of the
Cell”. As you can see, this is an easy to understand language. Here I am
writing my equations and variables.
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Figure 4.3: A graph of t vs F25 as defined by the code in Figure 4

Figure 4.4:
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Figure 4.5: Here we see a more complex graph. This is an example model
called ”Simulation 2” and indeed all models submitted by users of this pack-
age are available as examples to others.
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