
FINAL REPORT OF THE

UC DENVER MATHEMATICS CLINIC

Modeling Mutation Rates for Avian Flu
Neuraminidases

Taught by
Stephen C. Billups

University of Colorado Denver
Department of Mathematical Sciences

P.O. Box 173364
Denver, CO 80217-3364

Stephen.Billups@cudenver.edu
http://www-math.cudenver.edu/∼billups/

Sponsored by
Jack Horner, SAIC

Participating students:

Mahougnon Amanadi, Joseph Cavaleri, Angela Harris,

Je� Kenyon, Minjeong Kim, Zak Kirk, Marcela Kuzmiak,

Jennifer Reinert, Shelley Speiss, Craig Tennenhouse,

Michael Trujillo and Timothy Vis

Fall Semester 2007

Contents

Acknowledgements vii

1 Introduction 1

2 Generative Models for Nucleotide Sequence Evolution 5
2.1 Introduction . 5
2.2 Substitution Models . 7

2.2.1 Jukes Cantor Model 9
2.2.2 Treegen: A Generative Implementation of Jukes Cantor 11
2.2.3 General Time Reversible Model 11

2.3 Generating Sequences with Rose 13
2.3.1 Description of the Algorithm 14
2.3.2 Input Parameters . 15

2.4 Maximum Likelihood Estimation of Model Parameters with
GARLI . 17
2.4.1 Description of the Algorithm 17
2.4.2 Input Parameters . 18
2.4.3 Output Data . 20

2.5 Determining Rose Parameters from
GARLI Output . 20
2.5.1 MATLAB Conversion Scripts 21

2.6 Concluding Remarks . 21
2.A Rose Input File . 23
2.B GARLI Input File . 24
2.C GARLI Output File . 26
2.D MATLAB Conversion Functions 29

2.D.1 gtr.m . 29
2.D.2 gouttrin.m . 30

i

2.D.3 garlitorose.m . 31
2.D.4 pairdist.m . 32
2.D.5 maketree.m . 32
2.D.6 rsequence.m . 35
2.D.7 gtrdef . 35

3 Evaluating Phylogenetic Algorithms 37
3.1 Introduction . 37

3.1.1 Literature Review . 38
3.2 Testing Environment and Data Set 39

3.2.1 Hardware . 39
3.2.2 Generating the Data Set and Control Trees 39
3.2.3 Sequencing the data sets with CLUSTALW 41
3.2.4 Generating Phylogenetic Trees 41
3.2.5 Comparing Trees . 43

3.3 Results . 45
3.4 Discussion . 45

3.4.1 Algorithms . 52
3.4.2 Behavior over Sequence and Set Size Increases 53

3.5 Future Work . 54
3.5.1 Using Better Start Trees in GARLI 54
3.5.2 Selection of Evolutionary Model 55
3.5.3 Improved Experimental Design 55

3.6 Conclusions . 55
3.A Generating Sequence Data . 57
3.B Using ROSE to Generate Sequences and Trees 63

4 The E�ect of Tree Topology on Leaf Distances 65
4.1 Introduction . 65
4.2 The Procedure . 66
4.3 Results . 68
4.4 Conclusion . 74
4.A Project Details . 77

5 Mathematical Model for the Mutation Rate of the Avian Flu
Virus 83
5.1 Introduction . 83
5.2 Background . 87

ii

5.2.1 UPGMA - Unweighted Pair Group Method with Arith-
metic Mean . 87

5.2.2 Neighbor Joining . 90
5.2.3 GARLI - Genetic Algorithm for Rapid Likelihood In-

ference . 96
5.3 Results . 101

5.3.1 UPGMA and Neighbor Joining Trees 101
5.3.2 Maximum Likelihood Trees 104
5.3.3 Parameters . 106

5.4 Conclusion and Future Work 106

6 Performing Multiple Sequence Alignment on Very Large Data
Sets 109
6.1 Introduction . 110
6.2 Multiple Sequence Alignment 110

6.2.1 Programs for Multiple Sequence Alignment 112
6.2.2 Comparing Multiple Sequence Alignments 114
6.2.3 Literature Search . 115

6.3 Methods . 119
6.3.1 Computer Environment 119
6.3.2 Generation of data sets 119
6.3.3 Aligning and Scoring 120
6.3.4 Generating Phylogenetic Trees 120

6.4 Results . 120
6.5 Discussion . 121

6.5.1 Future Work . 127
6.6 Conclusions . 128

7 Conclusions 131

Bibliography 135

iii

List of Figures

3.1 CLUSTALW MSA Generation Times (minutes) 42
3.2 BSD Example . 44
3.3 Branch Score Distance, 100 sequences 46
3.4 Branch Score Distance, 500 sequences 46
3.5 Branch Score Distance, 1000 sequences 47
3.6 Branch Score Distance, 1500 sequences 47
3.7 Robinson Foulds Distance, 100 sequences 48
3.8 Robinson Foulds Distance, 500 sequences 48
3.9 Robinson Foulds Distance, 1000 sequences 49
3.10 Robinson Foulds Distance, 1500 sequences 49
3.11 Log Likelihood Scores . 52

4.1 Analysis Flowchart . 67
4.2 Accuracy of Pairwise Branch Distances (Fitch-Margoliash) . . 69
4.3 Accuracy of Pairwise Branch Distances (Neighbor Joining) . . 69
4.4 Precedence Metric, (Fitch-Margoliash) 70
4.5 Precedence Metric, (Neighbor Joining) 70
4.6 Distance Metrics (Fitch-Margoliash) 71
4.7 Distance Metrics (Neighbor Joining) 72
4.8 Precedence Distance vs. Topo Distance 73
4.9 RF Dist. vs. Number of Leaves 73
4.10 UPGMA Max/Mean . 74
4.11 UPGMA Precedence . 75
4.12 Distance Metrics, UPGMA . 76
4.13 Newick Tree . 77

5.1 Flowchart of the project. 85
5.2 GARLI �ow chart. 97
5.3 Tree created by UPGMA. 102

iv

5.4 Tree created with Neighbor Joining. 103
5.5 Tree created with UPGMA tree seed. 104
5.6 Tree created with Neighbor Joining tree seed. 105

6.1 MSA Generation Times (minutes) 121
6.2 Shift scores, 100 sequences . 123
6.3 Shift scores, 500 sequences . 123
6.4 Shift scores, 1000 sequences 124
6.5 Shift scores, 1500 sequences 124
6.6 RF Distance: Set Sizes 100, 500, 1000, 1500; Sequence Length

1000 . 125
6.7 Branch Score Distance: Set Sizes 100, 500, 1000, 1500; Se-

quence Length 1000 . 125
6.8 Log Likelihood Scores: Set Sizes 100, 500, 1000, 1500; Se-

quence Length 1000 . 126

v

List of Tables

3.1 Tree generation times (minutes) for Neighbor Joining (NJ),
UPGMAL, Maximum Likelihood (ML), GARLI 50

3.2 Robinson Foulds (RF), Branch Score Distance (BSD), Log
Likelihood (lnL) Scores . 51

3.3 GARLI generation times (minutes) and scoring, using Neigh-
bor Joining (NJ) and Maximum Likelihood (ML) starting topolo-
gies . 56

3.4 GARLI scoring, using Maximum Likelihood (ML) starting
topologies from Hasegawa (H) and Jukes-Cantor (JC) 56

3.5 Maximum Likelihood (ML) scoring, using Hasegawa (H) and
Jukes-Cantor (JC) Evolutionary Models 56

6.1 Summary of MSA Programs (from Edgar, 2006 [10]) 117
6.2 Typical Alignment Tasks (from Edgar, 2006 [10]) 118
6.3 Scores for Generated MSAs 122

vi

Acknowledgements

The success of the Mathematics Clinic program is largely dependent upon
identifying an important and mathematically interesting problem, which will
fuel the creative energies of our students. I am therefore deeply indebted
to Jack Horner for giving us this project. It was just plain fun to work
on, and forced us to learn a lot of math that you don't see in a traditional
classroom. I am also, as always, grateful to the students who participated.
Their enthusiasm, creativity and hard work inspired me and made this clinic
a great experience. They are

Mahougnon Amanadi,
Joseph Cavaleri,
Angela Harris,
Je� Kenyon,
Minjeong Kim,
Zak Kirk,

Marcela Kuzmiak,
Jennifer Reinert,
Shelley Speiss,
Craig Tennenhouse,
Michael Trujillo,
and Timothy Vis

Stephen C. Billups,
Math Clinic instructor

vii

viii

Chapter 1

Introduction

This report summarizes the results of the Fall 2007 Mathematics Clinic. The
Mathematics Clinic is a project-based course o�ered by the University of
Colorado Denver Department of Mathematical Sciences. In the Mathematics
Clinic, graduate and advanced undergraduate students work in teams to
address a problem of interest to a sponsoring organization.

This semester, the project was sponsored by Jack Horner, from SAIC
(Science Applications International). The project was motivated by concerns
of a possible pandemic arising from a mutation of the H5N1 Avian Flu virus.
Currently, this deadly virus cannot be transmitted from human to human.
But there is a very real threat that the virus could mutate into a form that
could be transmitted from human to human.

Currently, there are only two drugs available to treat the H5N1 virus.
The most e�ective of these, oseltamivir (brand name Tami�u), works by
inhibiting the glyco-protein Neuraminidase. Within the world-wide popula-
tion of the H5N1 virus, there is considerable variation of the composition of
the Neuraminidase protein. And this variation in�uences the drug response.
Thus, as the virus continues to evolve, there is risk that new mutations will
render oseltamivir ine�ective.

The math clinic was given the challenge of developing a mathematical
model of the mutation rates of the gene coding for Neuraminidase, and then
training this model using DNA sequences extracted from the Los Alamos
National Laboratory In�uenza Sequence Database [30]. Since the database
does not record any ancestral relationships between the DNA sequences, there
is no direct way to infer mutation rates. Instead, ancestral relationships must
�rst be inferred by constructing a phylogenetic tree. Once the phylogenetic

1

tree is constructed, a maximum likelihood procedure can be used to tune
the parameters of the mutation model so that they agree with the data as
accurately as possible.

Within the context of this general framework, several questions needed
to be addressed. As such, students in the clinic were divided into four teams,
each with a di�erent focus as described below:

Team 1 (Mahougnon Amanadi, Joseph Cavaleri, and Timothy Vis):
This team was responsible for investigating mathematical models for DNA
mutation. This team started by trying to develop their own probablisitic
model from scratch. In parallel to this e�ort, they also studied the literature
on nucleotide substitution models. The main result of their work was to
recommend a General Time Reversible Model [29] as the working model for
this clinic. The results of this project are documented in Chapter 2.

Team 2 (Je� Kenyon and Zak Kirk): This team was one of two teams
investigating phylogenetic algorithms. In their study, they compared the
accuracy and computational e�ciency of various algorithms on simulated
data. Of particular interest was the question of how accurately does each
algorithm reproduce the original tree topology (which was used to create the
data)? This project is the subject of Chapter 3.

Team 3 (Angela harris, Graig Tennenhouse and Michael Trujillo):
Another question relative to phylogenetic trees is �how important is it to cor-
rectly identify the true tree topology?� The signi�cance of this question lies
in the fact that the most computationally expensive phylogenetic algorithms
spend most of their time exploring di�erent tree topologies. While cheaper
algorithms may not get the topology correct, they may still do a good job in
determining reasonable phylogenetic distances between sequences. To inves-
tigate this question, this team of students performed a study to understand
the sensitivity of the accuracy of pairwise distances to the accuracy of the
tree topology. Their results are given in Chapter 4

Team 4 (Jennifer Reinert, Shelley Speiss, Minjeong Kim andMarcela
Kuzmiak): The �nal team of students was responsible for using the LANL
in�uenza sequence database to �t the model developed by Team 1. Their
work, and a discussion of the �nal model are described in Chapter 5

2

In addition to these four teams, one student (Je� Kenyon), did a sepa-
rate honors project in which he investigated various algorithms for perform-
ing multiple sequence alignment (as potential improvements over the indus-
try standard CLUSTALW algorithm). This project is relevant to the clinic
project since the �rst step in determining a phylogenetic tree is to perform
a multiple sequence alignment. As such, Je�'s honors project is included as
Chapter 6.

3

4

Chapter 2

Generative Models for Nucleotide

Sequence Evolution

By Mahougnon Amanadi, Joseph Cavaleri and Timothy Vis

Abstract

We describe a simple model predicting the evolution of nucleotide sequences
through nucleotide substitution. The model generates a phylogenetic tree
with variable branch lengths as well as the sequences at each node. The
underlying assumptions of this model are that it must be time-reversible and
that the probability of a substitution occurring must increase with the branch
length. In addition, we describe algorithms for using maximum likelihood
estimation to determine the parameters of this model from a given set of
sequences.

2.1 Introduction

In recent years, the avian �u has sparked fears of a devastating epidemic
reminiscent of the 1918 epidemic that killed approximately 50 million people.
Given the pathogenic strength of the H5N1 avian �u virus, the potential for
disaster if it gains the capability to be transmitted directly from one human
to another is great. As yet, no known form of the H5N1 avian �u virus is
communicable from one human to another; however, the possibility that a
future mutant might gain this capability is certainly present and certainly

5

calls for appropriate preparations. In its current forms, the H5N1 virus can
be e�ectively combated with the drug oseltamivir. This drug interferes with
the function of the neuraminidase protein, which allows the virus, once it
has reproduced, to break free from a host cell to invade further host cells.
In order to be properly prepared to �ght any future variants of this virus, it
is important to consider how e�ective oseltamivir will be in its interference
with their neuraminidase. Preliminary work due to Jack Horner indicates
that the e�ectiveness of oseltamivir on the neuraminidase of distinct forms
of the H5N1 virus is closely linked to the phylogenetic distances between the
nucleotide sequences for the neuraminidase of each variant and the sequence
for a reference individual [20]. This suggests that a knowledge of how the
neuraminidase sequences of future variants of the avian �u might look will be
invaluable in determining how e�ective oseltamivir will be on these mutants,
as well as how urgent the need for new developments in the �ght against this
virus is.

In order to predict the future neuraminidase sequences for the H5N1
avian �u virus, a generative model for mutations is necessary. Such a model
must have the capability of being trained to �t the existing data for the neu-
raminidase sequences already known, and recorded in the database hosted
by the Los Alamos National Laboratories [30]. The output of the model
desired should consist of a phylogenetic tree for future mutations of the neu-
raminidase sequences, along with predicted future sequences. Training this
model involves the inference of a phylogenetic tree to describe the ancestry
of the extant sequences.

The construction of phylogenetic trees has been an active area of research
for many years; however, most of the work that has been done has been
concentrated not on extrapolating from present species or sequences to future
species or sequences, but on inferring the ancestry of groups of existing species
or sequences. Fortunately, however, many of the same principles used to infer
ancestral phylogenetic trees can be used to generate possible future members
of a population. The same models which are used to determine how the
extant sequences were evolved from a common ancestry can be used to guess
at how the extant sequences will continue to evolve.

Evolution of a sequence where reproduction is entirely asexual is described
purely by mutations. These mutations can be described most simply as
taking three forms: substitutions, insertions, and deletions. In a substitution,
one nucleotide is replaced by another nucleotide in the same position, while
the length of the sequence remains constant. In an insertion, a string is

6

inserted into some part of the nucleotide sequence, lengthening that sequence.
In a deletion, a string is deleted from some part of the nucleotide sequence,
shortening that sequence.

Unfortunately, there is no established consensus on how insertions and
deletions work [47]. While di�erent techniques exist and are used in multiple
sequence alignment algorithms, there is no consensus on the relationship
between evolutionary distances and the insertion and deletion structures of
mutations, nor any corresponding model for the simulation of insertions and
deletions.

On the other hand, a great deal of work has been done in modeling
nucleotide substitution, and a number of widely accepted models of varying
complexity exist. In what follows, we include descriptions of several models
of nucleotide substitution.

Our purpose has been to research and describe models for mutation in or-
der to provide a mechanism for the prediction of future nucleotide sequences
for the neuraminidase gene in the avian �u. To that end, we have utilized
the publicly available software packages GARLI [59], described in Section 2.4
and Rose [47], described in Section 2.3 to implement the general time re-
versible model of substitution, described in Section 2.2.3, and have created
our own software, utilizing MATLAB, to interpret and convert the output
from GARLI into a usable input �le for Rose. In the following sections,
we �rst of all describe in some detail the substitution models we studied.
We then discuss how Rose can be used to generate sequences, including in
our discussion an overview of the appropriate parameter settings and a de-
scription of the program. Following this, we explore how GARLI may be
utilized to determine the appropriate parameters for mutation, again includ-
ing recommendations on parameter settings to ensure consistency between
the programs and the chosen general time reversible model. We describe our
MATLAB scripts for interpreting and converting the output from GARLI
into the input for Rose. Finally, we include as appendices sample input �les
for Rose and GARLI, a sample output �le from GARLI, and the code from
our MATLAB programs.

2.2 Substitution Models

In the most general sense, as described by Rodríguez et al [42], the process of
nucleotide substitution can be considered as a stochastic process, described

7

by a 4 × 4 matrix P (t) that varies over time, where P (t)i,j represents the
probability that nucleotide i has mutated to nucleotide j after a period of
time t.

P =


1−

∑
fAX (t) fAC (t) fAG (t) fAT (t)

fCA (t) 1−
∑

fCX (t) fCG (t) fCT (t)
fGA (t) fGC (t) 1−

∑
fGX (t) fGT (t)

fTA (t) fTC (t) fTG (t) 1−
∑

fTX (t)


Here each fXY (t) is the probability function that a nucleotide with sym-

bol X mutates to one with symbol Y in a time t, and the summation is
simply over the remaining functions in the given row of the matrix. Notice
that each row then sums to one, as desired. In practice, a mutation after
a period of time t is determined probabilistically at each nucleotide site. A
nucleotide with symbol A, for example, would have a probability of fAC (t)
of mutating to symbol C, a probability of fAG (t) of mutating to symbol G,
and a probability of fAT (t) of mutating to symbol T .

The determination of P (t) is by no means trivial, and, in general, P (t)
cannot be determined analytically [59], but only approximated with numer-
ical methods. As a result, the substitutions are more commonly described
by means of a matrix giving the rates of each type of substitution relative
to the proportion of that nucleotide, a rate that is assumed to be constant
over time. This gives the matrix Q, which is independent of time, with rows
summing to zero. The diagonal entries are determined by simply adding the
negations of the remaining entries in a row.

Q =


−

∑
rAX rAC rAG rAT

rCA −
∑

rCX rCG rCT

rGA rGC −
∑

rGX rGT

rTA rTC rTG −
∑

rTX


Although we do not discuss the mathematics of this relation (which is a

consequence of certain di�erential equations), P and Q are related by the
equation

P = eQt.

We next restrict our discussion to some situations in which the substi-
tution rates are related. In particular, we examine the case where time is
reversible�that is, where the rate of substitution from character X to char-
acter Y is the same as the rate of substitution from character Y to character

8

X. In such a case, the root of a phylogenetic tree constructed under the
model cannot be deterministically located, and any root location is equally
likely. We discuss two particular models: the Jukes-Cantor model [22] and
the General Time Reversible model [29].

2.2.1 Jukes Cantor Model

The Jukes Cantor model, introduced by Jukes and Cantor in 1969 [22], is the
simplest substitution model possible. In this model, the rate of substitution
from one nucleotide to another is assumed to be independent of the actual
nucleotides being substituted. In other words, the matrix Q is given as
follows:

Q =


−3α α α α
α −3α α α
α α −3α α
α α α −3α


For this model, it is possible, and relatively simple, to determine P from Q.
Consider the probability that a given nucleotide has symbol X at time t+dt.
There are two cases to be considered. If this nucleotide had symbol X at
time t, the probability that it will continue to have symbol X at time t + dt
is 1 − 3αdt. If this nucleotide had symbol Y at time t, the probability that
it will mutate to symbol X at time t + dt is αdt. We obtain the following
equation.

PY X (t + dt)− PY X (t) = α (1− PY X (t)) dt− 3αPY X (t) dt

This simpli�es to the di�erential equation

P ′
Y X (t) = α (1− PY X (t))− 3αPY X (t)

= α (1− 4PY X (t))

which has the solution

PY X =
1

4
− 1

4
Ae−4αt.

To determine A, we consider two possible initial conditions: Y = X and
Y 6= X, or, alternately, PY X (0) = 1 and PY X (0) = 0. In the �rst case,
solving for A, we obtain

PXX =
1

4
+

3

4
e−4αt.

9

In the second case, again solving for A, we obtain

PY X =
1

4
− 1

4
e−4αt.

Thus, the matrix P is determined as

P =


1
4

+ 3
4
e−4αt 1

4
− 1

4
e−4αt 1

4
− 1

4
e−4αt 1

4
− 1

4
e−4αt

1
4
− 1

4
e−4αt 1

4
+ 3

4
e−4αt 1

4
− 1

4
e−4αt 1

4
− 1

4
e−4αt

1
4
− 1

4
e−4αt 1

4
− 1

4
e−4αt 1

4
+ 3

4
e−4αt 1

4
− 1

4
e−4αt

1
4
− 1

4
e−4αt 1

4
− 1

4
e−4αt 1

4
− 1

4
e−4αt 1

4
+ 3

4
e−4αt


It should be noted that in this situation, as noted above, P can also be

determined as a matrix exponential:

P = eQt;

however, we will not discuss the mathematical justi�cation of this statement.
In general, it is this method of determining P that is most useful, particularly
when more general and more complicated models are used.

It is common practice to measure time in such a way that the mean
number of substitutions at any given site in a nucleotide sequence in a unit
of time is one. This assumption leads to an α value of 1

3
, and the matrix can

be adjusted accordingly.
If we increase time to in�nity in each case, we observe the following:

lim
t→∞

(
1

4
+

3

4
e−4αt

)
=

1

4

lim
t→∞

(
1

4
− 1

4
e−4αt

)
=

1

4

so that the probabilities of observing any particular nucleotide become equal
and independent of the original nucleotide present in a given position.

While the Jukes Cantor model of substitution is easy to work with and
is useful for illustrating some of the mathematics that underlie models of
evolution, it su�ers from some serious defects. The most glaring defect is
that the instantaneous rates of mutation are assumed to be equal. This is
generally not a valid assumption. In general, the rates may di�er signi�cantly.
Additionally, the equilibrium frequencies of the bases are assumed to be
identical. Once again, this is an unrealistic assumption.

10

On the other hand, the Jukes Cantor model is time-reversible. The prob-
ability of a nucleotide with symbol X mutating to one with symbol Y is
precisely the same as that of one with symbol Y mutating to one with sym-
bol X. The general time reversible model, which we discuss in the following
section, remedies both of the aforementioned defects, while maintaining time-
reversibility.

2.2.2 Treegen: A Generative Implementation of Jukes

Cantor

In order to understand how data might be generated under the Jukes Cantor
model, we constructed a program, Treegen in MATLAB. This program cre-
ates a phylogenetic tree whose branch lengths are determined by a gamma
distributed random variable for a given number of generations and outputs
a MATLAB phytree object, along with DNA sequences for each node of
the tree. The gamma distribution is a two-parameter continuous probability
distribution with the following probability density function:

f (x) = xα−1 e−
x
β

βαΓ (α)
x, α, β > 0.

This program takes �ve parameters, these being the two parameters of the
gamma distribution, a rate parameter for the Jukes Cantor model (scaling
for the number of mutations per unit time), a root DNA sequence, and a
number of generations.

Using these parameters, Treegen determines the branch lengths using
the gamma distribution (chosen with little justi�cation), and then mutates
the sequence according to the Jukes Cantor model, with the given parame-
ter. Having no reasonable justi�cation for the gamma distribution of branch
lengths, and having discovered Rose, we did not further develop Treegen,
preferring to work with the existing and established software available. The
�les necessary for executing Treegen are available on request.

2.2.3 General Time Reversible Model

Following the Jukes Cantor substitution model, several further models were
introduced, which brought various improvements to the simplicity in this
model. The Kimura 2-parameter model [24] introduced a second substitution

11

rate, di�erentiating between transitions (between members of the same base
pair) and transversions (between members of opposite base pairs).

In 1981, Felsenstein [13] used a model that accounted for di�ering nu-
cleotide base frequencies. Aside from maintaining the base frequencies, this
model assumes equal substitution rates in the same manner as the Jukes-
Cantor model.

Four years later, the same process was applied to the Kimura 2-parameter
model by Hasegawa, Kishino, and Yano [17] combining the improvements of
both Kimura and Felsenstein. Further models extended the number of rates
to three, allowing for di�ering transition rates with one transversion rate [25],
or for di�ering transversion rates with one transition rate [49].

We concern ourselves with the most general of these models, attributed
to Lanave et al. [29]. This model allows for variable base frequencies and
includes six di�ering rates of substitution, one for each pair of distinct base
frequencies. As such, this model consists of a total of ten parameters: four
parameters (πA, πC , πG, πT) for the base frequencies of the four nucleotides,
and six parameters (rAC , rAG, rAT , rCG, rCT , rGT) for the rates of substitution
between these six bases. In general, however, only eight of these parameters
are considered free. The fourth base frequency is determined by the necessity
that the four base frequencies sum to one, while the six rates are typically
given as relative rates [5], with the sixth rate set to one. Thus, we obtain as
the parameters a vector of base frequencies

π =
(
πA πC πG 1− (πA + πC + πG)

)
and a relative rate matrix

R =


RAC RAG RAT

RAC RCG RCT

RAG RCG 1
RAT RCT 1

 .

These parameters can be used to determine Q. Since the rates of sub-
stitution in Q are given relative to the proportion of each nucleotide, we
multiply each entry in the matrix by the base frequency of the corresponding
column to ensure that the appropriate base frequencies are maintained, and
that the rate of substitutions are indeed symmetric, in that the absolute rate
of substitutions from X to Y is identical to the absolute rate of substitutions
from Y to X. We further multiply each entry in the matrix by a constant µ

12

which scales the matrix for the appropriate mean instantaneous substitution
rate.

Q =


−

∑
j 6=1 Q1,j µπCRAC µπGRAG µπT RAT

µπARAC −
∑

j 6=2 Q2,j µπGRCG µπT RCT

µπARAG µπCRCG −
∑

j 6=3 Q3,j µπT

µπARAT µπCRCT µπG −
∑

j 6=4 Q4,j


In order to obtain the appropriate mean substitution rate of one, we

consider the total quantity of substitutions and divide by this quantity. The
proportion of sites having base X is πX . The proportion of these that will
mutate to Y is given by µπY RXY , giving a total of µπXπY RXY of these
substitutions per site. Thus, the total number of expected substitutions per
site, which is one, yields the following equation [5].

1 = 2µ
∑
X 6=Y

πXπY RXY ,

so that

µ =
1

2
∑

X 6=Y πXπY RXY

.

and therefore,

Qi,j =
πjRij

2
∑

X 6=Y πXπY RXY

i 6= j

Qi,i = −
∑
j 6=i

Qi,j.

Given the form for Q, it is possible to use numerical methods to then ap-
proximate the appropriate probability matrix P (t) when desired.

2.3 Generating Sequences with Rose

Having discussed the prevalent models for nucleotide substitution, we now
turn our attention to a means of generating actual sequence data that �ts
these models. We pay particular attention to the software package Rose [47],
developed for this very purpose. Rose is a very versatile package, whose
applications stretch far beyond our usage; however, we have, for various

13

reasons, chosen not to apply much of the power of Rose. The material
that follows is adapted from [47] as well as the program manual, both of
which are readily and freely available on-line at the following web address:
http://bibiserv.techfak.uni-bielefeld.de/rose.

2.3.1 Description of the Algorithm

Rose begins with a root sequence, which may either be speci�ed by the user
or randomly generated based on a vector of character frequencies input by
the user. Rose also requires a mutation guide tree. This may, again, be
speci�ed by the user. If no tree is user-speci�ed, Rose generates a uniform
binary tree with 1023 nodes (depth 9), adjusting the edge lengths so that the
average distance along a shortest path through the tree between two nodes
is equal to a user-de�ned value.

When the tree is constructed, Rose uniformly chooses the desired number
of nodes, choosing either from the full set of nodes or from the leaf nodes
(as set by the user), and prunes unnecessary branches from the tree before
constructing the sequences.

Once these structures are in place, Rose mutates sequences to create the
descendants of each sequence. Rose conducts each of the three varieties of
mutation at every step. To perform substitutions, Rose requires a substitu-
tion rate matrix whose (i, j) entry represents the probability of i replacing j
in one unit time. This matrix is simply the transpose of P (t) as discussed
earlier, when t = 1. Rose adjusts this matrix for the branch length in the
appropriate manner to be exactly equivalent to P (t) (where t is the branch
length) in its action on the characters of the nucleotide sequence.

Rose allows for substitution probabilities to be scaled linearly at each site
by a user-de�ned vector. This allows for the speci�cation of sites at which
substitutions cannot occur, occur less frequently, or occur more frequently
than the supplied substitution rate.

After the substitutions are performed, subsequences are inserted into and
deleted from the child sequence according to user-de�ned insertion and dele-
tion probability functions. Since no standard models exist for the insertion
and deletion (which Stoye, Evers, and Meyer acknowledge), we will not dis-
cuss this mechanism, except to note its existence and potential for further
research.

Finally, Rose outputs the desired number of sequences, together with the
true mutation guide tree and the true multiple sequence alignment.

14

2.3.2 Input Parameters

The input for Rose consists of a text �le, with each of several lines specifying
certain parameters used by the program. Rose requires each of the following
inputs:

Name Type Description
TheAlphabet String Alphabet of characters to be used

in sequences
TheFreq Floating

point vector
Vector indicating equilibrium fre-
quency of each character in the se-
quences

TheInsFunc Floating
point vector

Vector indicating probabilities for
lengths of insertions

TheDelFunc Floating
point vector

Vector indicating probabilities for
lengths of deletions

and one or the other of the following
ThePAMMatrix Floating

point matrix
Matrix of substitution probabilities

TheDNAmodel String Speci�cation of a standard substi-
tution model �JC�, �HKY�, �F81�,
�F84�, or �K2P�

A number of other input lines may be included. We list those that are the
most important here and refer the reader to the manual (included in the
software package) for the remainder.

Name Type Description
SequenceLen Integer Average sequence length
SequenceNum Integer Number of sequences to be

reported
ChooseFromLeaves Boolean Output sequences from all

nodes or just from leaves
TheTree PHYLIP Tree The mutation guide tree
Relatedness Integer Average distance between

sequences
TheSequence String Root sequence
TheMutationProbability Floating

point vector
Site speci�c substitution
rate adjustment factor

15

We include an input �le for Rose with the appropriate settings as an ap-
pendix to this document (Appendix 2.A). However, some of the settings bear
further explanation in terms of the choices made. The setting �TheAlphabet�
will naturally be set to �ACGT�, as we are concerned with DNA sequences.
The setting �TheFreq� cannot be arbitrarily set, but must be determined
from the given data upon which the evolution modeled by Rose is being
trained. We return to this in Section 2.4. As we are not concerning our dis-
cussion with insertions and deletions, �TheInsFunc� and �TheDelFunc� will
both be set to all zero vectors so that no insertions and deletions can occur.
Finally, as we prefer to use the general time reversible model, discussed in
Section 2.2.3, we enter the appropriate matrix, again determined from the
data upon which our evolution model is trained, as �ThePAMMatrix� and do
not use the parameter �TheDNAmodel�.

Since we do not include insertions and deletions, every sequence created
will have the same length. Thus, we need not concern ourselves with �Se-
quenceLen�. To maximize our control, we provide a uniform binary tree on
1023 nodes, where we specify the branch lengths using the technique de-
scribed by [47]. As such, we have the choice of 1023 nodes from which to
choose our sequences. In order to gain the true e�ect of a random sampling
of available sequences, we recommend that the number of reported sequences
be kept relatively small, for instance �SequenceNum� being at most 100. In
order to re�ect the true reality, it seems that choosing only from leaf nodes of
a uniform binary tree will not produce a sample of temporally spaced data,
as desired. As such, we set �ChooseFromLeaves� to �false� so that all nodes
of the tree are available as output sequences. This leads to a tree that need
not be ultra-metric (where by ultra-metric we mean that all leaf nodes have
the same distance from the root), a restriction that generally does not �t the
known data.

�TheSequence� will simply be a sequence from the data available. It
seems that to get an accurate picture, several iterations of Rose with several
di�erent sequences from the known data will be necessary.

Finally, �TheMutationProbability� will not be used. Although a large
body of work supports site speci�city in various forms as producing more
accurate phylogenetic trees [59], obtaining enough information to determine
the exact nature of the site speci�city seems intractable at this point. The
most common method of describing rate heterogeneity appears to be the use
of a gamma-distributed random variable with mean one and shape parameter
α which adjusts the substitution rates at each site. Introduced by Yang

16

[56, 57], such a technique improves the inferred phylogeny.
Unfortunately, while the shape parameter can be readily estimated, deter-

mining the exact multipliers to use at each point in the sequence is di�cult.
In order to maintain accuracy, it would be important to maintain not only
the same distribution of rate heterogeneity multipliers, but also the particu-
lar multipliers at each position in the sequence. Failure to do so could easily
result in sequences with lower substitution rates than the mean being as-
signed a higher substitution rate than the mean in the generation of further
sequences. Thus, in order to avoid this as a problem, we set �TheMuta-
tionProbability� to be a vector consisting of all ones and evaluate the other
parameters under the assumption that no rate heterogeneity exists.

We turn next to the methods used in evaluating the parameters used by
Rose.

2.4 Maximum Likelihood Estimation of Model

Parameters with GARLI

In the preceding sections, we discussed several parameters of Rose that
needed to be determined from known data. In this section, we discuss the
software package GARLI [59], a program which uses maximum likelihood
techniques to infer phylogenies. The use of this program will allow us to
infer the desired parameters for Rose. Much of the information that follows
is derived from [59], as well as from the manual included in the distribution
of GARLI. GARLI is freely available on-line at the following web address:
http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html.

2.4.1 Description of the Algorithm

GARLI uses a genetic algorithm approach to �nd and estimate the phy-
logenetic tree and model parameters generating a given set of pre-aligned
sequences. The program takes as its input a set of aligned nucleotide or
amide sequences, and, optionally, a collection of potential phylogenetic trees
for the data. Where large numbers of sequences are used, seeding GARLI
with trees determined by techniques such as Neighbor Joining or UPGMA is
highly recommended to both minimize the runtime and optimize the output.

If no trees are provided, GARLI randomly creates a number of trees
with one leaf node for each sequence in the alignment. GARLI estimates

17

parameters for the appropriate model of evolution (selected by the user) and
then proceeds to iterate the genetic algorithm.

At each generation of the genetic algorithm, GARLI possesses a speci�ed
number of possible phylogenetic trees, together with their model parameters.
The likelihood score of each tree is calculated, and certain optimizations of
model parameters and branch lengths is carried out. Following this proce-
dure, the tree with the highest �nal likelihood score is carried to the next
generation. There, mutations of the topology, branch lengths, and evolution-
ary model parameters are used to �ll out the population of that generation.
This process repeats until certain stopping conditions (selected by the user)
are met. Generally, these stopping conditions consist of a maximum number
of total generations, or a maximum number of generations without any sig-
ni�cant change to the likelihood score of the best tree or the topology of the
best tree.

After GARLI has completed its genetic algorithm, it conducts an exten-
sive branch length optimization to obtain the best possible tree. This tree,
together with the �nal model parameters constitute the main part of the
output of GARLI.

2.4.2 Input Parameters

As with Rose, the input for GARLI consists of a text �le, specifying various
parameters for the program. The following inputs will be signi�cant.

18

Name Options Description
datafname �lename Name of the �le containing the non-

interleaved sequences
streefname �lename Name of the �le containing the ini-

tial tree and model parameters
outputphyliptree 0 or 1 Determines whether a phylip �le

will be output
ratematrix 1rate, 2rate,

6rate, �xed
Determines the substitution model
being used

statefrequencies equal, empiri-
cal, estimate,
�xed

Sets how the equilibrium base fre-
quencies of the nucleotides are de-
termined

invariantsites none, esti-
mate, �xed

Sets the method of determining how
many sites have no substitution

ratehetmodel none, gamma,
gamma�xed

Sets the assumed model of rate het-
erogeneity over sites

The remaining parameters in GARLI are not important to our purposes,
and we refer the reader to the GARLI manual. These parameters deal with
how GARLI logs its progress, what the exact stopping conditions are, and
how the genetic algorithm operates.

Again, we include an input �le for GARLI with the appropriate settings
as an appendix (Appendix 2.B). As discussed earlier in Section 2.3.2, we use
the most general time-reversible model of evolution. This may correspond
to either the �6rate� or ��xed� option for the �ratematrix� parameter. Since,
however, one of our purposes in using GARLI is to determine parameters
such as the rate matrix, using the ��xed� option, which requires the rate
matrix as a part of the input, is unreasonable. Therefore, we use the �6rate�
option for �ratematrix�.

Our use of Rose also requires that we input the base frequencies, and we
again allow GARLI to estimate these for us. The option �estimate� allows
the most freedom in determining the base frequencies, while �empirical� takes
the base frequencies present in the input data. We use �estimate� for the
�statefrequencies� parameter in order to account for both the ancestral and
extant sequences.

As we earlier stated, we do not assume any rate heterogeneity whatso-
ever. This automatically requires that �invariantsites� be set to �none� and
�ratehetmodel� be set to �none�. It should be mentioned that this last setting

19

requires that we set �numratecats� to �1�, although we do not discuss this
parameter.

Finally, we set �outputphyliptree� to �1� to output the phylip �le, which
can more readily be used to determine the parameters for Rose.

2.4.3 Output Data

The output from GARLI consists of several �les. Most of these �les log the
progress of the genetic algorithm and the time taken by GARLI, and we do
not discuss these. The �le of interest is given the tag .best.tre, and it is
with this �le that we continue our discussion. We attach a sample GARLI
output �le as an appendix (Appendix 2.C).

This �le contains several elements:

1. A legend numbering the sequences

2. The optimized phylogenetic tree in Newick format, and

3. The model parameters, including:

(a) �rmat�, the �ve non-trivial entries in the relative rate matrix R

(b) �base�, the three free entries in the base frequency vector

(c) �rates�, the rate heterogeneity model, and

(d) �pinv�, the proportion of invariant sites.

Under the input parameters speci�ed, �pinv� will be zero and �rates� will
be �equal�. The elements of this �le in which we are interested are �rmat� and
�base�. It is these elements which will be used to determine the appropriate
inputs for Rose.

2.5 Determining Rose Parameters from

GARLI Output

The elements of �base� give the base frequencies, in order, of A, C, and G.
Since the frequencies must sum to one, the frequency of T is easily calculated
by summing the other frequencies and subtracting from one. This determines
the fourth element of the vector which becomes the parameter �TheFreq� in
Rose.

20

We determined in Section 2.2.3 the means of converting from the relative
rate matrix R to the probability matrix P , and noted in Section 2.3.2 that
the rate matrix used by Rose was exactly the transpose of P . Thus, deter-
mining P and taking the transpose gives us the desired matrix to ful�ll the
�ThePAMMatrix� in Rose.

For the input �TheTree�, we create a uniform binary tree with 1023 nodes.
The branch length is determined by the average distance between all nodes
(which we �nd using the tree output by GARLI) and dividing by 14 (2 (7− 2),
where 7 is the depth of the tree, as described in [47]).

We have created a collection of MATLAB functions to perform the ap-
propriate conversions from the GARLI output to the Rose con�guration �le.

2.5.1 MATLAB Conversion Scripts

The MATLAB functions we have created take only a single input, that being
the raw �lename of the output �les for GARLI (without any type exten-
sions). These functions create the appropriate Rose input stream �le, having
the same base �lename, so that a given combined run of GARLI and Rose is
uni�ed under a single �lename. The basic MATLAB function is titled gtr.m.
This function takes the �lename. It then calls gouttrin.m to extract the rel-
ative rate matrix and the base frequency vector from the GARLI output �le.
Using garlitorose.m, the relative rate matrix is converted to the probabil-
ity matrix used by Rose. gtr.m converts this matrix into the proper string
format for Rose, and does the same process for the base frequency vector.
The function, pairdist.m determines the average distance dav needed to
construct the tree. This distance is used to calculate the appropriate branch
length for a uniform binary tree with 2047 nodes (1024 leaves), which is
passed to maketree.m, which constructs such a tree. Using this data, gtr.m
creates the input �le for Rose. Parameters that are not altered are included
by way of a separate defaults �le, which is included in the input �le created.
These scripts are included in Appendix 2.D.

2.6 Concluding Remarks

Using the complementary capabilities of Rose and GARLI, we are able to
use the General Time Reversible model of nucleotide substitution to model
the evolution of DNA sequences over time. We use GARLI to determine

21

the appropriate parameters that �t the existing and known data, our own
scripts to reformat the parameters for Rose, and Rose to generate potential
future representatives. This presents a useful tool for estimating the evolu-
tionary relationships, and, in particular, phylogenetic distances, between �u
specimens now present, and �u specimens which may appear in the future.

Naturally, this suggests a number of avenues of further research. We
have repeatedly mentioned the lack of an accepted model for insertions and
deletions, and it would be of great interest to see an appropriate model
developed, or even to study any existing models to account for the the e�ects
of insertions and deletions on the future population.

Additionally, we have not explored the e�ect of site-speci�c rate hetero-
geneity. Exploration of this might indicate that the desired relationships do
not depend on the exact positions that di�er, but only on the actual dis-
tribution of the rate factors. This could also be an interesting avenue of
research.

Finally, it might be of interest to study the e�ect of �xing various model
parameters. If this did not result in signi�cant changes, it might save a
signi�cant amount of time and computing power.

22

2.A Rose Input File

StdOut = False;

OutputFilename = "roseoutput";

OutputFilebase = "roseoutput";

SequenceSuffix = ".fas";

AlignmentFormat = "PHYLIP";

AlignmentWithAncestors = False;

AlignmentSuffix = ".phy";

TreeSuffix = ".tre";

SequenceOutputLen = 60;

SeedVal = None

SequenceNum = 10;

InputType = 4;

Relatedness = 1;

ChooseFromLeaves = False;

TreeWithSequences = True;

TreeSequencesWithGaps = False;

TreeWithAncestors = False;

TheTree = None;

TheSequence = "ACTCTCGCTAAATCGGTT";

ThePAMMatrix = [[0.97,0.01,0,01,0.01],[0.01,0.97,0.01,0.01],

[0.01,0.01,0.97,0.01],[0.01,0.01,0.01,0.97]];

TheAlphabet = "ACGT";

TheFreq = [0.25,0.25,0.25,0.25];

TheInsertThreshold = 0;

TheDeleteThreshold = 0;

TheMutationProbability = [1.0,1.0,1.0,1,0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1,0,1.0,1.0,1.0,1.0,1.0,1.0];

TheDNAmodel = None;

MeanSubstitution = None;

TransitionBias = None;

TTratio = None;

NumberOfRuns = 1;

TheInsFunc = [0];

TheDelFunc = [0];

23

2.B GARLI Input File

[general]

datafname = rana.phy

constraintfile = none

streefname = ranastart.tre

ofprefix = ranaGarli

randseed = -1

availablememory = 512

logevery = 10

saveevery = 100

refinestart = 1

outputeachbettertopology = 1

enforcetermconditions = 1

genthreshfortopoterm = 10000

scorethreshforterm = 0.05

significanttopochange = 0.01

outputphyliptree = 1

outputmostlyuselessfiles = 0

writecheckpoints = 0

restart = 0

ratematrix = 6rate

statefrequencies = estimate

ratehetmodel = none

numratecats = 1

invariantsites = none

[master]

nindivs = 4

holdover = 1

selectionintensity = .5

holdoverpenalty = 0

stopgen = 5000000

stoptime = 5000000

startoptprec = .5

minoptprec = .01

24

numberofprecreductions = 20

treerejectionthreshold = 50.0

topoweight = 1.0

modweight = .05

brlenweight = 0.2

randnniweight = 0.1

randsprweight = 0.3

limsprweight = 0.6

intervallength = 100

intervalstostore = 5

limsprrange = 6

meanbrlenmuts = 5

gammashapebrlen = 1000

gammashapemodel = 1000

uniqueswapbias = 0.1

distanceswapbias = 1.0

bootstrapreps = 0

inferinternalstateprobs = 0

25

2.C GARLI Output File

#nexus

begin trees;

translate

1 temporariaDMH84R1,

2 boyliiMVZ148929,

3 luteiventris_MT_MVZ191016,

4 luteiventris_WA_MVZ225749,

5 muscosaMVZ149006,

6 auroraMVZ13957,

7 cascadaeMVZ148946,

8 sylvaticaMVZ137426,

9 sylvaticaDMH84R43,

10 septentrionalesDCC3588,

11 grylioMVZ175945,

12 virgatipesMVZ175944,

13 okaloosae,

14 clamitansJSF1118,

15 heckscheriMVZ164908,

16 catesbianaX12841,

17 catesbianaDMH84R2,

18 maculataKU195258,

19 vibicariaMVZ11035,

20 warszewitshiiJSF1127,

21 palmipesVenAMNHA118801,

22 palmipesEcuKU204425,

23 bwanaQCAZ13964,

24 Sp_1_ecuadorQCAZ13219,

25 vaillantiKU195299,

26 julianiTNHC60324,

27 sierramadrensisKU195181,

28 psilonotaKU195119,

29 tarahumaraeKU194596,

30 zweifeliJAC7514,

31 pustulosaJAC10555,

32 pipiensJSF1119,

26

33 pipiensY10945,

34 dunniJSF1017,

35 montezumaeJAC8836,

36 sp_2_mex_JSF1106,

37 chiricahuensisJSF1063,

38 chiricahuensisJSF1092,

39 subaquavocalis,

40 palustrisJSF1110,

41 areolataJSF1111,

42 sevosaUSC8236,

43 capitoSLU003,

44 spectabilisJAC8622,

45 forreriJSF1065,

46 tlalociJSF1083,

47 berlandieriJSF1136,

48 neovolcanicaJSF960,

49 blairiJSF830,

50 omiltemanaJAC7413,

51 magnaocularisJSF1073,

52 yavapaiensisJSF1085,

53 sp_7_JaliscoJSF1000,

54 macroglossaJAC10472,

55 macroglossaJSF7933,

56 taylori286,

57 sp_4_Panama,

58 sp_5_CostaRichDMH86_210,

59 sp_6_CostaRicaDMH86_225,

60 sp_8_PueblaJAC9467,

61 oncaLVT3542,

62 sp_3_MichoacanJSF955,

63 sphenocephalaUSC7448,

64 utriculariaJSF845;

tree best = [&U][-24577.556][r 2.456458 6.982543 3.1091439

0.78076136 16.206955 b 0.32764061 0.22446358 0.18008002

0.26781579]((59:0.02404639,(58:0.02070131,57:0.01334301):

0.00446231):0.00419777,((54:0.00840710,55:0.00535950):

0.01125188,56:0.03899525):0.00973353,((((44:0.03095155,50:

0.04124302):0.00424475,62:0.02285186):0.00286198,

27

(((((33:0.00173383,32:0.00611292):0.01873047,((36:0.01530141,

((39:0.00646480,37:0.01675962):0.00103116,38:0.00691203):

0.00787128):0.00549242,(34:0.00866646,35:0.01376239):

0.01247487):0.01718679):0.02347588,((27:0.06669873,((29:

0.02632106,31:0.05330202):0.01080682,(30:0.03935032,28:

0.05162246):0.01301134):0.02706716):0.01936555,(((((24:

0.01358757,(21:0.06073455,22:0.00448249):0.01918471):0

.00785586,23:0.02173856):0.01336076,(26:0.04113013,25:

0.05159345):0.01287414):0.03760387,((19:0.04187329,20:

0.06035407):0.04059833,18:0.04725818):0.01485366):0.01430515,

(((10:0.02104576,(((14:0.00458409,13:0.00431589):0.00813538,

(15:0.02206284,(16:0.00000001,17:0.00103954):0.01855267):

0.00319522):0.00549825,(12:0.03330980,11:0.04140663):

0.00502277):0.00735102):0.03034461,(8:0.00314856,9:0.00207632):

0.04017379):0.01312487,(((4:0.00050339,3:0.00364522):

0.02192013,(2:0.03693488,1:0.05728056):0.01158852):0.00577521,

((6:0.01261546,7:0.01448233):0.01253667,5:0.01819152):

0.01491158):0.03772422):0.02398099):0.00982403):0.05148397):

0.00758177,(40:0.01764721,(41:0.02638977,(42:0.00213685,43:

0.00794626):0.01777335):0.00645975):0.01048866):0.02196754,

((64:0.00852435,63:0.01256110):0.01415808,(49:0.00599877,

(47:0.00454896,(48:0.00120913,46:0.00244213):0.00260805):

0.00522494):0.01682433):0.00329553):0.00385245):0.00539220,

((45:0.03757620,(51:0.05529845,53:0.03859883):0.01303302):

0.00431893,((52:0.00493604,61:0.00604112):0.01862597,60:

0.04305593):0.00565256):0.00460141):0.00473571);

end;

begin paup;

clear;

gett file=ranaGarli.best.tre storebr;

lset userbr nst=6 rmat=(2.45645803 6.98254297

3.10914390 0.78076136 16.20695498) base=(0.32764061

0.22446358 0.18008002) rates=equal pinv= 0.00000000;

end;

28

2.D MATLAB Conversion Functions

2.D.1 gtr.m

function gtr=gtr(string)

%The input is a string giving the filebase name for the

%output files from a run of GARLI. This function will

%search the GARLI output files and create a suitable input

%file for Rose.

output=string;

trefile=sprintf('%s.best.tre',output);

phyfile=sprintf('%s.best.tre.phy',output);

[rmat, base]=gouttrin(trefile);

%Here we obtain the proper probability matrix and format

%it as a string in the format Rose takes as input.

pmat=garlitorose(base,rmat);

pmats1=mat2str(pmat);

pmats2=strrep(pmats1,'[','[[');

pmats3=strrep(pmats2,']',']]');

pmats4=strrep(pmats3,';','],[');

pmats=strrep(pmats4,' ',',');

%Here we obtain the base frequency vector and format

%it as a string in the format Rose takes as input.

fbase=[base,1-(base(1)+base(2)+base(3))];

fbases1=mat2str(fbase);

fbases=strrep(fbases1,' ',',');

%Here we use the Phylip tree output by GARLI to construct

%a uniform binary tree with which to seed Rose. This tree

%has the property that the mean distance between two nodes

%is the same as that in the GARLI output tree. The tree has

%2047 nodes from which the sequences will be chosen.

29

dav=pairdist(phyfile);

b=dav*0.0625;

tree=maketree(b);

%Here we obtain a sequence from the LANL database with which

%to seed Rose. The sequence is randomly chosen from those in

%the database.

sequences=rsequence;

%We now combine the appropriate elements into an input file

%for Rose.

fid=fopen(output,'w');

fprintf(fid, '%%include gtrdef\n\n');

fprintf(fid, strcat('OutputFilebase = "', string, '"\n'));

fprintf(fid, strcat('ThePAMMatrix = ', pmats, '\n'));

fprintf(fid, strcat('TheFreq = ', fbases, '\n'));

fprintf(fid, strcat('TheTree = ', tree, '\n'));

fprintf(fid, strcat('TheSequence = "', sequences, '"\n'));

begin{verbatim}

2.D.2 gouttrin.m

function [rmat, base] = gouttrin(file)

%

% gouttrin.m function to output the rmat and base vectors

% from a garli output.

%

% INPUT file is a string containing the file name

% of the garli output

%

% OUTPUT rmat relative rate vector

% base base frequencies

%

% AUTHOR Joseph Cavaleri

30

%

%--

%

fid=fopen(file);

S=fscanf(fid, '%c');

br=strfind(S, 'rmat');

bb=strfind(S, 'base');

be=strfind(S, 'rates');

rmats=S((br+6):(bb-3));

bases=S((bb+6):(be-3));

rmat=str2num(rmats);

base=str2num(bases);

return

2.D.3 garlitorose.m

%This function should take the GARLI output files and

%use it to adjust the Rose input file appropriately.

%Thus, it should pull the appropriate GARLI output

%parameters (the base frequency vector and the rate

%vector) to pass the appropriate rate matrix and base

%frequencies to Rose, and should determine the average

%distance between nodes of the output tree to pass to

%Rose as well.

function garlitorose = garlitorose(freq, rate)

piA=freq(1);

piC=freq(2);

piG=freq(3);

piT=1-(freq(1)+freq(2)+freq(3));

Rac=rate(1);

Rag=rate(2);

Rat=rate(3);

Rcg=rate(4);

31

Rct=rate(5);

Rgt=1;

total=piA*piC*Rac+piA*piG*Rag+piA*piT*Rat+piC*piA*Rac

+piC*piG*Rcg+piC*piT*Rct+piG*piA*Rag+piG*piC*Rcg

+piG*piT*Rgt+piT*piA*Rat+piT*piC*Rct+piT*piG*Rgt;

Q=[-(piC*Rac+piG*Rag+piT*Rat),piC*Rac,piG*Rag,piT*Rat;

piA*Rac,-(piA*Rac+piG*Rcg+piT*Rct),piG*Rcg,piT*Rct;

piA*Rag,piC*Rcg,-(piA*Rag+piC*Rcg+piT*Rgt),piT*Rgt;

piA*Rat,piC*Rct,piG*Rgt,-(piA*Rat+piC*Rct+piG*Rgt)]*1/total;

PP=expm(Q);

P=PP';

garlitorose=P;

end

2.D.4 pairdist.m

function dav = pairdist(string)

tree=phytreeread(string);

D=pdist(tree,'nodes','all','squareform',true);

sz=size(D);

ns=ones([sz(1) 1]);

dav=ns'*D*ns/(sz(1)*sz(1));

end

2.D.5 maketree.m

function maketree=maketree(branch);

32

branchs=num2str(branch);

string='';

for x=0:1023

if mod(x,2)==0

if mod(x,1024)==0

string=strcat(string,'((((((((((a',num2str(x),

':', branchs, ',');

elseif mod(x,512)==0

string=strcat(string,'(((((((((a',num2str(x),

':', branchs, ',');

elseif mod(x,256)==0

string=strcat(string,'((((((((a',num2str(x),

':', branchs, ',');

elseif mod(x,128)==0

string=strcat(string,'(((((((a',num2str(x),

':', branchs, ',');

elseif mod(x,64)==0

string=strcat(string,'((((((a',num2str(x),

':', branchs, ',');

elseif mod(x,32)==0

string=strcat(string,'(((((a',num2str(x),

':', branchs, ',');

elseif mod(x,16)==0

string=strcat(string,'((((a',num2str(x),

':', branchs, ',');

elseif mod(x,8)==0

string=strcat(string,'(((a',num2str(x),

':', branchs, ',');

elseif mod(x,4)==0

string=strcat(string,'((a',num2str(x),

':', branchs, ',');

else

string=strcat(string,'(a',num2str(x),

':', branchs, ',');

end

else

if mod(x+1,1024)==0;

string=strcat(string, 'a', num2str(x), ':',

33

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, '):', branchs, '):',

branchs, ');');

elseif mod(x+1,512)==0

string=strcat(string, 'a', num2str(x), ':',

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, '):', branchs, '):',

branchs, ',');

elseif mod(x+1,256)==0

string=strcat(string, 'a', num2str(x), ':',

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, '):', branchs, ',');

elseif mod(x+1,128)==0

string=strcat(string, 'a', num2str(x), ':',

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, ',');

elseif mod(x+1,64)==0

string=strcat(string, 'a', num2str(x), ':',

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, '):', branchs, '):',

branchs, ',');

elseif mod(x+1,32)==0

string=strcat(string, 'a', num2str(x), ':',

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, '):', branchs, ',');

elseif mod(x+1,16)==0

string=strcat(string, 'a', num2str(x), ':',

branchs, '):', branchs, '):', branchs, '):',

branchs, '):', branchs, ',');

elseif mod(x+1,8)==0

string=strcat(string, 'a', num2str(x), ':',

branchs, '):', branchs, '):', branchs, '):',

branchs, ',');

elseif mod(x+1,4)==0

34

string=strcat(string, 'a', num2str(x), ':',

branchs, '):', branchs, '):', branchs, ',');

else

string=strcat(string, 'a', num2str(x), ':',

branchs, '):', branchs, ',');

end

end

end

maketree=string;

2.D.6 rsequence.m

function rsequence = rsequence()

seqs = fastaread('trimmedSequenceSet.fas');

n=1102;

f=ceil(n.*rand);

rsequence = seqs(f).Sequence;

2.D.7 gtrdef

default Rose parameters for GTR

StdOut = False

SequenceSuffix = ".fas"

AlignmentFormat = "PHYLIP"

AlignmentSuffix = ".phy"

TreeSuffix = ".tre"

SequenceOutputLen = 60

SequenceNum = 100

ChooseFromLeaves = False

TreeWithAncestors = True

TheAlphabet = "ACGT"

TheInsertThreshold = 0.00

TheDeleteThreshold = 0.00

TheInsFunc = [0.]

TheDelFunc = [0.]

35

36

Chapter 3

Evaluating Phylogenetic

Algorithms

By Je� Kenyon and Zak Kirk

Abstract

This report evaluates several of the most popular algorithms for the gen-
eration of phylogenetic trees, in terms of their speed and accuracy. This
comparison is made through the use of generated random sequences in which
the mutation rate and the structure of the evolutionary tree is known a pri-
ori. Through the evaluation of sixteen experimental sets, we conclude that
GARLI is superior to neighbor joining, UPGMA, or a �pure� maximum like-
lihood method at minimizing the log likelihood score, a metric taking both
topology and branch distance into account.

3.1 Introduction

The problem to be investigated in this sub-project was to determine which
of several popular approaches to phylogenetic tree generation produced the
best tree. This is of interest in the current Math Clinic, since the quality
of the phylogenetic tree would have an impact on the mutation rate derived
from the tree.

This problem included a signi�cant sub-problem, namely, how could the
relative �goodness� of a set of phylogenetic trees produced from the LANL

37

data set be quanti�ed? A quick search of the literature did not reveal a
solution, and therefore, our group determined that our investigation should
use generated data sets, where the correct tree structure would be known.
We could then attempt to reconstruct the phylogenetic tree using multiple
approaches, and compare the resulting trees to the known, correct tree. We
used the publicly available ROSE software [46] to generate the data sets.

The project involved a further sub-problem of identifying the metrics in
use for comparing phylogenetic trees. We identi�ed three scoring metrics in
common use: Robinson-Foulds (RF) score, Branch Score Distance (BSD),
and Quartets Distance. We adopted the RF and BSD metrics, but were un-
able to �nd publicly available software for Quartets Distance. We also tracked
Log Likelihood (lnL) scores for Maximum Likelihood (ML) and GARLI trees.

We concluded from our experimental �ndings that GARLI was the best
program of those tested for minimizing the lnL score (a metric taking both
tree topology and branch distance into account). The primary drawback of
GARLI is its long running time; however, further experimentation revealed
that running time can be signi�cantly reduced by providing as starting topol-
ogy the tree generated from a �pure� ML approach.

3.1.1 Literature Review

We were unable to �nd broad studies o�ering comprehensive evaluations of
the algorithmic or heuristic approaches to phylogenetic tree constructions.
The available studies indicated that ML was equal to or superior to the
other methods with which it was compared.

Kuhner and Felsenstein [27] evaluated parsimony, compatibility, maxi-
mum likelihood, Fitch-Margoliash, and Neighbor-Joining methods. It found
ML to be the best method overall, although for short sequence lengths, the
distance-matrix methods could sometimes generate better results. It also
showed that, when evolutionary rates varied, all the tested methods had
problems.

Russo, et. al. [43] evaluated the distance methods of neighbor joining and
minimum evolution, as well as parsimony and ML, using both amino acid and
nucleotide sequences. They concluded that the major factor in constructing
a correct tree was not the algorithm used, but the number of amino acids or
nucleotides used in the analysis: in their testing, the genes with 377 or more
codons led to the correct tree, while genes with 312 or fewer codons did not.

Hollich, et. al. [19] compare the standard Neighbor Joining algorithm

38

with several variants (as implemented by the programs BIONJ, FastME,
and Weighbor). Their results were that BIONJ was the best of the lot, while
FastME performed poorly on long branches, and Weighbor was considerably
slower than the others.

3.2 Testing Environment and Data Set

3.2.1 Hardware

All sequencing and tree generation activities were performed on a Lenovo
T60 laptop, with dual T2400 1.83GHz processors, and 2GB of RAM. The
operating system was Windows XP Professional (Service Pack 2), and except
where noted, all processing took place under Windows XP.

It should be noted that execution times for various activities should be
used as a guideline only. The computer was not dedicated to the task, and
other CPU-intensive tasks of varying duration may have executed during
the course of, for example, a single GARLI run. In short, the situation was
analogous to what would be encountered on any other multi-user machine.

3.2.2 Generating the Data Set and Control Trees

Two data sets were generated: the �rst was a kind of �homebrew� approach,
utilizing Perl [55] to create �les of FASTA sequences, using randomizations
and naïve assumptions, while the second approach utilized a more conven-
tional approach to data generation.

The Perl program for generating sequence data used an e. coli nucleotide
strand as basic sequence. The mutation rate was 10−4 (one mutation per
1000 nucleotides), and the mutation events could be, with equal probability,
mutations, insertions, or deletions, the latter two taking place in groups of
three nucleotides. The maximum o�spring per individual per generation was
set at �ve, but the actual number was a random integer up to the maxi-
mum. FASTA sequence output formatting was provided through the BioPerl
package.

The Perl program used the following algorithm:

1. To generate a set of sequences of a given length n, read in the �rst n
characters of the e. coli sequence, and declare this the root sequence;

39

2. If the set is not yet of the required size, create a new generation by
creating o�spring for each sequence in the previous generation:

(a) Determine the number of mutations per o�spring. The number
of mutations is a selection from a random distribution, where the
mean is the sequence length multiplied by 10−4, and the standard
deviation is the mean multiplied by .1;

(b) Determine the number of o�spring. The number of o�spring is a
selection from a random distribution, with a minimum of one and
a maximum of �ve;

(c) For each o�spring, carry out the required number of mutations:

i. Choose randomly whether the mutation is to be a swap, and
insertion, or a deletion;

ii. If a swap, choose a position at random and exchange the cur-
rent nucleotide for one of the remaining three;

iii. If an insertion, make up a sequence of three nucleotides at ran-
dom, and insert it at a random position within the sequence;

iv. If a deletion, select a position at random, adjust position so
that the deletion takes place on an amino acid boundary, and
delete the next three characters.

(d) Make up the necessary FASTA header information for the se-
quence.

3. Repeat until the total number of sequences exceeds the number needed.

4. Remove excess sequences from the last generation until the set has the
exact number needed.

5. Output the sequences in FASTA format.

While allowing the project team to get up and running in evaluating tree
generation algorithms quickly, it became apparent that the assumptions made
in the data generation were inconsistent with the tree generation algorithms.
Using these data sets, neighbor joining proved to be the superior technique,
easily beating out ML and GARLI on a consistent basis, a result which was
contradicted by the literature (see Section 3.1.1, above). Since these results
would have required signi�cant additional research to be defensible, we chose
to �nd another approach to data generation.

40

Through the literature review process, the ROSE program [46] for gener-
ating sequence data and the associated tree was found. ROSE uses a proba-
bilistic model, easily adjustable through con�guration �les, to generate DNA
sequences using one of several possible evolutionary models. In the process of
generating sequence data, the program creates the true phylogenetic tree (our
�control trees�), and the correct sequence alignment. Notes on the project's
use of ROSE and the con�guration input �le are shown in Section 3.B.

The ROSE software is intended primarily for Unix platforms. For this
project, an executable was built from downloaded source code on the cygwin
platform [18], a Unix-like environment that runs on top of Windows.

3.2.3 Sequencing the data sets with CLUSTALW

Using a multiple sequence alignment program to align the sequence set is a
necessary prerequisite to generating a phylogenetic tree.

ROSE produces the correct sequence alignment for each generated set.
However, since the goal of this project was to determine which tree algorithm
did the best job of reconstructing the tree, and since the LANL set of se-
quences was to be aligned using CLUSTALW, we decided to use CLUSTALW
alignments for our experiment. Therefore, CLUSTALW alignments were cre-
ated for the 16 generated data sets. Generation times are shown in Figure 3.1.

The details of CLUSTALW are beyond the scope of this project. Inter-
ested readers are referred to [50].

3.2.4 Generating Phylogenetic Trees

Neighbor Joining (NJ) and UPGMA trees were obtained using the DNADIST
program (to generate the distance matrix) and the NEIGHBOR program,
both in the PHYLIP [11] (version 3.67) suite of tools.

ML trees were generated using the PHYML [16] program (version 2.4.4).
The program o�ers several substitution models for DNA, however, for this
project (except where noted) the default Hasegawa model was used.

(It should be noted that the DNAML program within PHYLIP is also
capable of generating ML trees. However, using it in this project proved
problematic, as it was quite slow, and hung on a number of the �homebrew�
data sets. It was not used for ROSE-generated data sets, although it is
conceivable that it behaves better on data conforming to a more traditional
evolutionary model.)

41

Set Size Length 50 Length 100 Length 500 Length 1000
100 0.00938 0.03 0.67167 2.63333
500 0.19833 0.675 14.48333 57.46667
1000 0.83166 2.55 55.88333 225
1500 1.83333 5.86667 125 495

Figure 3.1: CLUSTALW MSA Generation Times (minutes)

42

GARLI [59], version 0.95, was used to �nd the best ML tree using a ge-
netic algorithm approach. Using this software was understood to be manda-
tory, since one of the goals of the project was to determine whether GARLI's
longer running times resulted in �better� phylogenetic trees.

Details of the tree generation algorithms are beyond the scope of this
paper, but are available in the Background section of the full report.

3.2.5 Comparing Trees

In testing phylogenetic tree construction programs, it was obviously neces-
sary to �nd a way of determining a measure of the accuracy of the trees
produced [48]. In looking for this metric we considered the fact that our
original program for generating synthetic data (a semi-probabilistic mutat-
ing of an existing genetic sequence) produced a tree without branch length.
We decided to use the Robinson-Foulds (RF) distance [41], which is widely
used in the domain. The RF distance has the advantage of not needing
branch length in its calculation, but is instead solely on the topology of the
trees being compared.

Other widely used distance measures for phylogenetic trees are the Branch
Score Distance (BSD) [27] and the Quartets distance. After reviewing the
RF scores we decided to also look at the BSD distance to try to explain some
anomalous data.

For the BSD, the branch lengths are the metric used to determine the
"closeness" of the trees. It is calculated by summing the squared di�erences
between the branch lengths. In the case of tree T1 having a branch that is
not present in the other tree, T2, the tree T2 is given a corresponding branch
with length 0. Thus, if both trees have branches {{A, D}, {B, C, E}}, the
sum contains the square of the di�erence between the branch lengths. If one
tree has the branch and the other does not, it contains the square of the
di�erence between the branch length and zero (in other words, the square
of that branch length). The BSD takes this sum of squared di�erences and
computes its square root. Using the tree in Figure 3.2 as an example, we
would get the sum of:

• The di�erence between branch lengths of A in T1 (.3) and T2 (.27),
squared;

• The di�erence between branch lengths of B in T1 (.2) and T2 (.15),
squared;

43

Figure 3.2: BSD Example

• The di�erence between branch lengths of C in T1 (.1 + .2) and T2 (.05
+ .05 + .1), squared; and

• The di�erence between branch lengths of D in T1 (0, since the branch
does not exist in T1) and T2 (.05), squared.

or:

(.3− .27)2 + (.2− .15)2 + (.3− .2)2 + (0− .05)2 = .0159 (3.1)

The quartets distance (which we did not make use of) is very similar
to the RF distance measure. In the RF distance, the taxa (leaf nodes) are
separated into two subsets by "cutting" internal edges. In the quartets, the
trees are cut into all possible sections of four. The number of quartets that
have di�erent topologies, in two unrooted trees of arbitrary degree, is the
quartets distance.

For comparing the results of the �pure� maximum likelihood approach
and GARLI, we also compared the log likelihood score. The log likelihood
score (also known as ln(L)) is, as its name implies, the log of the maximum
likelihood score; the log is taken to make the ML scores more manageable.
To understand why the log is preferred, we need to look into the calculation
of the ML score itself.

Given some prediction P of an event occurring (i.e., rolling the sum of 7 on
two six-sided dice), the likelihood score is L = Πn

i=1D(xi −P) where the xi's
are observed data (i.e., previous rolls) and D(x) is an assumed probability
distribution. For instance, if we are looking for the likelihood of Z given a
set of data X and estimated coe�cients A i.e.,

Z = A ·X + ε

44

where ε is an error term with the assumed probability distribution. This
gives us D(Z−AX) (the probability of Z given the estimated coe�cients and
X), and therefore L = Πn

i=1D(Z − AX) (assuming independence of events).
Thus we want to get the estimated coe�cients A as "good" as possible to
maximize L. The L score becomes smaller and smaller with the addition of
more terms/data, i.e. in rolling a sum of 7 on two six-sided dice multiple
times, the likelihood for each roll is 1

6
. Thus for 5 rolls we have:

L =

(
1

6

)5

= .0001286

and for 7 rolls we get

L =

(
1

6

)7

= 3.57× 10−6

Thus, as the "size" of X increases, the L score decreases dramatically, hence
the need to take a log of the L score, resulting in the ln(L) score. As men-
tioned earlier it is not appropriate to compare the ln(L) scores unless the
number of data/observed events is the same for the likelihoods under com-
parison.

3.3 Results

The raw data from the experimental sets are given in Table 3.1 and Table 3.2.
Robinson-Foulds distances and branch score distances were calculated

for all trees, using the TREEDIST program in PHYLIP. These are shown in
Figure 3.3 through Figure 3.10.

In addition, log likelihood scores were collected from the trees generated
from PHYML and GARLI. These scores are shown in Figure 3.10.

3.4 Discussion

Users considering the time required to generate the phylogenetic tree to be
the primary consideration would be discouraged from using GARLI. Using

45

Figure 3.3: Branch Score Distance, 100 sequences

Figure 3.4: Branch Score Distance, 500 sequences

46

Figure 3.5: Branch Score Distance, 1000 sequences

Figure 3.6: Branch Score Distance, 1500 sequences

47

Figure 3.7: Robinson Foulds Distance, 100 sequences

Figure 3.8: Robinson Foulds Distance, 500 sequences

48

Figure 3.9: Robinson Foulds Distance, 1000 sequences

Figure 3.10: Robinson Foulds Distance, 1500 sequences

49

Set NJ UPGMA PHYML/Hasegawa GARLI/NJ
NS100L50 0.02 0.02 0.27 12.25
NS100L100 0.02 0.02 0.42 13.73
NS100L500 0.02 0.02 3.82 25.83
NS100L1000 0.02 0.02 10.43 39.83

NS500L50 0.03 0.02 2.98 135.47
NS500L100 0.03 0.02 5.67 148.12
NS500L500 0.03 0.02 55.13 98.33
NS500L1000 0.03 0.02 133.75 215.17

NS1000L50 0.50 0.36 8.40 1150.82
NS1000L100 0.29 0.20 15.43 587.85
NS1000L500 0.32 0.22 67.77 661.53
NS1000L1000 0.30 0.20 211.67 765.98

NS1500L50 1.01 0.69 20.22 2744.58
NS1500L100 1.01 0.68 37.93 2416.40
NS1500L500 1.00 0.67 168.40 2266.03
NS1500L1000 1.02 0.68 262.45 2438.68

Table 3.1: Tree generation times (minutes) for Neighbor Joining (NJ), UP-
GMAL, Maximum Likelihood (ML), GARLI

an NJ tree as the starting topology, as recommended in the User's Guide,
the run time for a data set comparable to the size of the LANL set involved
in this project would be approximately 40+ hours.

Users considering only the resulting topology (as expressed by the RF
distance) would similarly be discouraged from using GARLI, since GARLI
was uniformly unable to achieve the RF scores achieved by PHYML. Even
when GARLI was given the PHYML tree as a starting topology, the RF score
increased.

It is only when comparing on the basis on lnL score that the bene�t
of GARLI becomes apparent. We believe that this is the correct metric to
use in comparing trees, since it takes both topology and branch distance
into account (unfortunately, NJ and UPGMA trees do not have a computed
lnL score; presumably it can be calculated separately, but we did not do
so, disqualifying them as serious competitors based on topology score and
literature review.).

It should be noted that when we say that GARLI had better lnL scores,

50

N
J

N
J

U
P
G
M
A

U
P
G
M
A

M
L

M
L

M
L

G
A
R
L
I/
N
J

G
A
R
L
I/
N
J

G
A
R
L
I/
N
J

S
et

R
F

B
S
D

R
F

B
S
D

R
F

B
S
D

ln
L

R
F

ln
L

B
S
D

N
S
1
0
0
L
5
0

1
9
4

3
5
6
.6
8
9

1
9
4

3
5
5
.8
2
8

1
2
2

9
9
9
9
0
.6
1
0

-5
5
5
5
.

1
4
2

-5
5
4
8
.1
6
7

3
4
9
.5
9
3

N
S
1
0
0
L
1
0
0

1
9
4

3
5
7
.1
6
9

1
9
4

3
5
6
.1
3
0

1
1
0

3
4
9
.0
1
0

-1
1
4
0
3
.

1
5
2

-1
1
3
8
7
.1
5
8

3
4
8
.6
2
8

N
S
1
0
0
L
5
0
0

1
9
4

3
5
2
.8
2
0

1
9
4

3
5
1
.7
2
8

6
8

3
4
4
.1
6
3

-5
8
8
5
6
.

9
0

-5
8
8
4
9
.0
7
7

3
4
4
.2
2
2

N
S
1
0
0
L
1
0
0
0

1
9
4

3
5
2
.4
1
7

1
9
4

3
5
1
.1
7
6

5
4

3
4
3
.4
8
6

-1
1
6
9
7
7
.

7
6

-1
1
6
9
7
0
.1
5
0

3
4
3
.6
0
2

N
S
5
0
0
L
5
0

9
9
4

5
2
3
.9
7
9

9
9
4

5
2
3
.0
1
6

5
0
4

9
9
9
7
5
.3
0
0

-2
5
3
6
3
.

6
3
4

-2
4
8
6
4
.

5
0
9
.4
7
9

N
S
5
0
0
L
1
0
0

9
9
4

5
2
3
.1
7
6

9
9
4

5
2
2
.2
2
1

3
1
0

1
4
1
4
0
8
.1
0
0

-5
1
9
5
1
.

5
3
4

-5
0
8
3
7
.

5
0
8
.1
9
6

N
S
5
0
0
L
5
0
0

9
9
4

5
2
3
.3
8
0

9
9
4

5
2
2
.2
0
0

1
0
8

3
8
7
2
1
0
.4
0
0

-2
5
8
2
4
0
.

3
0
8

-2
4
9
0
2
5
.

5
0
9
.4
7
8

N
S
5
0
0
L
1
0
0
0

9
9
4

5
2
3
.9
8
4

9
9
4

5
2
3
.0
1
3

1
1
2

2
4
4
8
8
5
.8
0
0

-5
1
8
9
9
9
.

2
9
8

-5
0
0
8
9
7
.

5
1
0
.1
4
7

N
S
1
0
0
0
L
5
0

1
9
9
4

6
4
9
.5
5
0

1
9
9
4

6
4
8
.6
7
7

8
3
2

9
9
9
7
7
.9
9
0

-4
7
5
4
9
.

1
2
1
2

-4
6
4
5
1
.

6
3
1
.3
9
0

N
S
1
0
0
0
L
1
0
0

1
9
9
4

6
4
9
.6
3
8

1
9
9
4

6
4
8
.6
8
2

5
2
2

1
4
1
3
8
8
.8
0
0

-9
5
5
0
7
.

9
7
0

-9
4
0
7
0
.

6
2
9
.3
0
1

N
S
1
0
0
0
L
5
0
0

1
9
9
4

6
4
9
.7
1
6

1
9
9
4

6
4
8
.6
3
2

1
4
6

3
6
0
4
7
3
.0
0
0

-4
8
5
1
2
3
.

4
7
8

-4
6
8
3
8
9
.

6
3
1
.1
4
8

N
S
1
0
0
0
L
1
0
0
0

1
9
9
4

6
4
9
.7
9
4

1
9
9
4

6
4
8
.6
4
8

1
4
8

2
9
9
9
2
8
.7
0
0

-9
8
3
7
9
1
.

5
3
4

-9
4
9
4
4
5
.

6
3
1
.2
1
2

N
S
1
5
0
0
L
5
0

2
9
9
4

8
8
5
.2
2
8

2
9
9
4

8
8
4
.2
8
7

1
5
4
8

1
9
9
9
7
5
.4
0
0

-7
2
7
1
2
.

2
1
7
0

-7
2
0
5
2
.

8
5
9
.7
7
7

N
S
1
5
0
0
L
1
0
0

2
9
9
4

8
8
7
.0
5
8

2
9
9
4

8
8
6
.1
3
7

9
5
2

3
1
6
1
6
0
.3
0
0

-1
4
8
6
4
0
.

1
7
7
6

-1
4
6
1
9
8
.

8
6
0
.5
4
5

N
S
1
5
0
0
L
5
0
0

2
9
9
4

8
8
7
.3
9
1

2
9
9
4

8
8
6
.3
2
7

3
3
2

5
2
9
0
3
9
.1
0
0

-7
5
2
2
2
6
.

9
9
0

-7
2
8
2
2
2
.

8
6
3
.2
2
2

N
S
1
5
0
0
L
1
0
0
0

2
9
9
4

8
8
9
.3
4
7

2
9
9
4

8
8
8
.2
7
1

2
7
0

5
7
4
3
3
6
.1
0
0

-1
5
0
2
3
1
1
.

7
5
4

-1
4
4
9
3
9
8
.

8
6
5
.1
5
1

T
ab
le
3.
2:

R
ob
in
so
n
F
ou
ld
s
(R

F
),
B
ra
n
ch

S
co
re

D
is
ta
n
ce

(B
S
D
),
L
og

L
ik
el
ih
o
o
d
(l
n
L
)
S
co
re
s

51

Figure 3.11: Log Likelihood Scores

we are unable to say whether these scores are signi�cantly better, a problem
noted in Zwickl: �There is not a standard number of lnL units that may be
considered signi�cant across topologies because the distribution on lnL scores
depends very strongly on the details of the particular dataset.� [59]. Zwickl's
solution was to compare topologies using the Shimodiara-Hasegawa test in
PAUP, but he noted that an internal bug prevented it from running on very
large datasets. We did not have time to investigate the Shimodiara-Hasegawa
test.

3.4.1 Algorithms

While neighbor joining and UPGMA are clearly very fast (unsurprising, given
their algorithmic approaches), they also produce trees of relatively low ac-
curacy. The poor quality of the results, and the invariability of the results
regardless of sequence length are troubling. However, a few spot checks with
BIONJ and MatLab created trees that scored identically.

The ML trees produced by PHYML were uniformly superior from a topo-
logical perspective, and the quality improved as the number of nucleotides
in the sequences increased. Generation times for PHYML increase at a rate

52

above linear, but below quadratic.
GARLI, using the neighbor-joining tree as the starting point, was unable

to achieve RF scores equivalent to the �pure� ML approach. However, it
was able to produce the best lnL score. Generation times for GARLI were
relatively unpredictable. There appeared to be little correlation between
sequence length and generation time with sets, especially as the sets grew
larger.

The performance of PHYML was particularly impressive when compared
to GARLI, as it was able to produce a more topologically accurate tree in a
fraction of the time.

3.4.2 Behavior over Sequence and Set Size Increases

For neighbor joining and UPGMA, the quality of the tree did not change
with regard to either sequence length or sequence set size. Clearly, using
longer sequences did nothing to either increase or decrease tree quality with
these two algorithms, since the scores were the same for all sequence lengths
within a given set size1. When comparing the RF scores of sets of di�ering
size, the straightfoward solution is to normalize the RF scores by dividing
the score by the associated set size. After normalization, it becomes clear
that the change in quality as set size increased was slight (194/100 = 1.94;
994/500 = 1.988; 1994/1000 = 1.994; 2994/1500 = 1.996).

For both the �pure� ML approach and the GARLI approach, tree quality
improved dramatically as sequence length increased.

For ML and GARLI, the tree quality decline with respect to the sequence
set size was approximately linear with very short sequence length, but was
impressively sub-linear for longer sequence lengths.

For Neighbor Joining, UPGMA, and GARLI, the BSD score increased
linearly as the sequence set size increased. In the case of ML, the BSD score
quickly went to a level several orders of magnitude higher than the other
programs.

1The RF scores for Neighbor Joining and UPGMA were seen as suspicious. However,
the scores found by TREEDIST were identical to those found by PhyloNet [21], which
would appear to eliminate the scoring program as a possible cause. Console output and
error �les were re-examined, as were the output �les generated by NEIGHBOR in the
course of creating the Neighbor Joining and UPGMA trees. No errors were found, and
the trees appear to have generated correctly. At this point, we are unable to say that the
results are incorrect...but we're still suspicious.

53

3.5 Future Work

As is reportedly typical for Math Clinics, ideas are encountered late in the
semester which suggest interesting directions for further work, or di�erent
paths that may have optimized the project work undertaken. This team's
experience has been no di�erent: in this section, we present some additional
experiments that point to paths not taken.

3.5.1 Using Better Start Trees in GARLI

The GARLI user manual [58] suggests the use of a starting topology, and
speci�cally states that �[i]t does not appear to make much of a di�erence
how these topologies are obtained.� The length of time required to generate
trees topologically inferior to those generated using a �pure� ML approach
led us to a question: would providing the ML tree generated by PHYML as
the starting topology cause GARLI to arrive at a better result?

From the four cases evaluated, the answer appears to be positive. Using
the ML topology, GARLI arrived at a �better� answer in much less time. The
signi�cance of this is the identi�cation of a means of lowering the GARLI run
time for a similar or better result; the time required for a combined PHYML
run and GARLI run using the resulting tree is signi�cantly less than that
required to run GARLI with the NJ starting topology.

On the other hand, Zwickl [59] has stated concerns that starting with
a near-optimal starting topology may prematurely lock GARLI into a local
optimum. Whether this is the case here is unclear, though, if so, the op-
timum found is (at least minutely) better than the optimum found via the
use of NJ as the starting topology. It should also be noted (again, from
four data points) that using the ML tree that assumed the Jukes-Cantor,
rather than the Hasegawa, model as the starting point for GARLI, and using
a ratematrix setting of 1rate (an assumption that substitutions between
pairs always occurs at the same rate, corresponding to the Jukes-Cantor evo-
lutionary model) resulted in signi�cant improvements in the RF (topology)
score, while holding the lnL score relatively steady (see Table 3.4).

In summary, the question of which tree to use as a starting point for
GARLI (or using a random start, rather than a tree) seems worth of inves-
tigation: what tree would put GARLI on the best path toward a solution,
thus mimimizing run time, without prejudicing it toward a local optima?

54

3.5.2 Selection of Evolutionary Model

The second issue involves the consideration of the evolutionary model when
generating trees. As mentioned above, the experimental data sets were cre-
ated using a Jukes-Cantor evolutionary model. This fact was immaterial in
the generation of NJ and UPGMA trees, but potentially signi�cant in the
generation of ML and GARLI trees.

As the above results show, moving from the default Hasegawa model to
the Jukes-Cantor model in PHYML has signi�cant apparent impacts in rela-
tion to larger sequence sets, if the underlying evolutionary model is, in fact,
Jukes-Cantor. This statement is a result of only four data points, but sug-
gests an interesting direction for further investigation: when the evolutionary
model is unknown, which should be chosen to maximize accuracy?

3.5.3 Improved Experimental Design

The non-deterministic nature of the the generation of data sets using ROSE
was potentially problematic: the simulated data set may have contained
elements that, while possible, served to lead the multiple sequence alignment
and/or the tree generation astray.

A better design may have been to use the original tree as input to ROSE
in the creation of multiple data sets. The experiments could then be run
across all the members of the set, and the distribution of scores analyzed.
This would minimize the potential of a single, atypical data set to skew the
results.

3.6 Conclusions

Based on our experimental �ndings, we conclude that, for the LANL data set
that is the subject of the broader Math Clinic study, GARLI would be most
likely to generate the most accurate tree. However, it is computationally
very expensive. PHYML is able to produce a tree of comparable accuracy in
a signi�cantly shorter period of time.

As per the GARLI user manual, a starting topology should be provided.
We have used the NJ tree, generated via the DNADIST and NEIGHBOR
programs in PHYLIP, but MatLab may also be used.

We have had promising indications that using the ML tree as the starting
topology results in a shorter GARLI running time, without compromising the

55

quality of the result; however, this would obviously involve the creation of a
maximum likelihood tree, itself a time-consuming proposition for a data set
of this size.

NJ RF/ lnL/ BSD/ ML RF/ lnL/ BSD/
Set Time NJ NJ NJ Time ML ML ML
NS100L1000 39.83 76 -116970. 343. 15.97 68 -116970. 343.
NS500L1000 215.17 298 -500897. 510. 99.55 242 -501810. 508.
NS1000L1000 765.98 534 -949445. 631. 324.05 382 -947735. 629.
NS1500L1000 2438.68 754 -1449398. 865. 1260.98 534 -1446348. 862.

Table 3.3: GARLI generation times (minutes) and scoring, using Neighbor
Joining (NJ) and Maximum Likelihood (ML) starting topologies

ML/ ML/ ML/ ML/ ML/ ML/
Set H/RF H/lnL H/BSD JC/RF JC/lnL JC/BSD
NS100L1000 68 -116970. 343.421 64 -116992. 343.558
NS500L1000 242 -501810. 508.493 164 -501837. 508.494
NS1000L1000 382 -947735. 629.290 202 -947728. 629.249
NS1500L1000 534 -1446348. 862.301 254 -1446063. 862.562

Table 3.4: GARLI scoring, using Maximum Likelihood (ML) starting topolo-
gies from Hasegawa (H) and Jukes-Cantor (JC)

ML/ ML/ ML/ ML/ ML/ ML/
Set RF/H BSD/H lnL/H RF/JC BSD/JC lnL/JC
NS100L1000 54 343.486 -116977. 54 343.502 -117001.
NS500L1000 112 244885.800 -518999. 80 509.360 -500345.
NS1000L1000 148 299928.700 -983791. 94 99977.990 -946175.
NS1500L1000 270 574336.100 -1502311. 154 864.314 -1444535.

Table 3.5: Maximum Likelihood (ML) scoring, using Hasegawa (H) and
Jukes-Cantor (JC) Evolutionary Models

56

3.A Generating Sequence Data

#!/usr/bin/perl -w

###

genDataSet.pl

#

Jeff Kenyon

Math Clinic, Fall 2007

#

Generate a set of sequences of a given size, with

an approximate specified length. Output a text

file of sequences in FASTA format.

###

use strict;

use Getopt::Long;

use Bio::AlignIO;

use Bio::Seq;

use Bio::SeqIO;

use Math::Random::OO::Normal;

use POSIX;

Argument defaults

my $setSize = 100;

my $seqLen = 100;

For mutationFreq, it's a percentage:

i.e., .05 = for every 100 nucleotides, 5 mutations

Per Yana: 10E-4

my $mutationFreq = .0001;

Default sequence is a portion of the sequenced E. coli:

http://www.genome.wisc.edu/pub/sequence/AE005174v2.fas

my $rootSeq = "ecoli.fas";

GetOptions("setSize=i" => \$setSize, # --setSize

"seqLen=i" => \$seqLen, # --seqLen

"rootSeq:s" => \$rootSeq, # --rootSeq

57

"mutationRate:f" => \$mutationFreq

);

Generation parameters

my $offspringPerGen = 5;

originally thought of having random insertion/deletion size,

but then thought doing it on an AA basis might be better.

my $insertionSize = 3;

my $deletionSize = 1;

my $generation = 0;

my $sequenceCount = 0;

my $sequence;

my $avgMutationsPerSequence = ceil($seqLen*$mutationFreq);

my $mutationStdDev = ceil($avgMutationsPerSequence * .1);

my $dist =

Math::Random::OO::Normal->new($avgMutationsPerSequence,

$mutationStdDev);

my @nucleotideChoices = ("A","C","T","G");

print "Avg. mutations per sequence = " .

"$avgMutationsPerSequence, StdDev = $mutationStdDev\n";

my @sequences;

my @genStart;

my @genEnd;

open up root sequence file, read in $seqLen characters.

open(SEQ,"< $rootSeq") or

die "Root sequence file $rootSeq not found: $!\n";

read the header line to get it out of the way

while(<SEQ>) {

my $line = $_;

if ($line =~ /^>/) {

header line...skip it

next;

}

trim the line feed

chop($line);

58

$sequence = $sequence . uc($line);

if (length($sequence) > $seqLen) {

last;

}

}

close(SEQ);

trim to the exact length desired

$sequence = substr($sequence,0,$seqLen);

add the root sequence to the sequences generated

$sequences[$sequenceCount] =

Bio::Seq->new(-display_id => 'MC000000',

-accession_number => 'MC000000',

-desc => "A/simulated/US/-1/0/2007 length: $seqLen",

-seq => $sequence);

$genStart[0] = 0;

$genEnd[0] = 1;

$sequenceCount++;

#print $sequences[0]->seq,"\n";

loop till we've generated enough sequences

while ($sequenceCount < $setSize) {

$generation++;

print "Generation $generation\n";

$genStart[$generation] = $sequenceCount;

for (my $i = $genStart[$generation-1];

$i < $genEnd[$generation-1]; $i++) {

offspring($sequences[$i],$i);

}

$genEnd[$generation] = $sequenceCount;

print "Sequence count at end of generation " .

"$generation = $sequenceCount\n";

}

Go through last generation and trim some, for exact number

my $sequencesOverLimit = $sequenceCount - $setSize;

59

my $numberInGeneration =

$genEnd[$generation] - $genStart[$generation];

while ($sequenceCount > $setSize) {

for (my $i = $genStart[$generation];

$i < $genEnd[$generation]; $i++) {

if (rand(1) < $sequencesOverLimit/$numberInGeneration) {

if ($sequences[$i] != -1) {

print "Deleting $i\n";

$sequences[$i] = -1;

$sequenceCount--;

}

}

if ($sequenceCount == $setSize) {

last;

}

}

}

print "Sequence count at end of trimming = $sequenceCount\n";

Output FASTA sequences

my $out = Bio::SeqIO->new(-file => ">fasta.out.txt" ,

'-format' => 'Fasta');

for (my $i = 0; $i <= $#sequences; $i++) {

if ($sequences[$i] != -1) {

$out->write_seq($sequences[$i]);

}

}

###

SUBROUTINES

###

sub offspring {

my $nucleotideSeq = $_[0]->seq;

my $parentSeq = $_[1];

my $mutations = ceil($dist->next());

60

my $numberOfOffspring = int(rand $offspringPerGen) + 1;

for (my $x = 0; $x < $numberOfOffspring; $x++) {

my $newSeqString = $nucleotideSeq;

for (my $i = 1; $i <= $mutations; $i++) {

roll the die: what kind of mutation will it be?

my $roll = int(rand 3) + 1;

if ($roll == 1) {

swap

position of nucleotide to swap

my $pos = int(rand length($newSeqString));

my $charAtPos = substr($newSeqString,$pos,1);

my $newCharAtPos = $charAtPos;

find a different nucleotide

while ($charAtPos eq $newCharAtPos) {

$roll = int(rand 4);

$newCharAtPos = $nucleotideChoices[$roll];

}

substr($newSeqString,$pos,1) = $newCharAtPos;

} elsif ($roll == 2) {

insertion: make up a sequence of three nucleotides,

then insert it

my $insertion = "";

for (my $j = 0; $j < 3; $j++) {

$roll = int(rand 4);

$insertion = $insertion . $nucleotideChoices[$roll];

}

my $pos = int(rand length($newSeqString));

$newSeqString =

substr($newSeqString,0,$pos) . $insertion .

substr($newSeqString,$pos);

} elsif ($roll == 3) {

deletion

my $pos = int(rand length($newSeqString)-2);

while ($pos % 3 != 0) {

61

$pos++;

}

if ($pos+3 < length($newSeqString)) {

$newSeqString =

substr($newSeqString,0,$pos).

substr($newSeqString,$pos+3);

} else {

$pos is the last character

$newSeqString = substr($newSeqString,0,$pos);

}

} else {

die "Our die is broken!! The roll was $roll!!\n";

}

}

my $newSeq = Bio::Seq->new();

$newSeq->seq($newSeqString);

$newSeq->display_id(sprintf("MC%02d%04d",

$generation,$sequenceCount));

$newSeq->accession_number(sprintf("MC%02d%04d",

$generation,$sequenceCount));

$newSeq->desc("A/simulated/US/$parentSeq/$mutations/2007" .

" length:" . length($newSeqString));

print $newSeq->display_id(),": ",$newSeq->seq,"\n";

$sequences[$sequenceCount++] = $newSeq;

}

}

FASTA FORMAT

-- Header line does not have a canonical form, but

we'll be using a form matching the LANL data:

>accession strain serotype length:xxxx

-- Accession is typically two letters/6 digits; we'll

be using MC (Math Clinic) as our letters, first

two are generation number, last four are unique

index number

-- strain will be

62

A/simulated/US/parent_id/number_of_mutation/2007

-- serotype will always be H5N1

-- Sequence lines are 76 characters long

0;

3.B Using ROSE to Generate Sequences and

Trees

ROSE is describe in [46], and elsewhere in this report, so it will not be
discussed in detail here.

ROSE has a large number of parameters for generating sequence data, few
of which were used in generating the sequence data sets for this experiment.

Since no tree was speci�ed, ROSE created a uniform binary tree. There
were no insertions and deletions (indels) in the data set, which in retrospect,
may not have been the best setting.

The Jukes-Cantor evolutionary model was used.
The following code is the content of the input �le for ROSE. Only the

SequenceLen and SequenceNum arguments were altered in generating the 16
data sets.

The program itself may be downloaded from
http://bibiserv.techfak.uni-bielefeld.de/rose/.

rose adapted from rose example/sample 4

%include dna-defaults

SequenceLen = 1000

SequenceNum = 1500

Relatedness = 250

ChooseFromLeaves = True

TreeWithAncestors = True

TheInsertThreshold = 0.00005

TheDeleteThreshold = 0.00005

TheInsFunc = [.2,.3,.4,.4,.3,.2,.1]

63

TheDelFunc = [.2,.3,.4,.4,.3,.2,.1]

my additions

OutputFilebase = "output"

TheDNAmodel = "JC"

StdOut = False

64

Chapter 4

The E�ect of Tree Topology on

Leaf Distances

By Angela Harris, Craig Tennenhouse and Michael Trujillo

Abstract

In this paper we analyze the e�ect that di�erent tree topologies have on
pairwise distances between nodes of the trees.

4.1 Introduction

A phylogenetic tree is a diagram that shows evolutionary relationships of
organisms. The nodes represent the taxonomic units, and the branches de�ne
the relationships among the units in terms of descent and ancestry. The
branching pattern of the tree is called the topology. Between any pair of
taxonomic units we can determine a distance that relates how "di�erent"
the units are. We can use these distances to assign lengths to each branch of
the tree. Two trees are considered to be topologically equivalent if they have
the same branching pattern, regardless of the lengths of the brances.

In this project the nodes of the tree represent the mutations of the H5N1
virus, also known as the "bird �u". One of the goals of the project is to deter-
mine a rate of change of these mutations. In order to do this, we must produce
a phylogentic tree for the data set. There are several methods for producing
phylogenetic trees, each potentially producing a di�erent tree topology. In

65

order for the rate of change of the virus to be determined accurately, it is
necessary to obtain accurate distances between each pair of nodes on the
tree. Our objective is to determine whether the tree topology has an e�ect
on these pairwise distances. In other words, do di�erent tree topologies on
the same data give di�erent pairwise distances between taxa?

The answer to the above question will help determine which tree building
method to use. Two of the considerations that contribute to the decision of
which tree building method to use are the speed of the algorithm and the
accuracy of the algorithm. The methods that produce the more accurate tree
topologies use the faster tree building algorithms to generate a tree quickly,
and then spend a good deal of time trying to re�ne that tree, searching for
a topology that better �ts the data. If di�erent topologies representing the
same set of data yield approximately the same pairwise distances between
nodes, then building the correct tree topology is not necessary for obtain-
ing an accurate rate of change for the nucleotide sequences. This would
mean that a faster algorithm could be used for tree construction, while still
obtaining an accurate rate of change.

4.2 The Procedure

Our task is to determine whether di�erent tree topologies give di�erent pair-
wise branch distances on the same data. Since the outcome of this study
would potentially e�ect the tree building method used for the H5N1 data,
we used industry accepted algorithms to build our trees rather than just
producing random trees. Trees built by the programs in PHYLIP [12] are
likely evolutionary trees, whereas random trees may not be. We also decided
not to create a tree and make random changes to its topology for a similar
reason. Many of the random changes that could be made to a tree would not
make sense in an evolutionary tree. Hence, we used tree building programs
to generate di�erent topologies for the same data set.

We give an overview of our procedures here, which followed the chart
in Figure 4.1. For details of how the project was carried out see 4.A. We
created a tree to be the "true" tree, referred to as the original tree throughout
the paper. This gave us a standard by which to compare the tree building
methods. This tree was built in MATLAB, where the pairwise distances
between each pair of nodes was calculated. These trees were input into a
program called Dawg [2], which assigned DNA sequences to each tree. These

66

Figure 4.1: Analysis Flowchart

sequences along with the pairwise distances from MATLAB were input into
the programs Fitch, Neighbor, and Dnaml in PHYLIP.

Fitch and Neighbor were used to produce three di�erent trees, using the
distances produced in MATLAB. The three trees were produced using the
Fitch-Margoliash, Neighbor-Joining and UPGMA algorithms. UPGMA is
the simplest of all tree building methods, and is the fastest. Neighbor-Joining
is also a fast algorithm, but is able to obtain a more accurate tree topol-
ogy much more often than UPGMA. The Fitch-Margoliash algorthim is the
slowest of the three, but is also the most accurate. (For comparison of these
algorithms (and others) see [44].) Dnaml was used to adjust branch lengths
on each of these trees, using the DNA sequences provided by Dawg. Notice
that we did not use Dnaml to produce a tree or to alter a tree topology. The
trees that were produced by Dnaml had the same topology with which they
entered Dnaml, only the branch lengths were changed.

We then compared the topologies of the original tree and the three trees
built from its distance data by Fitch and Neighbor. We chose to use the
symmetric di�erence comparison in Treedist, another program in PHYLIP,
to determine the di�erences in the tree topologies. This comparison was done
pairwise, so that the three trees created in PHYLIP were compared to each
other, as well as to the original tree.

Finally, we sent all the data obtained in PHYLIP back into MATLAB

67

where the distances between the original tree and all trees created from its
data were measured. We decided to use three di�erent methods of measure:
maximum distance, mean distance, and precedence distance. For a de�nition
of these measures, see Section 4.A. We compared the distances with the
topology di�erences to determine the e�ect that tree topology had on pairwise
branch distances.

4.3 Results

For each of our original trees, the Fitch-Margoliash and Neighbor-Joining
algorithms built a tree with the same topology. They also reproduced the
pairwise branch distances to within 1.2×10−4, with the mean di�erence being
less than 4× 10−5 (see Figures 4.2, 4.3). When we consider the precedence
distance, we see that there is almost no di�erence between the original and
the Fitch-Margoliash tree in most cases, as shown in Figure 4.4. For the
Neighbor-Joining tree, this distance is very small, but does not approach
zero, which is shown in Figure 4.5. The numerical results for the Fitch-
Margoliash and Neighbor-Joining trees are shown in Figures 4.6 and 4.7,
respectively.

The UPGMA trees were quite di�erent. The UPGMA algorithm built
trees that di�ered in topology from the original. The Robinson-Foulds dis-
tance between the original trees and those built by the UPGMA algorithm
are shown in Figure 4.8. We also found that the Robinson-Foulds distance
increased linearly with the number of leaves, as can be seen in Figure 4.9.
All three measures of the pairwise branch di�erences were signi�cantly higher
than those of the Fitch-Margoliash and Neighbor-Joining trees. The maxi-
mum and mean distances, shown in Figure 4.10, increase as the number of
nodes of the tree increases, though it is di�cult to tell with such a limited
data set if the increase is linear, sub-linear, or other. Interestingly enough,
the precedence distance for the UPGMA trees, though much higher than the
other methods, stays in the range of 0.2− 0.3, for the most part (see Figure
4.11). Numerical results for the UPGMA trees is shown in Figure 4.12.

68

Figure 4.2: Accuracy of Pairwise Branch Distances (Fitch-Margoliash)

Figure 4.3: Accuracy of Pairwise Branch Distances (Neighbor Joining)

69

Figure 4.4: Precedence Metric, (Fitch-Margoliash)

Figure 4.5: Precedence Metric, (Neighbor Joining)

70

Figure 4.6: Distance Metrics (Fitch-Margoliash)71

Figure 4.7: Distance Metrics (Neighbor Joining)72

Figure 4.8: Precedence Distance vs. Topo Distance

Figure 4.9: RF Dist. vs. Number of Leaves

73

Figure 4.10: UPGMA Max/Mean

4.4 Conclusion

Based on our data, we believe that �nding the correct tree topology is im-
portant in determining the rate of evolution of a species. The only trees
that gave us a di�erent topology from our original tree were those created
by UPGMA. As the number of nodes on the trees increased, the di�erence
in the pairwise distances between the nodes of the UPGMA trees increased.
With the trees produced by the Fitch-Margoliash and Neighbor-Joining al-
gorithms, the di�erence in the pairwise distances was fairly constant.

When we used the Dnaml program on the sequences provided by Dawg,
with the trees built in PHYLIP as the user trees, the product was trees
with pairwise branch distances farther from the original tree than before
Dnaml was run. We were greatly confused by this at �rst, since the purpose
of performing a maximum likelihood algorithm on a tree is to improve the
branch lengths. We now believe that this occurred because we had exact
distances for constructing the orginal trees, while the sequences generated by
Dawg were not directly correlated with these distances, but were randomly
generated to �t them. This is a hypothesis that we would like to test in the
future by creating a tree, �tting sequences to that tree, �nding the distances

74

Figure 4.11: UPGMA Precedence

75

Figure 4.12: Distance Metrics, UPGMA

76

Figure 4.13: Newick Tree

between those sequences using a program like Treedist in PHYLIP and then
generating our trees using those distances rather than the true distances.

Some other directions that we would like to pursue in the future are using
larger trees and larger pairwise branch di�erences. We would also like to try
a di�erent program, like GARLI, to adjust the branch lengths on the trees
produced in PHYLIP.

4.A Project Details

The details of how our project was carried out are given in this section.
The �rst task was to build the original trees in Newick format. Newick

Format is a method of representing a tree with or without branch lengths
as a character string. Two nodes, A and B, that share a parent are written
(A, B), and any subtrees are similarly codi�ed, using parentheses recursively.
If branch lengths are required they are included following a leaf name or
parenthetical statement using a colon. So, for example, the tree ((A : 2, B :
1) : 2, C : 2, (D : 4, E : 4) : 3) represents a tree on 5 nodes where A and B
share a parent, D and E share a parent, and both of these parents share a
parent with leaf C, as shown in Figure 4.13.

Each tree generated in this format was labeled "#newick.tree". From the
newick string we produced, using "pdist" in MATLAB, a vector of pairwise
distances, that is, the distances between each pair of nodes, that represented
a lower triangular distance matrix, which was labeled "#distance.mtx". For
example, if the newick string representing the original tree were on 3 nodes

77

labeled A, B and C, then the distance vector would be of the form

[dist(B, A) dist(C, A) dist(C, B)].

This vector was converted to a lower triangular matrix in the format required
for input into the distance matrix programs in PHYLIP. Three copies of the
�le were made, and the copies were renamed "#newickA", where A=F,N,U,
representing the algorithm to be run on the �le, Fitch-Margoliash, Neighbor-
Joining, and UPGMA respectively.

Using MATLAB, we also converted the "#newick.tree" �les into Dawg
format. Dawg is an acronym for DNA assembly with gaps. This program
takes in a tree in Newick format and returns a series of sequences assigned
to each node of the tree. The sequences are generated randomly, taking
into account the branch lengths, using one of several possible evolutionary
models. We used the most simple, the Jukes-Cantor model. One of the
output options for Dawg �les is PHYLIP format. The Dawg �les were saved
in PHYLIP format as "#input.phl" to be used in the Dnaml program in
PHYLIP.

In PHYLIP we used the programs Fitch and Neighbor to build the trees
"#newickF", "#newickN", and "#newickU", where F represents that the
tree was built using the Fitch-Margoliash algorithm, N the Neighbor-Joining
algorithm and U the UPGMA algorithm. The programs Fitch and Neighbor
take as input �les some form of distance matrix, which gives the pairwise
distances between the taxa of the evolutionary sequences. Fitch runs the
Fitch-Margoliash algorithm, which uses a weighted least squares �t to build
a phylogentic tree. Neighbor has the option to run the Neighbor-Joining
method introduced by Naruya Saitou and Masatoshi Nei in [44], which also
uses a least squares method, or the UPGMA algorithm, the simplest tree
building method. The "#newickF" trees were built by using the default
settings of Fitch, with the exception of changing the input matrix to lower
triangular. The "#newickN" trees were built by changing only the matrix
setting of Neighbor to lower triangular. The "#newickU" trees were built
using the UPGMA and lower triangular matrix options in Neighbor.

The newick strings of the original tree and each of the three trees built
in PHYLIP were placed into a �le named "#topo". The order for place-
ment was always true, Fitch, Neighbor-Joining, UPGMA, so that tree 1 was
always associated to the original tree, tree 2 to the Fitch tree, etc. These
�les were used as the input �les for the program Treedist, which measures

78

the distance between two tree topologies. It will measure either the Branch
Score Distance of Kuhner and Felsenstein [26] or the more widely known
Symmetric Di�erence of Robinson and Foulds [40]. We chose to use the
Robinson-Foulds distance, and compared all trees in the "#topo" �le pair-
wise. The output from this program was chosen to be a three column table
with tree i in column one compared to tree j in column two and the resulting
di�erence between them in column three.

We also put each of the trees built in PHYLIP, together with the corre-
sponding "#input.phl" �le, through the program Dnaml. The input required
by Dnaml is a set of sequences (DNA, RNA, protein). Using the sequences
it can build a phylogenetic tree, determine the likelihood of a tree that was
built from the sequences by another program, or adjust branch lengths on a
tree built by another program. Our purpose was to adjust the branch lengths
of the tree built in PHYLIP. The hope was that we would get a better �t for
each tree, making it closer to the original tree. The output �le from Dnaml
were named "#newickA2.tree", where A=F,N,U.

At this point all of the �les "#newickA.tree" and "#newickA2.tree",
where A=F,N,U, were put back into MATLAB to determine their distances
from the original tree by use of three di�erent metrics.

A metric is a method of measurement, in our situation a tool for deter-
mining what it means for data points to be "far apart" or "close together".
A metric space is speci�cally a set of objects A with a properly de�ned met-
ric. We de�ne a metric d : A × A → A to be a function with the following
properties for all a, b, c ∈ A:

• d(a, b) ≥ 0 with equality if and only if a = b

• d(a, b) = d(b, a)

• d(a, b) + d(b, c) ≥ d(a, c)

Once we had a vector of pairwise distances among the nodes of our trees
generated by the UPGMA, Neighbor-Joining, and Fitch-Margoliash algo-
rithms, we determined metrics by which we would compare them to the
pairwise distance vector of the original tree. We settled on the metrics we
call Max Distance, Mean Distance, and Precedence Distance.

79

By Max distance we mean the metric on the space of pairwise distance
vectors determined by the maximum absolute coordinate-wise di�erence be-
tween two vectors, taken over all coordinates. In terms of phylogenetic trees
this metric measures the highest absolute change in distance between two
nodes after a topological change in a tree. This is also known as the l∞ norm
or the Max Norm, and it ful�lls the requirements of a metric on the space of
all vectors of real numbers of the same length.

By Mean distance we mean the metric on the space of pairwise distance
vectors determined by the mean over all absolute coordinate-wise di�erences
between two vectors. In terms of phylogenetic trees this metric measures
the mean absolute change in distance between every pair of nodes after a
topological change in a tree. This is also a metric, since it's a positive constant
multiple (namely 1

n
) of a known metric (the l1 or TaxiCab metric) on the

space of of all vectors of real numbers of the same length.
The Precedence distance is an attempt to measure the change of dis-

tances between two nodes after a topological change in a tree relative to
the change of distances among other pairs of nodes. We �rst take a vector
v = [v1 v2 v3 . . . v(N

2)
] of all pairwise distances between nodes. We

then create a new vector u of the same length consisting of the indices of
the entries in v in ascending order. The vector u is called the index vector.
For example, the index vector of [2.4 5 0.2 π] is [3 1 4 2], since sorting
the entries of v results in the third entry taken �rst, then the �rst entry,
followed by the fourth entry, and ending with the second entry. Using the
index vector we generate a k × k matrix P , where k is the length of both
v and u, with entries from {0, 1}. We assign Pij a 1 if i precedes j in the
index vector and a 0 otherwise. We call P the precedence matrix of the tree,
and it tells us the relative distances between various pairs of nodes in a tree.
Note that there is a one-to-one correspondence between the set of all index
vectors of length k and the set of all k × k precedence matrices.

To determine the precedence distance between two trees, we generate
each tree's precedence matrix and count the total number of positions for
which the two matrices di�er. Since the size of the matrix increases at a
rate proportional to the fourth power of the number of nodes we must scale
this value. For this reason we let the precedence distance be equal to the
ratio of the value we determined above to the total number of entries in the
precedence matrix.

80

Since absolute distance and the set of all n × n matrices over the reals
is a metric space, the set of all precedence matrices is a subset of this set of
matrices, and the fact that a positive constant multiplier to one metric results
in another metric, we have that precedence distance is a valid metric on the
space of all index vectors. Note that it's not, however, a valid metric on the
space of all trees, since two unique trees may generate the same index vector,
and thus the same precedence matrix, resulting in a precedence distance of 0.
This has no e�ect on our measurements, as we do not need a formal metric,
only a valid form of measure.

81

82

Chapter 5

Mathematical Model for the

Mutation Rate of the Avian Flu

Virus

By Jennifer Reinert, Shelley Speiss, Minjeong Kim and Marcela Kuzmiak

Abstract

The purpose of our project was to �nd model parameters that can be used
to create a model for the mutation rate of the gene encoding for the neu-
raminidase in the DNA of the H5N1 virus, known as the Avian Flu virus.
CLUSTALW was ran to align a set of given DNA sequences and �nd a dis-
tance matrix for this set. This matrix was used in the phylogenetic algorithms
UPGMA and Neighboring Joining to create phylogenetic trees, which were
seeded into GARLI to infer branch lengths and produce two maximum like-
lihood trees. From these trees, a base frequency vector and rate matrices
were produced by GARLI which can be used to model the rate of mutation
of this particular gene.

5.1 Introduction

The Avian Flu virus, H5N1, has the potential to mutate into a form that is as
infectious as the 1918 H1N1 in�uenza pandemic which killed approximately
10% of the world population in as little as six months. To date, there are no

83

vaccines for this virus. In the event that H5N1 mutated into a form infectious
to humans, the use of a vaccine would be ine�cient to stop and treat such a
pandemic since it takes at least six months to develop and produce vaccines.
There are, however, treatments using therapeutic agents. One such agent is
oseltamivir (under the brand name "Tami�u"), which is designed to inhibit
the neuraminidases, the structure of the virus that aids the transmission of
the virus from cell to cell. The H5N1 neuraminidase genotypes have a wide
range of responses to oseltamivir, which is presumed to be caused by the
variations of neuraminidase structure. These variations are due to mutations
in the speci�c gene in the virus' DNA encoding for neuraminidase. As the
mutations continue to occur in this gene, the e�ectiveness of the oseltamivir
and similar agents may diminish. The problem to study is to predict how
the gene will mutate in order to develop better drug treatments to prevent
a potential pandemic.

Jack Horner with the SAIC presented our clinic class with the problem
of �nding a way to model the rate of mutation for the gene encoding for the
neuraminidase of the H5N1 virus and produce evaluations of the di�erent
steps involved in �nding this model. The particular task assigned to our
group was to take the Los Alamos National Laboratory in�uenza database
provided by Jack Horner and �nd the parameters needed to create the model.
[30] The �ow of our work is illustrated below:

84

Figure 5.1: Flowchart of the project.

The �rst step in the project, to preprocess the dataset, was done in order
to create a reliable source of data. The original data set consisted of approx-
imately 1200 DNA sequences of various lengths. Of that set, about 8% of
the sequences contained less than a 1000 base pairs, i.e. the length of the
sequence was less than 1000. Jack Horner requested that these particular
sequences be removed, as they might lead to problems in �nding accurate
parameters for the model. Once this process was done, the data set was
reduced to 1102 sequences. The "cleaned-up" data set was then aligned.
Alignment of the DNA sequences attempts to �nd similarities between the
base pairs within the sequences, with gaps inserted where similarities cannot
be found. Once aligned, a distance matrix can be created between pairs of
sequences to express how closely related the sequences may be. The program
CLUSTALW was used to both align and create a distance matrix for the
given data set. This part of the project was done by Je� Kenyon, another
member in our clinic class.

The next step involved is �nding the phylogenetic trees to use. There
are a number of di�erent phylogenetic algorithms that create a tree topology

85

indicating the evolutionary relationship among the DNA sequences. Phylo-
genetic trees can be "seeded" into programs such as GARLI, i.e. these pro-
grams can use pre-existing trees to improve upon, to �nd model parameters.
Seeding with trees may speed up the computation time in �nding parame-
ters, e�ect the accuracy of the parameters given, or show discrepancies in
the data set. We chose to use the UPGMA and Neighbor Joining algorithms
to create the phylogenetic trees to seed GARLI with, because they are both
readily available in the bioinformatics toolbox in MATLAB and have a quick
computation time. These algorithms both require the distance matrix found
using CLUSTALW to create the phylogenetic trees. Also considered was cre-
ating a tree using the GARLI program, which does not require the distance
matrix. We decided against this in the end, since the run time on �nding
model parameters with a tree topology from GARLI was longer than that of
using a tree topology from UPGMA or Neighbor Joining.

Having found the tree topologies we wanted to use, these were then passed
into GARLI to �t branch lengths to the phylogenetic trees using maximum
likelihood methods. Both the tree topologies and the branch lengths can be
modi�ed and GARLI does allow for some constraining of the tree topology
itself, as described in section 2.3.2. For our project we did not add in any
constraints to the starting tree topologies we seeded GARLI with. After
�nding branch lengths of these non-�xed tree topologies, GARLI can produce
a base frequency vector (the frequency of the characters A, G, T, and C
appearing in the sequences) and a rate matrix with entries describing the rate
at which one character may mutate into another character (or vise versa).
Additional output from GARLI is a maximum likelihood tree created from
the original trees that were used in seeding. The maximum likelihood tree,
the base frequency vector, and the rate matrix are required for producing a
model in either GARLI or the program ROSE.

Within our report, we describe the algorithms UPGMA and Neighbor
Joining, as well as the program GARLI. Under the results section will appear
the phylogenetic trees created using UPGMA and Neighbor Joining, the
maximum likelihood trees created from these using GARLI, and �nally the
model parameters (base frequency vector and rate matrices) found to create
a model.

86

5.2 Background

5.2.1 UPGMA - Unweighted Pair Group Method with

Arithmetic Mean

Introduction

UPGMA is one of the simplest methods of phylogenetic tree construction
[35]. Its simplicity comes from assuming a constant rate of mutation. It uses
a sequential clustering algorithm where it identi�es the smallest distance
between two operational taxonomic units (OTUs or taxons) and then treats
them as a new single composite OTU. It continues by �nding the smallest
distance from the OTUs in this new group, and repeating the process until
only two taxons remain and a tree is formed.

Algorithm

Seeing UPGMA is the best way to understand this simple algorithm. The
following example comes from Opperdoes [35].

Suppose we have a distance matrix:

A B C D E
B 2
C 4 4
D 6 6 6
E 6 6 6 6
F 8 8 8 8 8

The smallest distance is between A and B. We divide their distance by
2 and get 2/2 = 1 and we construct a subtree:

This becomes a new composite OTU(A, B) and we calculate a new dis-

87

tance matrix:

dist[(A, B), C] = [dist(A, C) + dist(B, C)]/2 = (4 + 4)/2 = 4
dist[(A, B), D] = [dist(A, D) + dist(B, D)]/2 = (6 + 6)/2 = 6
dist[(A, B), E] = [dist(A, E) + dist(B, E)]/2 = (6 + 6)/2 = 6
dist[(A, B), F] = [dist(A, F) + dist(B, F)]/2 = (8 + 8)/2 = 8

where the distance between a simple OTU and a composite OTU is the
average of the distances of the components of the composite and the simple
OTU.

We get the new matrix:

A, B C D E
C 4
D 6 6
E 6 6 4
F 8 8 8 8

And a new subtree:

And construct a new distance matrix:

A, B C D, E
C 4

D, E 6 6
F 8 8 8

And a new subtree:

Then the new distance matrix:

AB, C D, E
D, E 6
F 8 8

And a new subtree:

88

In the �nal step we have the last clustering:

ABC, DE
F 8

This gives us a distance to the root as:

dist[(ABCDE), F] = 8/2 = 4

And the tree given by UPGMA is:

Conclusion

The tree produced by UPGMA is ultrametric, i.e. it shows the leaves as
equidistant from the root. It means that all o�spring we have mapped have
evolved an equal distance from their parent. To illustrate, consider the ex-
ample given above. The common ancestor of A, B, C, D, and E is 3 �ticks�
from each. This is because the algorithm assumes a constant mutation rate.
Also, the complexity of UPGMA is O(n2), since there are n − 1 iterations,
with O(n) work done in each iteration. While UPGMA runs very quickly,
this algorithm may not produce an accurate tree topology, esepcially when
compared to the accuracy of the following algorithm, Neighbor Joining which
also runs quickly but also produces a tree topology that is close to what the
true topolgy might be.

89

5.2.2 Neighbor Joining

Introduction

Minimum evolution is the main principle of constructing a phylogenetic tree.
The minimum evolution method used in the construction of phylogenetic
trees is based around the assumption that the tree with the minimum branch
length sum is most likely to be the true tree. The standard method producing
minimum evolutionary trees examines all possible tree topologies or a given
number of them, and �nds the tree with the least amount of evolutionary
change and names that tree as the �nal one. The evolutionary change is mea-
sured by how much the �nal tree has changed from its parent tree. Like many
other methods for constructing phylogenetic trees, Neighbor Joining uses a
distance method that proves to be most e�cient. This greedy algorithm is
e�cient because it explores only a small part of the solution space but be-
cause of that, the best solution may be missed. Like many other algorithms
of its kind, Neighbor Joining �does not necessarily produce the minimum-
evolution tree, but computer simulations have shown that it is quite e�cient
in obtaining the correct tree topology� [32]. Never the less, Neighbor Joining
has proved to be �quite e�cient compared to other tree-making methods that
produce a single parsimonious tree� [32].

History

Saitou and Nei created the Neighbor Joining Method in 1987 and it has since
been modi�ed by Studier and Kepler in 1988 [32].

Algorithm

The basis behind Neighbor Joining is the 4-Point Condition. The 4-Point
Condition is an inequality for neighbors that states that for any four leaves
on a tree, d(ij) + d(kl) < d(ik) + d(jl) and d(ik) + d(jl) = d(il) + d(jk)
where i, j, k and l are leaves on the tree and d = the sum of the edges joining
the two points. The center edge joining ij and kl is not taken into account
in the �rst quantity and is taken into account twice in the second and third
quantity [53]. More simply stated, the 4-Point Condition states that the
distance between i and j plus the distance between k and l must be less then
the distance between i and k plus the distance between j and l because in

90

the later, the middle branch is accounted for twice when in the former it is
not accounted for at all.

The Neighbor Joining method starts out with a pair of OTUs which are
connected through a single node and labeled as neighbors. From here the
distance can be calculated between the �rst set of neighbors and each other
node on the tree. The distance can be calculated by taking the sum of the
branch lengths separating the two nodes. Once the distance is calculated, the
smallest distance sum between nodes becomes the new neighbors. This pro-
cess is continued until there are only two nodes remaining that are connected
by a single branch.

An example of how the Neighbor Joining is run on a given set of data
follows:

Start wth the following example:
Given this tree:

a matrix can be made to represent the distance between each of the six
OUT's (N = 6).

A B C D E
B 5
C 4 7
D 7 10 7
E 6 9 6 5
F 8 11 8 9 8

91

The �rst step in this process is to calculate for each OTU the sum of the
distances between it and the other OTUs on the tree.

r(i) = (distance from i to A)+(distance from i to C)+ · · · +(distance
from i to X).

For example,

r(A) = 5 + 4 + 7 + 6 + 8 = 30

r(B) = 42

r(C) = 32

r(D) = 38

r(E) = 34

r(F) = 44

Given our new distances we can now produce a new matrix calculating
the distance from each pair of OTU's by:

M(ij) = d(ij)− [r(i) + r(j)]/(N − 2)

M(AB) = (5)− [(30) + (42)]/(6− 2) = 5− [72]/(4) = 5− [18] = −13

M(BC) = (7)− [(42) + (32)]/(6− 2) = 7− [74]/(4) = 7− 18.5 = −11.5

Going back to the 4-Point Condition, the new distance is calculated by
taking the distance from i to j and then adding the sum of their individual
distances divided by the number of OTU's over 2. Continue this process
until the following matrix is produced. This matrix is the new distance
matrix produced when the above step is performed.

A B C D E
B −13
C −11.5 −11.5
D −10 −10 −10.5
E −10 −10 −10.5 −13
F −10.5 −10.5 −11 −11.5 −11.5

Neighbor Joining always starts with a star like tree, produced by assuming
there is no clustering of OTU's.

92

From the new matrix produced, we select the smallest distance between
OTU's as neighbors. The new pair of OTU's are combined as a single OTU
de�ned as U . The smallest distance is −13 which is both A and B and C
and D. Select A and B for this example. Then we calculate the distance
from A to U and B to U by:

S(AU) = d(AB)/2 + [r(A)− r(B)]/2(N − 2)

= (5)/2 + [30− 42]/2(6− 2) = 5/2 + [−12]/(2x4)

= 5/2 + [−12/8] = 5/2 + [−3/2] = 1

S(BU) = d(AB)− S(AU) = (5)− (1) = 4

Once the �rst pair of neighbors have been selected, a new matrix must
be created with A−B de�ned at one OTU de�ned as U . The distance from
U to each other OTU must again be calculated.

d(CU) = d(AC) + d(BC)− d(AB)/2 = 4 + 7− 5/2 = 6/2 = 3

d(DU) = d(AD) + d(BD)− d(AB)/2 = 6

d(EU) = d(AE) + d(BE)− d(AB)/2 = 5

d(FU) = d(AF) + d(BF)− d(AB)/2 = 7

Then another matrix is created with A−B as one OTU:

U C D E
C 3
D 6 7
E 5 6 5
F 7 8 9 8

93

The OTU's A and B are then split o� from the star and paired as a single
OTU reducing the number of OTU's to 5. The new tree looks like:

This process is repeated until there are only N = 2 OUT's remaining.
The resulting tree is a binary tree [36].

E�ciency

Neighbor Joining is very inexpensive in terms of the time it takes to run the
algorithm. But is the reduction in cost more valuable then the accuracy it
loses? On very small sets of sequences, Neighbor Joining is likely to produce
the exact optimal minimum evolutionary tree [38]. But when the number
of sequences that Neighbor Joining receives becomes large, is it still e�cient
enough to run? The answer is yes. According to a study done by Koichiro
Tamura, Masatoshi Ne, and Sudhir Kumar, when the number of sequences
is increased to hundreds or even thousands, the accuracy does not seem
to change much at all. The accuracy is �measured by the percentage of
phylogenetic clades (a group of organisms comprised of a common ancestor
and all of its decendents) correctly inferred�. In the study they ran, they
found that when they increased the sequence value m from m = 32 to m =
4, 096, there was only a 2.2% decrease in the accuracy.[28]

Comparison

There are many other distance based methods that can be used to quickly
produce phylogenetic trees, some with similar methods to Neighbor Joining
and some with very di�erent methods. The Sattath and Teversky method
counts the number of cases that satisfy the 4-Point Condition for each pair of

94

OTU's and choose the pair that have the larges value as neighbors. Fitch, on
the other hand, uses interior-distance matrices to construct topologies and
UPGMA uses an average distance method.[32] Naruya Saitou and Masatoshi
Nei ran a simulation to test the e�ciency of six distance method algorithms
including UPGMA, Neighbor Joining, Fitch and other distance method al-
gorithms. Each of the algorithms tested produces a single parsimonious tree
from a distance matrix. They compared reconstructed trees with their model
trees. When this was done, they found that UPGMA was the poorest per-
former and Neighbor Joining was neck in neck with the Sattath and Tversky
method.[32]

Advantages and Disadvantages

Neighbor Joining is very time e�cient and accurate on large and small sets
of data. It also allows lineages with very di�erent branch lengths. On the
other hand, there are a few disadvantages like with any algorithm. Neigh-
bor Joining only looks at a few of the solutions and so it may end up not
�nding the best minimum evolutionary tree. The algorithm is also strongly
dependent on the model of evolution that is used and it produces only one
tree topology [36].

Negative Branch Lengths

When running the Neighbor Joining algorithm it is possible to get negative
branch lengths. There are two options when this happens. The �rst way to
eliminate the negative branch lengths is to assume that every branch length
must be positive and any branch length that does turn out negative is then
changed to zero. The other way is to assume that negative values are due
to an error in the sample and then take the absolute value of each negative
number.

Programs

There are di�erent compute programs to run Neighbor Joining and all will
produce the exact same tree. For the purpose of the Math Clinic, we used
the seqneighjoin function from MATLAB in the Bioinformatics toolbox. The
PHYLIP package also runs Neighbor Joining, along with UPGMA, Fitch and
many other algorithms used to produce phylogenetic trees.

95

Conclusion

As minimum evolutionary model algorithms go, Neighbor Joining is one of
the top algorithms. Between the cost e�ciency and the accuracy to produce
the correct topology, there are not many that can compare. Although it
may not always produce the minimum evolutionary tree desired, it should
be noted that the real minimum evolutionary tree is not always a true tree
either. Nonetheless, trees produced by algorithms such as Neighbor Joining
and UPGMA can be used in programs such as GARLI to �nd the model
parameters that we are looking for. It should be noted that seeding GARLI
with a tree topology cuts down the computational time of producing the
parameters, which played a big role in our decision to use phylogenetic trees
produced by UPGMA and Neighbor Joining as starting topologies in GARLI.

5.2.3 GARLI - Genetic Algorithm for Rapid Likelihood

Inference

Introduction

The program GARLI performs phylogenetic inference on given aligned nu-
cleotide dataset under the maximum likelihood criterion. Given a set of
aligned nucleotide sequences, GARLI �nds high quality solutions which rep-
resent an evolutionary relationship between sequences. Free software is avail-
able at:

http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html.

This software provides both a serial algorithm and a parallel MPI version.
The GARLI version 0.95 manual has a sample dataset and a con�guration
�le. The executution of Garli follows the �ow chart shown in Figure 5.2.

96

Figure 5.2: GARLI �ow chart.

The GARLI software was developed to specify starting topology and
model speci�cation settings, such as 6 or 3 relative rates of nuleotide fre-
quencies, base frequencies, and a model of the rate heterogeneity for example.
Setting model parameters allows us to do some experiments and �nd the best
tree topologies and output model parameters when our model was unclear.

97

Setting a starting tree topology allows us to check how the starting topology
e�ects the computation time or model parameters. Constraining the phylo-
genetic tree topology is one of speci�cations that can be done by setting a
constraint format. Changing the number of generations and modi�ying stop-
ping criteria are also available. Based on the manual, several experiments
can be done with this software.

Implementation of GARLI

In our project, we focused on getting model paramters using 6 relative rates
which can be used by ROSE for the �nal mutation model. We wanted to
compare the model paramters obtained by using speci�ed starting topolo-
gies from Neighbor Joining and UPGMA trees and using constrained tree
topologies. Unfortunately, we were only able to use tree topologies with-
out constraints. To use the phylogenetic trees produced from UPGMA and
Neighbor Joining, a couple of extra steps were required. GARLI only takes
the starting tree topology input in the form of Newick Standard tree, which
is used for representing trees in a computer-readable format, by making use
of the correspondence between trees and nested parentheses, as a starting
tree topology [54]. Thus, the created �le types from MATLAB need to be in
Newick �le format. In addition, the created output tree �les from MATLAB
contained characters which GARLI could not read, so that removing these
characters from tree �les was also required.

Fixing a tree topology is not possible since GARLI is taking Newick
Standard tree as a starting tree topology. It is well known that the Newick
Standard tree does not make a unique representation of a tree, for two rea-
sons [54]. First, the left-right order of descendants of a node a�ects the
representation, even though it is biologically uninteresting. Thus

(A,(B,C),D);

is the same tree as

(A,(C,B),D);

Moreover, GARLI allows us to put a '+' sign to group nodes only at one
place at the begining of constraint �le format. So we �nd that it is impossible
to �x tree topologies from Neighbor Joining and UPGMA trees entirely.

98

Learning how to constrain a tree topology in certain places required some
experiments with a small dataset to see how it works. To start, we needed to
remove any branch lengths from Newick �le format so that GARLI could read
the �le. We did some experiments with given dataset and with the following
experimented constraint obstained the below outputs and observations:

1. Constraint is the same as the starting tree :

• Constraint �le :

+((40,((43,42),41)),(((32,33),((34,35),((38,(37,

39)),36))),(((((31,29),(30,28)),27),(((8,9),(12,

(10,(11,((14,13),((16,17),15)))))),(((2,(3,4)),

((6,7),5)),1))),(((25,26),((24,(21,22)),23)),

((19,20),18)))),(((61,52),(((((55,54),56),(59,

(57,58))),((62,(44,(((47,(48,46)),49),(64,63)))),

50)),(60,(51,53)))),45));

• Output tree:

(19,((18,(((17,16),(10,((12,11),(15,(14,13))))),

((9,8),(1,((5,(6,7)),((4,3),2)))))),(((25,26),((24,

(21,22)),23)),((27,((28,30),(31,29))),((((56,(55,

54)),((((((63,64),(49,(47,(46,48)))),62),(((34,

(35,((38,(39,37)),36))),(32,33)),(((42,43),41),

40))),44),50)),((59,(58,57)),(45,60))),((53,51),

(61,52)))))),20);

→ GARLI can only �x part of tree topology, like leaves or branches.

2. Grouping (32,33,34,35,36,37,38,39) and (40,41,42,43) with random start
tree.

• Constraint �le:

+(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,

20,21,22,23,24,25,26,27,28,29,30,31,(32,33,34,35,

36,37,38,39),(40,41,42,43),44,45,46,47,48,49,50,51,

52,53,54,55,56,57,58,59,60,61,62,63,64);

• Output tree:

99

(((32,33),((34,35),((38,(37,39)),36))),((40,((43,

42),41)),(((61,52),(((((55,54),56),(59,(57,58))),

((62,(44,(((47,(48,46)),49),(64,63)))),50)),(60,

(51,53)))),45)),(((((31,29),(30,28)),27),(((8,9),

(12,(10,(11,((14,13),((16,17),15)))))),(((2,(3,4)),

((6,7),5)),1))),(((25,26),((24,(21,22)),23)),((19,

20),18))));

→ Grouped (40,41,42,43) but it cannot be unique.

3. Group (40,((43,42),41)):

• Constraint �le:

+(+(40,+(+(43,42),41)),(((32,33),((34,35),((38,(37,39

)),36))),(((((31,29),(30,28)),27),(((8,9),(12,(10,(11,

((14,13),((16,17),15)))))),(((2,(3,4)),((6,7),5)),

1))),(((25,26),((24,(21,22)),23)),((19,20),18)))),

(((61,52),(((((55,54),56),(59,(57,58))),((62,(44,

(((47,(48,46)),49),(64,63)))),50)),(60,(51,53)))),

45));

• Output tree: none.

→ The GARLI software could not read this format �le. It did not
give us any error message but the software tried to read the format �le
for ten minutes, before we terminated the program. Taking this much
time in reading the format �le did not make sense to us. Thus, this
experiment tells us GARLI only allows us to constrain some portion of
the tree topology, but not all of the tree. Without a '+' sign on at the
beginning of the constraint, the format �le would not work; for example
a constraint �le such as `(+(40, +(+(43, 42), 41)), (((32, 33), ∗ ∗ ∗ ∗ ∗ ∗
∗∗);'.

Conclusion

Overall the process was automated to perform GARLI by using MATLAB,
where we could create the UPGMA and Neighbor Joining trees in MATLAB
and run these trees as seeds in GARLI to create the model parameters. This
process is saved as the �le grp2-go_garli.m.

100

5.3 Results

Results provided are the phylogenetic trees found and the parameters pro-
duced by each tree. Some observations are provided, with the intent of in-
forming the reader of possible areas of future work. When the term subtree
is used, it is meant to imply the smaller trees formed o� the �rst branchings
o� the initial node in the trees.

5.3.1 UPGMA and Neighbor Joining Trees

It was suggested at the beginning of the term to create two or three di�erent
phylogenetic trees to create di�erent models that could be compared, based
on the fact that whatever tree used and the model found thereafter, a single
model might not accurately depict the mutation of the gene. So by using
two di�erent trees to produce two di�erent sets of model paramaters, we can
compare the output of the model and hopefully �nd a common trends in
both. Also by using more than one tree, any oddities that could arise in the
topologies or in the parameters could point out problems with the data set
or possibly with the methods used to �nd the tree or the parameters.

The �rst phylogenetic tree to be presented, in Figure 5.3, is the tree
obtained from running UPGMA. What is interesting to note is the two long
beginning branch lengths, before any new subtrees are formed. On the top
branchis where most of the sequences can be seen, while on the bottom
branch there are only a few. This would imply that the evolutionary distance
between sequences on the top branch to sequences on the bottom branch
would be great, at least according to UPGMA.

101

Figure 5.3: Tree created by UPGMA.

Our second phylogenetic tree shown in Figure 5.4 is the tree produced
by running Neighbor Joining. Again, there are sequences appearing further
away from a majority of the other sequences. It has been speculated that
these sequences that are further from the general clustering of sequences
could be the same sequences that are seen on the bottom branch referred to
in the UPGMA tree. The only di�erence is the sequences in the Neighbor
Joining tree that have this longer branch length are adjacent to clusters of
sequences, and are not residing on their own subtree.

102

Figure 5.4: Tree created with Neighbor Joining.

103

5.3.2 Maximum Likelihood Trees

The next set of phylogenetic trees were created by GARLI by using maxi-
mum likelihood methods, with the UPGMA and Neighbor Joining trees as
seeds. When reviewing these trees with Jack Horner, we see that the normal
mutation of DNA sequences is accurately depicted in the trees, i.e. there are
no longer sequences seen to be apart from the main clustering of sequences,
and we see several subtrees formed.

The phylogenetic tree obtained from the UPGMA tree is shown in Fig-
ure 5.5. Interesting to note is there appears to be four subtrees formed from
the initial starting node of the tree, as well as more branching occuring earlier
on.

Figure 5.5: Tree created with UPGMA tree seed.

104

The phylogenetic tree obtained from the Neighbor Joining tree is given in
Figure 5.6. Again more branching occuring earlier on is seen when compared
to the original Neighbor Joining tree. There also appears to be four or �ve
di�erent subtrees formed.

Figure 5.6: Tree created with Neighbor Joining tree seed.

105

5.3.3 Parameters

From the Maximum Likelihood trees, GARLI was able to produce the follow-
ing base frequency vector (which is the same no matter which tree GARLI
is seeded with), where the entries are approximated:

π =
(

0.31 0.2 0.24 0.25
)

The following rate matrix, shown with approximate entries, was produced
when the UPGMA tree was used as a seed:

R =

 2.09 6.86 0.96
0.62 10.01

1


The rate matrix obtained from GARLI with the Neighbor Joining seed

as a tree, also with approximate entries, is similiar to the above matrix:

R =

 1.82 6.06 0.97
0.57 8.33

1


Of particular interest when looking at these matrices are the high values

of 6.86 and 6.06 and the even higher values of 10.01 and 8.33 occuring in the
same positions. When talking to Jack Horner about the matrices, he sug-
gested that this could possibly have something to do with the data set itself,
or with the way the algorithms produce the phylogenetic trees. A way to in-
vestigate this anomaly would be to seed GARLI with di�erent phylogenetic
tree, perhaps produced by an algorithm using di�erent techniques than that
of UPGMA and Neighbor Joining, and compare the rate matrix obtained
from this tree. If this approach proved unfruitful, another idea would be to
consider the data set itself and possibly incorporate the tree topologies found
as guides as to which sequences to look into that may be a�ecting the rate
matrix.

5.4 Conclusion and Future Work

From the start of the class project, the aim was to �nd a model to see how
the gene encoding for the H5N1 neuraminidase would mutate. Through our
work, we've set the grounds for how to go about �nding the parameters to

106

produce this model. Though there are a number of phylogenetic algorithms
to use, and di�erent programs besides GARLI to then create the parameters,
we have illustrated the means needed to produce parameters for evolutionary
models using readily available resources. The next step would be to use a
program such as ROSE to create the �nal product, the model of the mutation
rates. This last step was the �nal goal of our group, but because of time we
fell short of this goal. And so creating the model of the mutation rates would
de�nitely fall under the title of "future work." But with the results we were
able to gain, from the tree topologies to the interesting rate matrices, several
di�erent avenues opened up that could also be considered future works.

One such topic would be comparing a phylogenetic tree created in GARLI
to the original phylogenetic tree used to seed GARLI with, for example com-
paring the UPGMA tree to the maximum likelihood tree created from using
the UPGMA tree as a seed in GARLI. Possible ways to analyze the problem
could include graph theoretic approaches, comparing �tted branch lengths,
or examining the sequences themselves and how they are related in each
topology. There is also comparing phylogenetic trees obtained from other
algorithms to UPGMA and Neighbor Joining tree topologies, both before
and after seeding in GARLI. These kinds of steps may help provide clues to
the variations in the entries of the rate matrices, which is another topic to
be considered.

After studying the phylogenetic trees given, there may exist certain sec-
tions of these trees where grouping certain sets of leaves (sequences) may alter
the entries found in the rate matrices. The technique to constrain groups of
leaves is outlined in section 2.3.2. It would be interesting to see how much
the rate matrix can change depending on how many leaves and which leaves
are constrained.

There is also coming up with several di�erent models of the mutation
rate and comparing them for anything that may seem strange or perhaps
normal. We've already provided the parameters for two, but without a third
or forth set of parameters to use, it is hard to tell if the unusual entries in
these rate matrices have something to do with using UPGMA and Neighbor
Joining in creating the original trees or the dataset itself, and the e�ect these
variations willhave on the mutation model. Originally we hoped to have used
a phylogenetic tree created by GARLI for a third comparison, but because of
the run time we were unable to, so there is at least a third set of parameters
out there to be found for comparison. In the end, creating a data base of
trees and model parameters was our goal, so that such comparisons could be

107

possible. While we may not have achieved this goal, we certainly proved it
was possible and provided an example of how the process works and showed
the results that are obtainable.

108

Chapter 6

Performing Multiple Sequence

Alignment on Very Large Data

Sets

By Je� Kenyon

Abstract

CLUSTALW has been an established standard in multiple sequence align-
ment for many years. Recently, other programs have been introduced that
use di�erent techniques to perform multiple sequence alignment with higher
accuracy and speed. This paper discusses the various approaches to mul-
tiple sequence alignment embodied by these programs, and uses simulated
data sets to evaluate the speed and accuracy of these programs. The re-
sulting alignments are then used as input to recreate the phylogenetic tree.
This study found that for large sequence sets, MAFFT, using the NS-i algo-
rithm, is able to perform a more accurate multiple sequence alignment than
CLUSTALW, in less time. However, the study was inconclusive with regard
to the hypothesis that a more accurate multiple sequence alignment results
in a more accurate phylogenetic tree.

109

6.1 Introduction

The process of multiple sequence alignment is an NP-complete problem [6],
and is performed using heuristic methods. The CLUSTAL family of programs
were considered the standard, but in recent years, new approaches have been
introduced that are both faster and more accurate than CLUSTALW. To
address the current task of creating an MSA for the 1000+ sequences in the
LANL data set, this project addresses whether one of the newer generation
of alignment programs is more suitable than CLUSTALW. This question will
be examined by comparing generated MSAs against a known, correct MSA
from a simulated data set, using an accepted metric.

This project further seeks to investigate whether a more accurate MSA
results in a phylogenetic tree that can be assessed as more accurate (using the
same metrics as were used in the clinic project evaluating phylogenetic tree
generation programs). This question will be examined by using the MSAs to
generate phylogenetic trees, and then comparing them to the known, correct
evolutionary tree created as part of the generated data set.

This project presents the results of the experiments outlined above, with
the conclusion that, while MAFFT (NS-i) can achieve a better result than
CLUSTALW in less time, the impact of the more accurate MSA upon phy-
logenetic tree generation is unclear. This lack of clarity would require sig-
ni�cant further study to unravel, as it may involve several factors, including
the use of custom generated data sets, rather than benchmark data sets, as
well as the choice of software for generating the phylogenetic trees.

6.2 Multiple Sequence Alignment

Multiple Sequence Alignment (MSA) is the process of using multiple se-
quences to form a single �consensus� sequence representative of the entire
group. The individual sequences are then aligned (and gaps hypothesized)
against this theoretical consensus alignment [6]. The alignment process is a
means of identifying homologous segments between sequences.

Although the MSAs produced in this project were intended as the basis
for phylogenetic tree generation, an MSA is interesting in its own right, as it
may help identify functional areas of the gene; nucleotide chains that show
little or no change from sequence to sequence, known as highly conserved
regions, are typically crucial to the gene's function [6].

110

There are several basic approaches to the alignment task. The most
common are progressive alignment, iterative alignment and consistency-based
alignment.

In progressive alignment, the closest sequences are aligned �rst, then more
distant sequences are added. At its most basic, the progressive method fol-
lows the following process outlined by Feng and Doolittle [14]:

• Create Pairwise Alignments: Each pair is compared with every other
pair (using, for example, the Needleman-Wunsch algorithm), and the
results, such as a distance matrix, are stored.

• Identify Closest Related Pair: The results of the pairwise alignment
are ordered, and the closest pair is identi�ed.

• Insert Neutral Elements: The closest pair (e.g. A and B) is aligned,
and gaps are inserted as necessary. Then the next closest relative (e.g.,
C) is identi�ed, and it is aligned with the results of the previous align-
ment1. This process is repeated until all sequences are brought into the
alignment. Note that if, at any repetition, a gap is introduced when
forming an alignment, it cannot be removed later.

• Score Alignment: The �nal alignment is scored.
• Construct Tree: Branching order is determined, and branch lengths
calculated. Minor adjustments are made at this point to ensure that
negative branch lengths do not occur. A guide tree (or dendrogram) is
created from the alignment, to identify the distances of sequences from
one another.

A signi�cant problem in progressive alignment is that, if an incorrect
alignment is made early in the process, that error does not get �xed (recall
from the description above that gaps, once introduced, are never removed).

In iterative alignment, a progressive alignment is created, and then the
program iterates, making improvements until either the maximum number
of iterations is reached, or until no further improvements can be made.

Thompson, et. al. [52] note that iterative programs can produce improved
alignments, but with the trade-o� of longer computation time.

In consistency-based alignment, the idea is that the pairwise alignments
are consistent across all sequences in the set, i.e., if Sequence A, position 10

1While for this example, we use a scenario in which A, B, and C are individual se-
quences, it is also possible that these are, in fact, alignments of other sequences. For
example, A is an alignment of sequences L, M, and N, B is an alignment of P, Q, and R,
and C is an alignment of X, Y, and Z.

111

aligns with Sequence B, position 12, and this position aligns with Sequence
C position 20, then in the �nal alignment, Sequence A, position 10 will
align with Sequence C, position 20. In this approach, both global and local
alignments are created, and each pairwise score is weighted and added. The
scores are added, and the weights recalculated if necessary, to create a single
library of scores. The pairs in this library are then used when comparing a
given pair in all the sequences to be aligned.

6.2.1 Programs for Multiple Sequence Alignment

Note that this was not an exhaustive examination of every MSA program in
use. However, every e�ort was made to identify the widely used programs
that would be applicable to the problem at hand.

CLUSTALW

CLUSTALW (v1.83) [50] builds its version of a progressive alignment by
doing a pairwise comparison of all the sequences in the set and then building
a guide tree using neighbor joining. Each sequence is then aligned using the
branching order in the guide tree.

The CLUSTALX program provides a graphical (XWindows) user inter-
face for CLUSTALW.

DIALIGN

DIALIGN (v2.2.2) [31] does a combination of global and local alignment,
aligning portions of sequences that are related, and leaving what it considers
to be unrelated portions of the sequences unaligned. It proceeds by identi-
fying sequence segments that show some degree of similarity.

DIALIGN is also interesting in that it allows those with expert knowledge
of the sequences to identify alignment anchors, or sequences that must be
aligned to each other, or to identify sequences that should be excluded from
the alignment.

DIALIGN compiled under cygwin, but was not used as part of this study.
In testing for this project, DIALIGN appears to work reliably, but was quite
slow for large sequence sets; for example, an attempt to sequence the set of
500 sequences of approximately 500 nucleotides in length was stopped after

112

31 hours of processing without result. Edgar [10] corroborates this result,
pointing out that DIALIGN is primarily useful for fewer than 100 sequences.

MAFFT

The MAFFT (v6.240) program [23] uses homologous segments (i.e., segments
that are structurally similar) within a sequence set to speed up the alignment.
Finding the correlation between two sequences is done using a Fast Fourier
Transform (FFT). In addition, sequencing is considerably speeded by reduc-
ing the complexity of the scoring algorithm.

MAFFT compiled and ran under cygwin. While it has a variety of ap-
proaches to alignment, this study examined only those that appeared capable
of handling 1000+ sequences: the progressive model (FFT-NS-2), purported
to replicate CLUSTALW speed and accuracy, and the iterative model (FFT-
NS-i). We note that MAFFT includes a number of approaches to alignment
that focus on the alignment of smaller sequences (i.e., less than 200 sequences
in the set).

MUSCLE

Muscle (v3.6) [8] �rst builds a progressive alignment. It computes the simi-
larity of each pair of sequences, and a distance matrix, from which a guide
tree is constructed (using either neighbor joining or UPGMA). The guide
tree is used to construct a preliminary alignment.

In a second phase, the algorithm attempts to improve the tree. This step
may include iteration, and is considered complete when an iteration does not
change any nodes (i.e., does not �nd any improvement). In this phase, the
pairwise similarities are recomputed, and a new tree is created and compared
to the original tree.

In the third phase, iterative re�nement is performed by removing an edge
to partition the tree, and a pro�le-pro�le realignment is performed. This
phase attempts to maximize the �Sum of Pairs� score (see Section 6.2.2).

MUSCLE ran reliably under Windows XP on large sets of sequences, and
so was used as part of this study.

ProbCons

ProbCons (v1.12) [4] uses a method called probabilistic consistency, for use in
scoring and comparing MSAs, to improve on the consistency-based alignment

113

approach.
ProbCons compiled easily under cygwin, and produced several alignments

from the sample data. However, performance on larger sets appears prob-
lematic. For example, the set of 1000 sequences of approximately 1000 nu-
cleotides in length ran for approximately 28 hours and, at its peak consumed
over 60% of RAM, before doing a core dump. Due to the erratic performance,
it was not selected for this project. Edgar [10] points out that ProbCons is
highly accurate, but is primarily useful for fewer than 100 sequences.

T-Co�ee

T-Co�ee (v5.05) [33] is the best known consistency-based alignment program.
It uses CLUSTALW to create the library of global alignments, and LALIGN
to create the local alignments. T-Co�ee is considered one of the more accu-
rate programs, but like ProbCons and DIALIGN, it does not scale well for
more than 100 sequences.

T-Co�ee was originally considered as one of the programs to test. How-
ever, while it compiled under cygwin, it ran extremely slowly, and hung on
more than one occasion. Therefore, it was not used.

6.2.2 Comparing Multiple Sequence Alignments

Commonly used metrics for comparing the quality of multiple sequence align-
ments are the Sum-of-Pairs score, the Modeler score, the Shift score, and
the Total Column score.

The Sum of Pairs (SP) score increases with the increase in the number of
sequences correctly aligned. This is also referred to as the Developer (or FD)
score in Sauder, et. al. [45], where it is de�ned as �the ratio of the number
of residues correctly aligned in the sequence alignment, divided by the total
number of aligned residues in the structure alignment.� Here, the structure
alignment is analogous to the known, or reference, sequence, while the se-
quence alignment is the test sequence being compared. It is known as the
Developer score because it is the score of interest to the algorithm developer:
how well does the alignment produced match the correct alignment?

A common heuristic in MSA programs is to attempt to maximize the SP
score [7].

TheModeler (or FM) score is �the number of amino acids correctly aligned
in the sequence alignment divided by the total number of aligned residues in

114

the sequence alignment� [45]. It is considered a re�ection of the quality of the
generated model (when the accuracy of the model cannot be determined).

In the above, given nine pairs in the structure alignment, FD = 5
9

= .555,
and FM = 5

6
= .833.

The shift score is described in Cline et. al. [3] as re�ecting �many types
of alignment error including misalignment, aligning too much, and aligning
too little,� and as superior to other metrics used for the same purpose. The
scale is from 1.0 (re�ecting an accurate alignment) to −ε, a scoring parameter
typically set at 0.22. The algorithm itself is fairly complex, and interested
readers are referred to the paper.

The Total Column score (TC) is a re�ection of the program's ability to
correctly align all sequences. For each column in the alignment, the column is
either scored as '1' if the column is matched in the structure alignment, and
'0' if not. These scores are then summed, and divided by the total number
of columns [52].

6.2.3 Literature Search

The topic of creating MSAs is quite active. New programs have been intro-
duced in the past few years, as have new methods for comparing the quality
of alignments produced. In this section, we examine some of the more recent
studies that compare various algorithms. The studies tended to reinforce one
another, and there were no signi�cant disparities between studies. The bulk
of the evidence appears to indicate that MAFFT is considered the superior
program, although the speci�c algorithm within MAFFT must be chosen
appropriately. When working with smaller sequence sets, ProbCons was the
most accurate.

Thompson et. al. [52], one of the authors of the CLUSTAL family of pro-
grams, evaluated 10 programs (PRRP, CLUSTALX, SAGA, MULTALIGN,
PILEUP8, SBPIMA, DIALIGN, MLPIMA, MULTAL, HMMT) in 1999. Us-
ing the BAliBASE benchmark [51], they found CLUSTALX (progressive)
and DIALIGN, PRRP, and SAGA (iterative) to be the best for the speci�c
alignment tasks tested. This study used the sum-of-pairs (SP) and total
column (TC) scores as the basis of comparison.

Katoh et. al. [23], as part of the paper describing MAFFT, compares it to

2This has nothing to do with and should not be confused with machine epsilon. Here,
epsilon is simply a variable, and the bottom of the shift score scale is its inverse.

115

CLUSTALW and T-Co�ee, using ROSE-generated data and the BAliBASE
benchmark set. The study �nds MAFFT's NW-NS-2 algorithm produces an
alignment of comparable accuracy to CLUSTALW, and MAFFT's NW-NS-i
algorithm produces an alignment of comparable accuracy to T-Co�ee, and
both results are produced in less time.

Do et. al. [4], as part of the paper introducing ProbCons, compared it to
Align-m, DIALIGN, CLUSTALW, MAFFT, T-Co�ee, and MUSCLE, using
the BAliBASE benchmark set. ProbCons was the most accurate program,
although it was not the fastest.

Ahola et. al. [1], as part of a paper introducing the alignment quality
(AQ) score for the comparison of alignments, compared CLUSTALW, DI-
ALIGN, MAFFT, MUSCLE, ProbCons, and T-Co�ee, using the BAliBASE
benchmark set. MAFFT (L-INS-i) was considered superior to the other
methods.

Edgar [10] compared CLUSTALW (cited as �the most widely used MSA
program�) with what the author regarded as the best comparable programs:
MAFFT, MUSCLE, T-Co�ee, and ProbCons. ProbCons and T-Co�ee are
cited as having a practical maximum of approximately 100 sequences, due to
CPU and memory requirements. Testing, using BAliBASE, suggests that for
sequence sets of the size being aligned in this project, MUSCLE or MAFFT
are the most appropriate.

The Edgar study was also useful for its summarization of speci�c align-
ment tasks, and the appropriate alignment programs for each (shown verba-
tim in Table 6.1 and Table 6.2). The tables also point up the fact that the
MSA program used should depend upon the nature of the sequence set being
analyzed; sequence analysis should not be a matter of having only one MSA
program available, and using it exclusively.

Nuin et. al. [34], compared CLUSTALW (v1.8), DIALIGN (v2.2), T-
Co�ee (v3.27), POA (v2.0), MUSCLE (v3.6), MAFFT (v5.732), ProbCons
(v1.1), DIALIGN-T (v0.2.1), and Kalign (v1.04). Comparisons were done
using both BAliBASE and Simprot-generated sequences. ProbCons and
MAFFT (L-INS-i algorithm) were considered the best, and were roughly
equivalent in accuracy; POA, both versions of DIALIGN, and CLUSTALW

116

Program Advantages Cautions
CLUSTALW Uses less memory than

other programs
Less accurate or scalable
than modern programs

DIALIGN Attempts to distinguish
between alignable and non-
alignable regions

Less accurate than
CLUSTALW on global
benchmarks

MAFFT,
MUSCLE

Faster and more accurate
than CLUSTALW; good
trade-o� of accuracy and
computational cost. Op-
tions to run even faster,
with lower average accu-
racy, for high-throughput
applications.

For very large data sets (say,
more than 1000 sequences)
select time- and memory-
saving options

PROBCONS Highest accuracy score on
several benchmarks

Computation time and
memory usage is a limiting
factor for large alignment
problems (>100 sequences)

ProDA Does not assume global
alignability; allows re-
peated, shu�ed and
absent domains.

High computational cost
and less accurate than
CLUSTALW on global
benchmarks

T-COFFEE High accuracy and the
ability to incorporate het-
erogeneous types of infor-
mation

Computation time and
memory usage is a limiting
factor for large alignment
problems (>100 sequences)

Table 6.1: Summary of MSA Programs (from Edgar, 2006 [10])

117

Input Data Recommendations
2-100 sequences of typical pro-
tein length (maximum around
10,000 residues) that are ap-
proximately globally alignable

Use PROBCONS, T-COFFEE, and
MAFFT or MUSCLE, compare the
results using ALTAVIST. Regions of
agreement are more likely to be correct.
For sequences with low percent identity,
PROBCONS is generally the most accu-
rate, but incorporating structure infor-
mation (where available) via 3DCo�ee
(a variant of T-COFFEE) can be ex-
tremely helpful.

100-500 sequences that are ap-
proximately globally alignable

Use MUSCLE or one of the MAFFT
scripts with default options. Compar-
ison using ALTAVIST is possible, but
the results are hard to interpret with
larger numbers of sequences unless they
are highly similar.

>500 sequences that are ap-
proximately globally alignable

Use MUSCLE with a faster option (we
recommend maxiters-2) or one of the
faster MAFFT scripts

Large numbers of alignments,
high-throughput pipeline.

Use MUSCLE with faster options (e.g.
maxiters-1 or maxiters-2) or one of the
faster MAFFT scripts

2-100 sequences with conserved
core regions surrounded by
variable regions that are not
alignable

Use DIALIGN

2-100 sequences with one or
more common domains that
may be shu�ed, repeated or
absent.

Use ProDA

A small number of unusually
long sequences (say, >20,000
residues)

Use CLUSTALW. Other programs may
run out of memory, causing an abort
(e.g. a segmentation fault).

Table 6.2: Typical Alignment Tasks (from Edgar, 2006 [10])

118

were considered the worst. On the basis of both speed and accuracy, MAFFT
was considered the best overall.

Perez-Losada et. al. [39] made the point that alignment programs em-
body certain approaches, and that these approaches may work well on some
sequences, but not on others. The authors recommend always using a variety
of MSA programs. Their results indicated that, for accuracy, the best pro-
grams were (ordered) MAFFT, MUSCLE, T-Co�ee, and CLUSTALW; from
the speed perspective, the best programs were (ordered) MUSCLE, MAAFT,
CLUSTALW, and T-Co�ee.

6.3 Methods

6.3.1 Computer Environment

All sequencing and tree generation activities were performed on a Lenovo
T60 laptop, with dual T2400 1.83GHz processors, and 2GB of RAM. The
operating system was Windows XP Professional (Service Pack 2), and except
where noted, all processing took place under Windows XP.

It should be noted that execution times for various activities should be
used as a guideline only. The computer was not dedicated to the task, and
other CPU-intensive tasks of varying duration may have executed during the
course of, for example, a single PHYML run. In short, the situation was
analogous to what would be encountered on any other multi-user machine.

6.3.2 Generation of data sets

The data sets used were the same as those used in the sub-project on eval-
uating phylogenetic trees for this clinic, generated using the ROSE program
[46]. ROSE uses a probabilistic model, easily adjustable through con�gu-
ration �les, to generate DNA sequences using one of several possible evo-
lutionary models. In the process of generating sequence data, the program
creates the true phylogenetic tree, and the correct sequence alignment. For
this project, the default settings of ROSE were used wherever possible. The
Jukes-Cantor evolutionary model was used.

The author learned too late of a variety of benchmark DNA sets (Edgar
[8] mentions the BAliBASE, SABmark, SMART, and PREFAB sets), one of

119

which may have been preferable to generating new sequences (although most
appear to focus on smaller sequence sets).

The author also learned too late of Simprot [37], another software package
that creates simulated sequences.

6.3.3 Aligning and Scoring

The programs tested against CLUSTALW were MUSCLE and MAFFT, on
the grounds (no T-Co�ee pun intended) that these were the alignment pro-
grams that could be made to run under either Windows or cygwin (a Unix
environment running under Windows), and that were considered appropri-
ate for performing the MSA on the LANL set of sequences. A number of
programs reputed to be excellent in aligning shorter sets were not evaluated.

For this study, Edgar's qscore program [9] was used.

6.3.4 Generating Phylogenetic Trees

To produce useful results for inclusion in the Math Clinic �nal report, Max-
imum Likelihood trees were created for those sequence sets with (approxi-
mate) length of 1000 nucleotides, on the grounds that these sequences would
most closely resemble the LANL data set under consideration.

PHYML [16] was used to generate the maximum likelihood trees, af-
ter problems with hanging were encountered using the DNAML program in
PHYLIP [11].

The accuracy of the generated trees was scored using the TREEDIST
program in PHYLIP, which calculates symmetric di�erence (also known as
the Robinson-Foulds (RF) distance [41]) and Branch Score Distance (BSD)
[27], two of the most commonly used metrics for comparing phylogenetic
trees. Log Likelihood scores were produced by PHYML, as part of the tree
generation process.

6.4 Results

Using the data sets generated by ROSE, MSAs were run using CLUSTALW,
MAFFT (both the default NS-2 algorithm, as well as the NS-i algorithm),
and MUSCLE. Generation times are shown in Figure 6.1.

120

Figure 6.1: MSA Generation Times (minutes)

Using the qscore program, the MSAs produced were compared with the
�correct� MSAs generated by ROSE. The scores are shown in Table 6.3. Shift
scores were graphed, and are shown in Figure 6.2 through Figure 6.5.

We then used the sets with 100, 500, 1000, and 1000 sequences (all 1000
nucleotides in length) and generated phylogenetic trees, using PHYML. The
Robinson Foulds (RF) distances are shown in Figure 6.6, the Branch Score
Distances (BSD) are shown in Figure 6.7, and the log likelihood distances
are shown in Figure 6.8.

6.5 Discussion

It appears clear, from the shift scores collected during the evaluation, that
MAFFT's NS-i algorithm is capable of generating an alignment at least as
good as CLUSTALW, for data sets of up to 1500 sequences. It is able to
generate these alignments in signi�cantly less time. These �ndings lead us to
believe that MAFFT is a viable alternative to CLUSTALW for the problem
of aligning a set of over a thousand sequences, each over 1000 nucleotides in
length.

121

C
L
U
S
T
A
L
W

M
A
F
F
T
(F
F
T
-N

S
-2
)

M
u
sc
le

(d
e
fa
u
lt)

M
A
F
F
T
(F
F
T
-N

S
-i)

S
e
t

S
P

M
o
d
e
le
r

S
h
ift

T
C

S
P

M
o
d
e
le
r

S
h
ift

T
C

S
P

M
o
d
e
le
r

S
h
ift

T
C

S
P

M
o
d
e
le
r

S
h
ift

T
C

N
S
1
0
0
L
5
0

0
.1
4
1

0
.1
4
4

0
.2
2
2

0
.0
8
9
3

0
.6
4
5

0
.6
5
8

0
.6
9
1

0
.1
0
7

0
.7
2
6

0
.7
2
3

0
.7
5
2

0
0
.8
1
1

0
.8
1
9

0
.8
4
3

0
.1
2
5

N
S
1
0
0
L
1
0
0

0
.1
0
9

0
.1
0
9

0
.1
7
2

0
.1
5

0
.1
7
9

0
.1
8
8

0
.2
1

0
.1
2
1

0
.0
8
0
3

0
.0
8
0
4

0
.0
7
2
8

0
.0
4
2
9

0
.3
4
4

0
.3
3
8

0
.3
9
7

0
.2
3
6

N
S
1
0
0
L
5
0
0

0
.0
6
4
5

0
.0
6
5
1

0
.0
4
2
9

0
.2
3
3

0
.0
3
7
6

0
.0
3
9
4

-0
.0
2
6
7

0
.1
5
6

0
.0
2
3
2

0
.0
2
4
5

-0
.0
5
8
5

0
.0
7
1
2

0
.0
6
0
4

0
.0
5
9
7

0
.0
3
0
2

0
.1
6
9

N
S
1
0
0
L
1
0
0
0

0
.0
6
2
9

0
.0
6
3

0
.0
2
8
9

0
.1
9
2

0
.0
3
9
8

0
.0
4
1
4

-0
.0
1
9
3

0
.1
2
5

0
.0
1
4

0
.0
1
5

-0
.0
9
2
8

0
.0
2
2
3

0
.0
6
4
6

0
.0
6
3
6

0
.0
5
3
8

0
.1
1
6

N
S
5
0
0
L
5
0

0
.1
5
4

0
.1
5
8

0
.2
6
8

0
.4
8
8

0
.2
5
5

0
.2
9
1

0
.3
3
1

0
.2
0
9

0
.6
0
6

0
.6
0
3

0
.6
2

0
.1
0
9

0
.4
3
2

0
.4
4
7

0
.4
3
4

0
.2
5
6

N
S
5
0
0
L
1
0
0

0
.1
1
3

0
.1
1
4

0
.2

0
.4
8
4

0
.0
9
5
5

0
.1
0
3

0
.1
3
2

0
.2
8
4

0
.0
6
0
5

0
.0
5
9
3

0
.0
9
7
7

0
.1
2
4

0
.4
5

0
.4
4
5

0
.4
9
2

0
.2
9
8

N
S
5
0
0
L
5
0
0

0
.0
6
7
4

0
.0
6
8
8

0
.0
6
5
1

0
.5
4
6

0
.0
4
2
7

0
.0
4
6

-0
.0
0
0
8
9
7

0
.4

0
.0
2
8
8

0
.0
2
8
5

-0
.0
3
0
4

0
.0
7
7
7

0
.1
3
7

0
.1
3
4

0
.1
8

0
.3
7
6

N
S
5
0
0
L
1
0
0
0

0
.0
5
3
3

0
.0
5
4
2

0
.0
2
6
9

0
.5
2
4

0
.0
2
1
5

0
.0
2
3

-0
.0
5
6
3

0
.3
4
5

0
.0
1
3
8

0
.0
1
3
8

-0
.0
8
4

0
.0
3
0
8

0
.1
1
1

0
.1
0
9

0
.1
1
8

0
.3
4
5

N
S
1
0
0
0
L
5
0

0
.1
2
8

0
.1
3
3

0
.2
4
5

0
.5
0
9

0
.1
1
8

0
.1
5
5

0
.1
8
3

0
.2
9
2

0
.1
7
7

0
.1
7
6

0
.2
8
4

0
.1
1
7

0
.6
1
6

0
.6
4
3

0
.6
6
6

0
.4
8

N
S
1
0
0
0
L
1
0
0

0
.1
1
6

0
.1
2

0
.1
9
9

0
.6
7
2

0
.1
3
6

0
.1
6
5

0
.1
7
6

0
.4
3
6

0
.0
6
5
6

0
.0
6
4
7

0
.0
6
3
9

0
.1
4
7

0
.5
5
8

0
.5
4
9

0
.5
8
4

0
.5
5
4

N
S
1
0
0
0
L
5
0
0

0
.0
5
8
6

0
.0
6
1
1

0
.0
5
1
7

0
.6
6
2

0
.0
3
1
1

0
.0
3
5
1

-0
.0
2
5
2

0
.4
1
9

0
.0
3
1
3

0
.0
3
0
7

-0
.0
0
1
8
6

0
.1
0
4

0
.0
9
7
6

0
.1
0
1

0
.0
6
0
5

0
.3
9
3

N
S
1
0
0
0
L
1
0
0
0

0
.0
4
7
1

0
.0
4
8
6

0
.0
0
2
8
6

0
.6
6
8

0
.0
1
7
6

0
.0
1
9
3

-0
.0
7
3
5

0
.4
3
4

0
.0
2
4
8

0
.0
2
4
2

-0
.0
3
5
6

0
.0
5
7
9

0
.0
4
1

0
.0
4
0
2

0
.0
1
8
1

0
.4
1

N
S
1
5
0
0
L
5
0

0
.1
5
1

0
.1
5
5

0
.2
7
5

0
.5
9
1

0
.1
0
5

0
.1
3
7

0
.1
7
7

0
.3
4

0
.4
4
8

0
.4
4
7

0
.5
2
3

0
.2
1
7

0
.2
1
4

0
.2
4
9

0
.2
7
1

0
.3
6

N
S
1
5
0
0
L
1
0
0

0
.0
8
4
6

0
.0
8
7
3

0
.1
4
4

0
.6
5
9

0
.0
7
5
6

0
.0
9
3
3

0
.0
9
2
2

0
.3
9
4

0
.4
5
7

0
.4
5

0
.4
8
9

0
.3
2
9

0
.3
2
2

0
.3
3
6

0
.3
6
2

0
.5
2
4

N
S
1
5
0
0
L
5
0
0

0
.0
4
3
1

0
.0
4
5
1

0
.0
2
0
6

0
.7
1
6

0
.0
1
8
5

0
.0
2
1
1

-0
.0
6
0
5

0
.4
2
5

0
.0
6
6
5

0
.0
6
5
3

0
.0
3
9
9

0
.1
0
7

0
.0
8
9
9

0
.0
9
0
3

0
.1
0
2

0
.4
0
3

N
S
1
5
0
0
L
1
0
0
0

0
.0
4
8
3

0
.0
5
0
5

0
.0
3
3
2

0
.7
2
9

0
.0
1
3
2

0
.0
1
5
3

-0
.0
8
7
5

0
.4
1

0
.0
1
9
6

0
.0
1
9
4

-0
.0
5
4
2

0
.0
7
1
1

0
.0
5
3
7

0
.0
5
5
5

-0
.0
0
2
9
8

0
.4
0
4

T
ab
le
6.3:

S
cores

for
G
en
erated

M
S
A
s

122

Figure 6.2: Shift scores, 100 sequences

Figure 6.3: Shift scores, 500 sequences

123

Figure 6.4: Shift scores, 1000 sequences

Figure 6.5: Shift scores, 1500 sequences

124

Figure 6.6: RF Distance: Set Sizes 100, 500, 1000, 1500; Sequence Length
1000

Figure 6.7: Branch Score Distance: Set Sizes 100, 500, 1000, 1500; Sequence
Length 1000

125

Figure 6.8: Log Likelihood Scores: Set Sizes 100, 500, 1000, 1500; Sequence
Length 1000

These �ndings for MAFFT are supported by the available literature.
The MAFFT FFT-NS-2 (progressive) method was claimed to be much

faster than CLUSTALW, while producing equally accurate results. While
generation times for the NS-2 algorithm were extremely impressive, our ex-
periments did not validate the level of accuracy claimed: MSA results were
almost uniformly inferior (with regard to the shift score) and the resulting
phylogenetic trees appear considerably worse from a topological perspective
(as represented by the RF score).

Experimental results in using MUSCLE were even less encouraging. Use
of MUSCLE with its default settings led to alignments that were occasionally
superior to CLUSTALW and MAFFT, especially at shorter sequence lengths,
but generally inferior to both (using shift score as the basis of comparison).
Use of the MUSCLE maxhours parameter, which supposedly attempts to
generate the best alignment possible within the time allotted, led to the
creation of a virtually identical set of alignments.3 While it may be possible
to generate better alignments with MUSCLE using di�erent command-line
settings, this would require signi�cant additional experimentation.

These �ndings for MUSCLE are not supported by the available litera-

3The sole di�erences were in the S1500L50 and S1500L100 sets, where there was a very
slight decrease in quality when using the maxhours option. For this reason, these data
points were not included in this report.

126

ture. In [10], MAFFT, MUSCLE, ProbCons, and T-Co�ee are rated as most
accurate, and �new methods outperform the CLUSTALW tool in terms of
average accuracy.�

This study became more problematic when investigating the hypothe-
sis that a better alignment should produce a better phylogenetic tree. Using
PHYML to produce maximum likelihood trees, we did not observe that align-
ments with better shift scores produced �better� phylogenetic trees; the trees
generated using the CLUSTALW alignments were better in terms of RF and
BSD score, and well within an order of magnitude for the log likelihood
score.4

In the hope that the issue might have been the use of PHYML, Neighbor
Joining trees were produced, using BIONJ [15], and MatLab's Bioinformatics
Toolkit, but both programs produced identical results for all alignments of a
given set size, and so were not used in this study.

The speci�c instances in which �ndings from the literature could not be
replicated are troubling. The most straightforward explanation is that the
benchmark data sets used in the various comparisons in the literature are
su�ciently di�erent from the ROSE-generated data sets used here that the
results from this experiment are not comparable.

A less likely explanation is that �accuracy� in a phylogenetic tree is not
positively correlated with any of the metrics (RF, BSD, or ln(L)) used to
compare the generated trees with the known tree. However, since these
metrics have been widely used in the domain for one or more decades, this
explanation is rather far-fetched.

6.5.1 Future Work

This paper found results in software performance that were contrary to the
literature, and the �nding that the most accurate MSA did not produce
the most accurate phylogenetic tree is quite surprising. This latter result,
especially, should be followed up, with the repetition and expansion of some
of the experiments from this study.

The hypothesis of the follow-on study would be that the most accurate
MSA produces the most accurate phylogenetic tree, and would use the fol-
lowing experiments to test the hypothesis:

4However, it is worthwhile to mention that we cannot de�nitively state that a di�erence
of n points in a given scale is a �signi�cant� di�erence.

127

• Using the BAliBASE benchmark data set, create alignments for one
or more sets of 100 sequences, using CLUSTALW, MUSCLE, MAFFT,
T-Co�ee, and ProbCons.

• Using qscore, score the obtained alignments. Since the literature cites
a number of studies using these alignment programs with BAliBASE,
we would expect to see the results for relative accuracy to correlate to
those in the literature.

• Using PHYLIP, create an assortment of phylogenetic trees (neighbor-
joining, UPGMA, maximum likelihood, parsimony).

• Using PHYLIP, score the trees using RF and branch score distances.
• Assuming that the hypothesis can be veri�ed for smaller sequence sets,
proceed to investigate whether the results hold for larger sets (250, 500,
750, 1000, and 1250). The larger sets would be obtained from known
benchmark data sets if at all possible, with the backup plan being to
generate the data sets using ROSE or Simprot.

This study has also suggested a variety of other follow-on e�orts, any one
of which might be considered a contribution to the literature:

• An examination of the various scoring metrics for MSA accuracy;
• An examination of the available MSA programs, studying accuracy,
speed, and the range of utility (i.e., how many sequences, limits on
sequence length);

• An in-depth examination of MAFFT's various algorithms, their speed,
accuracy, and applicability to speci�c alignment problems;

• An examination of the e�ects of accuracy of MSA on downstream pro-
cesses (e.g., phylogenetic tree generation, using a variety of algorithms);
and

• Scoring metrics for phylogenetic trees.

6.6 Conclusions

From the data presented above on using CLUSTALW, MAFFT, and MUS-
CLE on their default settings, we conclude that CLUSTALW is the superior
choice for creating an MSA.

For users willing to learn and experiment with command line parame-
ters, MAFFT, using the NS-i option, is able to produce alignments that are
superior to CLUSTALW alignments, in less time.

128

We are unable to conclude at this point whether a �better� multiple se-
quence alignment produces a �better� output in a downstream process using
the MSA, such as phylogenetic tree generation.

For the project at hand, we would recommend using the MAFFT pro-
gram's NS-i algorithm to build the MSA for the LANL data set.

129

130

Chapter 7

Conclusions

The primary goal of this project was to develop and train a mathematical
model of nucleotide mutation rates for the gene encoding for Neuraminidase
in the H5N1 (Bird Flu) virus. The model we implemented uses a general
time reversible model, a widely used model in the �eld. This model has 10
parameters, but constraints on the model result in 8 degrees of freedom. The
model is described in detail in Chapter 2.

Parameters for the model were trained using Neuraminidase DNA se-
quences for the Los Alamos National Laboratory In�uenza Sequence Database
[30]. This was accomplished by �rst performing a multiple sequence align-
ment (using CLUSTALW) and then inferring a phylogenetic tree for the
sequences, which approximates the evolutionary relationships between the
sequences. With the phylogenetic tree thus determined, the parameters of
the model were calculated using a maximum likelihood method.

The approach is sensitive to the evolutionary inferences made via the
multiple sequence alignment and the phylogenetic tree construction method-
ologies. An important component of our work, therefore, was to investigate
various methodologies available in the literature. Two di�erent studies on
phylogenetic trees were considered. The �rst study, described in Chapter 3
compares a number of algorithms using simulated data to determine which al-
gorithmic approach most accurately reproduces the �true� phylogenetic tree.
Preliminary results indicate that GARLI [58] using a ML start produces the
most accurate trees, as measured by three di�erent methods for measuring
tree accuracy. But a faster algorithm, PHYML [16], is nearly as accurate,
but runs in considerably less time.

However, there was a limitation in this study that requires further in-

131

vestigation. In particular, the simulated data was produced using a Jukes
Cantor model for mutation rates. This has the e�ect of making the Hamming
distances between sequences be a very good proxy for the phylogenetic dis-
tances. As such, relatively simple algorithms for tree reconstruction are able
to do a fairly good job. Thus, the advantages in accuracy of the more sophis-
ticated algorithms, such as GARLI, may be di�cult to realize. Repeating
the experiments using a more sophisticated model (such as the general time
reversal model) for generating the data may provide clearly results.

The second study, described in Chapter 4 assessed the importance of tree
topology on the accuracy of the model. Most of the computational time
required by the more accurate phylogenetic algorithms (such as GARLI) is
spent searching over various tree topologies. This study focused on whether
getting the tree topology correct is worth the extensive computational time.
To address this question, di�erent algorithms were used to infer phylogenetic
trees from simulated data. Di�erences in the resulting tree topologies were
then measured, and compared to di�erences in pairwise distances between
leaf nodes. The study concluded that the accuracy of the pairwise distances
is very sensitive to the tree topology, so there appears to be signi�cant ad-
vantage in getting the tree topology correct.

One limitation of the study was that �true� phylogenetic distances were
used for the all of the tree building algorithms. As a result, most of the
phylogenetic algorithms tested were able to recover the exact tree topology
very accurately. An improved study, which is left for future work, is to �rst
generate random sequences from the trees, and using the Hamming distances
between these sequences as the distances supplied to the phylogenetic algo-
rithms.

One conceptual issue that had to be addressed in this study was how to
measure di�erences between pairwise distances in trees. Toward that end, an
innovative new metric was developed, which was based solely on precedence
relations between pairwise-distances.

Another study, described in Chapter 6 evaluates recent algorithms for
generating multiple sequence alignments. This study concluded that the
MAFFT algorithm using the NS-option produces the most accurate multiple
sequence alignments, and it is considerably faster that the industry standard
CLUSTALW algorithm. However, using the default options in MAFFT does
not produce as accurate of results as CLUSTALW, so the use of MAFFT is
only recommended for sophisticated users.

An interesting question raised in this study is whether better multiple se-

132

quence alignments will ultimately produce more accurate phylogenetic trees
or more accurate mutation models. Interestingly, in this study, it was ob-
served that better scoring multiple sequence alignments did not appear to
produce more accurate phylogenetic trees. If this observation is con�rmed
through additional experimentation, it raises the question of whether current
measurements of the quality of a multiple sequence alignment really make
sense.

133

134

Bibliography

[1] V. Ahola, T. Aittokallio, M. Vihinen, and E. Uusipaikka. A statistical
score for assessing the quality of multiple sequence alignments. BMC
Bioinformatics, 7:484, 2006.

Compares MAFFT, ProbCons, T-Co�ee, and MUSCLE, in
the context of de�ning a new score for comparing MSA quality.

[2] R. Cartwright. Dna assembly with gaps (dawg): Simulating sequence
evolution. Bioinformatics, 21:iii31�iii38, 2005.

A program that assigns DNA sequences to a tree with branch
lengths. See also the web site http://scit.us/projects/dawg/.

[3] M. Cline, R. Hughey, and K. Karplus. Predicting reliable regions in
protein sequence alignments. Bioinformatics, 18(2):306�314, 2002.

Reference for the Shift score

[4] C.B. Do, M.S.P. Mahabhashyam, M. Brudno, and S. Batzoglou. Prob-
cons: Probabilistic consistency-based multiple sequence alignment.
Genome Research, 15:330�340, 2005.

Primary PROBCONS reference

[5] Alexei J. Drummond, Geo� K. Nicholls, Allen G. Rodrigo, and Wiremu
Solomon. Estimating mutation parameters, population history and ge-
nealogy simultaneously from temporally spaced sequence data. Genetics,
161(3):1307�1320, 2002.

[6] R.A. Dwyer. Genomic Perl. Cambridge University Press, Cambridge,
UK, 2003.

135

Good, hands-on introduction to programming in bioinformat-
ics

[7] R.C. Edgar. Muscle: a multiple sequence alignment method with re-
duced time and space complexity. BMC Bioinformatics, 5:113, 2004.

Describes the MUSCLE algorithm.

[8] R.C. Edgar. Muscle: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Research, 32:1792�1797, 2004.

Primary article on MUSCLE.

[9] R.C. Edgar. qscore v1.1, 2007.

No reference found for program, and no user manual (other
than what you see by typing qscore -help). No dates or other
information in the source code. Downloaded 10/31/2007.

[10] R.C. Edgar and S. Batzoglou. Multiple sequence alignment. Current
Opinions in Structural Biology, 16:368�373, 2006.

Excellent summary table of advantages and disadvantages of
current programs, along with a table summarizing what to do
for speci�c alignment tasks. Very good annotated bibliogra-
phy.

[11] J. Felsenstein. Phylip - phylogeny inference package (version 3.2).
Cladistics, 5:164�166, 1989.

There is no good citation for PHYLIP. This is the one that
the PHYLIP web site says to use, but Felsenstein admits that
it's out of date, and that the 'real' citation is simply the web
site (http://evolution.genetics.washington.edu/phylip.html).

[12] J. Felsenstein. Phylip - phylogeny inference package (version 3.2).
Cladistics, 5:164�166, 1989.

The collection of programs known as PHYLIP. See also
the web site http://evolution.genetics.washington.edu/phylip.
html.

136

[13] Joseph Felsenstein. Evolutionary trees from dna sequences: a maximum
likelihood approach. Journal of molecular evolution, 17:368�376, 1981.

[14] D.F. Feng and R.F. Doolittle. Progressive sequence alignment as a pre-
requisite to correct phylogenetic trees. Journal of Molecular Evolution,
25:351�360, 1987.

Seminal article on progressive sequence alignment.

[15] O. Gascuel. Bionj: an improved version of the nj algorithm based on
a simple model of sequence data. Molecular Biology and Evolution,
14:685�695, 1997.

Main reference for BIONJ.

[16] S. Guindon and O. Gascuel. A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood. Systematic Biology,
52(5):696�704, 2003.

Primary PHYML paper

[17] M. Hasegawa, H. Kishino, and T. Yano. Dating of the human-ape split-
ting by a molecular clock of mitochondrial dna. Journal of molecular
evolution, 22:160�175, 1985.

[18] Red Hat. Cygwin documentation. Web site, Red Hat, Inc., 2001. http:
//cygwin.com/.

Cygwin is an online enterprise. Documentation available for
download at http://cygwin.com/docs.html.

[19] V. Hollich, L. Milchert, L. Arvstad, and E.L.L. Sonnhammer. As-
sessment of protein distance measures and tree-building methods for
phylogenetic tree reconstruction. Molecular Biology and Evolution,
22(11):2257�2264, 2005.

Compares NJ and variants (NJ, BIONJ, FastME, Weighbor)

[20] Jack Horner. Math clinic research project overview. Presentation to the
Math Clinic class, August 2007.

137

[21] Bioinformatics Group in the Department of Computer Science. Phy-
lonet: Phylogenetic networks toolkit. User documentation, Rice Univer-
sity, 2007. http://bioinfo.cs.rice.edu/.

Unable to locate any citations for this work, other than its
(very good) user documentation, which is included in the Phy-
loNet download.

[22] T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In
H. N. Munro, editor, Mammalian Protein Metabolism, pages 21�123.
Academic Press, New York, 1969.

[23] K. Katoh, K. Misawa, K. Kuma, and T. Miyata. Ma�t: a novel method
for rapid multiple sequence alignment based on fast fourier transform.
Nucleic Acids Research, 30:3059�3066, 2002.

Primary MAFFT reference

[24] M. Kimura. A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. Jour-
nal of molecular evolution, 16:111�120, 1980.

[25] M. Kimura. Estimation of evolutionary distances between homologous
nucleotide sequences. Proceedings of the National Academy of Sciences
of the United States of America, 78:454�458, 1981.

[26] M. Kuhner and J. Felsenstein. A simulation comparison of phylogeny al-
gorithms under equal and unequal evolutionary rates. Molecular Biology
and Evolution, 11:459�468, 1994.

This paper introduces the method of branch score distance
between the topologies of two phylogenetic trees.

[27] M.K. Kuhner and J. Felsenstein. A simulation comparison of phylogeny
algorithms under equal and unequal evolutionary rates. Molecular Bi-
ology and Evolution, 11(3):459�468, 1994.

Compares parsimony, compatibility, ML, Fitch-Margoliash,
and NJ

138

[28] S. Kumar, M. Nei, K. Tamura, and M. Nei. Prospects for inferring very
phylogenies by using the neighbor-joining method. Technical report,
Center for Evolutionary Functional Genomics, The Biodesign Institute,
and School of Lofe Sciences, Arizona State University; Department of
Biological Sciences, Tokyo Metropolitan University, 2004. Available for
download at http://www.pnas.org/cgi/reprint/101/30/11030.

Gives general background information on the neighbor joining
algorithm and talks about e�ciency of the algorithm found
through testing.

[29] Cecilia Lanave, Giuliano Preparata, Cecilia Saccone, and Gabriella Se-
rio. A new method for calculating evolutionary substitution rates. Jour-
nal of molecular evolution, 20:86�93, 1984.

[30] C. Macken, H. Lu, J. Goodman, and L Boykin. The value of a database
in surveillance and vaccine selection. In A. D. M. E. Osterhaus, N. Cox,
and A. W. Hampson, editors, Options for the Control of In�uenza IV,
pages 103�106. Elsevier Science, Amsterdam, 2001.

This publication describes the Los Alamos National Labora-
tory In�uenza Sequence Database. The database itself is avail-
able online at http://www.�u.lanl.gov/

[31] B. Morgenstern. Dialign: Multiple dna and protein sequence alignment
at bibiserv. Nucleic Acids Research, 32:W33�W36, 2004.

Main reference for DIALIGN.

[32] M. Nei and N. Saitou. The neighbor-joining method: A new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution,
4:406�425, 1987.

Presents the new method of reconstructing phylogenetic trees,
Neighbor Joining, also used a computer simulation to test
the e�ciency of the new method compared to other methods
commonly used.

[33] C. Notredame, D.G. Higgins, and J. Heringa. T-co�ee: A novel method
for fast and accurate multiple sequence alignment. Journal of Molecular
Biology, 302:205�217, 2000.

139

Introduction to T-Co�ee, including description of algorithm.

[34] P. Nuin, Z. Wang, and E.R.M. Tillier. The accuracy of several multiple
sequence alignment programs for proteins. BMC Bioinformatics, 7:471,
2006.

Comparing CLUSTALW, Dialign (2.2), Tco�ee, POA, Muscle,
MAFFT, ProbCons, Dialign-T, and Kalign

[35] F. Opperdoes. Construction of a distance tree using clustering with the
unweighted pair group method with arithmatic mean (upgma), 1997.

Provides small examples of the UPGMA algorithm.

[36] F. Opperdoes. The neighbor-joining method, 1997. Avaliable for down-
load at http://www.icp.ucl.ac.be/∼opperd/private/neighbor.html.

Presents information of Neighbor Joining programs that are
avaliable, information on negative branch lengths, and gives
small example of how the algorithm works.

[37] A. Pang, A. Smith, P. Nuin, and E.R.M. Tillier. Simprot: Uisng an
empirically determined indel distribution in simulations of protein evo-
lution. BMC Bioinformatics, 6:236, 2005.

SIMPROT tool for generating sequences, currently available
via Tillier's web site at http://www.uhnres.utoronto.ca/labs/
tillier/software.htm.

[38] W. Pearson, G. Robins, and T. Zhang. Generalized neighbor-joining:
More reliable phylogenetic tree reconstruction. Technical report, De-
partment of Computer Science, University of Virginia, Department of
Biochemistry, University of Virginia, 2004. Avaliable for download at
http://www.cs.virginia.edu/papers/gnj_�nal.pdf.

Presents background information on the original Neighbor-
Joining method and then compare it to a newer Neighbor
Joining Method the Generalized Neighbor Joining Method.

[39] M. Pérez-Losada, M.L. Porter, L. Tazi, and K. Crandall. New methods
for inferring population dynamics from microbial sequences. Infection,
Genetics, and Evolution, 7(1):24�43, 2007.

140

Good, current overview of the MSA world.

[40] D. Robinson and L. Foulds. Comparison of phylogenetic trees. Mathe-
matical Biosciences, 53:�131�147, 1994.

This paper introduces the method of symmetric di�erence dis-
tance between the topologies of two phylogenetic trees, com-
monly known as the Robinson-Foulds distance.

[41] D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees.
Mathematical Biosciences, 53:131�147, 1981.

Describes the Robinson-Foulds metric for comparing trees, in
gnarly detail.

[42] F. Rodrí guez, J. L. Oliver, A. Marì n, and J. R. Medina. The gen-
eral stochastic model of nucleotide substitution. Journal of theoretical
biology, 142:485�501, 1990.

[43] C.A. Russo, N. Takezaki, and M. Nei. E�ciencies of di�erent genes
and di�erent tree-building methods in recovering a known vertebrate
phylogeny. Molecular Biology and Evolution, 13(3):525�536, 1996.

Compares NJ, minimum evolution, maximum parsimony, ML

[44] N. Saitou and M. Nei. The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution,
4:406�425, 1987.

This paper introduces the method of neighbor-joining.

[45] J.M. Sauder, J.W. Arthur, and R.L. Dunbrack Jr. Large-scale compari-
son of protein sequence alignment algorithms with structure alignments.
Proteins, 40:6�22, 2000.

Reference for the Modeler score.

[46] J. Stoye, D. Evers, and F. Meyer. Rose: generating sequence families.
Bioinformatics, 14(2):157�163, 1998.

Program for generating test sequence data and known trees

141

[47] Jens Stoye, Dirk Evers, and Folker Meyer. Rose: generating sequence
families. Bioinformatics, 14(2):157�163, 1998.

[48] S.J. Sul and T.L. Williams. A randomized algorithm for comparing
sets of phylogenetic trees. Technical report, Department of Computer
Science, Texas A&M University, 2006. Available for download at http:
//www.cs.tamu.edu/academics/tr/tamu-cs-tr-2006-9-3.

[49] K. Tamura and M. Nei. Estimation of the number of nucleotide sub-
stitutions in the control region of mitochondrial dna in humans and
chimpanzees. Molecular biology and evolution, 10(3):512�526, 1993.

[50] J.D. Thompson, D.G. Higgins, and T.J. Gibson. Clustalw: improv-
ing the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-speci�c gap penalties and weight matrix
choice. Nucleic Acids Research, 22:4673�4680, 1994.

Primary ClustalW reference

[51] J.D. Thompson, F. Plewniak, and O. Poch. Balibase: A benchmark
alignments database for the evaluation of multiple sequence alignment
programs. Bioinformatics, 15(1):87�88, 1999.

[52] J.D. Thompson, F. Plewniak, and O. Poch. A comprehensive compari-
son of multiple sequence alignment programs. Nucleic Acids Research,
27(13):2682�2690, 1999.

Ten alignment programs compared using BAliBASE bench-
mark alignment database.

[53] C. Tseng. Cmsc 838t - bioinformatics and high performance comput-
ing. Lecture, University of Maryland, College Park, 2004. Available for
download at http://amber.cs.umd.edu/class/838-s04/lec5.pdf.

Presents Phylogenetics, Phylogenetic Trees, and di�erent
methods of producing the trees.

[54] Various. Www-servers of felsenstein lab. Avaliable for viewing at http:
//evolution.genetics.washington.edu/.

A website containing a collection of work done by members of
the Felsenstein lab at the University of Washington, Seattle.

142

[55] L. Wall, T. Christiansen, and J. Orwant. Programming Perl (3rd Edi-
tion). O'Reilly, 2000.

The classic Perl book. If you buy only one Perl book, buy this
one.

[56] Ziheng Yang. Maximum-likelihood estimation o phylogeny from dna
sequences when substitution rates di�er over sites. Molecular biology
and evolution, 10(6):1396�1401, 1993.

[57] Ziheng Yang. Maximum likelihood phylogenetic estimation from dna
sequences with variable rates over sites: approximate methods. Journal
of molecular evolution, 39:306�314, 1994.

[58] D.J. Zwickl. GARLI manual (version 0.95). World Wide Web, 2006.

GARLI may be downloaded at http://www.bio.utexas.edu/
faculty/antisense/garli/Garli.html.

[59] D.J. Zwickl. Genetic algorithm approaches for the phylogenetic analy-
sis of large biological sequence datasets under the maximum likelihood
criterion. PhD thesis, University of Texas at Austin, Austin, Texas,
2006.

GARLI may be downloaded at http://www.bio.utexas.edu/
faculty/antisense/garli/Garli.html.

143

