January 2018 Preliminary exam in Applied Analysis

February 7, 2018

Solve all of Problems 1 to 4, and two out of the problems 5, 6, 7.

1. Let (X, d_X) and (Y, d_Y) be metric spaces and $K \subset X$ be compact. Prove the standard result that if $f: X \to Y$ is continuous, then $f(K) \subset Y$ is compact.

Solution. Let $\{V_{\alpha}\}_{\alpha \in A}$ be an open cover of f(K), that is, all V_{α} are open in Y and $f(K) \subset \bigcup_{\alpha \in A} V_{\alpha}$. From $f(K) \subset \bigcup_{\alpha \in A} V_{\alpha}$, it follows that

$$K \subset f^{-1}(f(K)) \subset f^{-1}\left(\bigcup_{\alpha \in A} V_{\alpha}\right) = \bigcup_{\alpha \in A} f^{-1}(V_{\alpha})$$

Since f is continuous, all $f^{-1}(V_{\alpha})$ are open. Since K is compact, there exists finite $I \subset A$ such that

$$K \subset \bigcup_{\alpha \in I} f^{-1} \left(V_{\alpha} \right).$$

Then

$$f(K) \subset \bigcup_{\alpha \in I} f\left(f^{-1}(V_{\alpha})\right) = \bigcup_{\alpha \in I} V_{\alpha}.$$

Thus, every open cover of f(K) has a finite subcover, so f(K) is compact.

(Note that while $f(f^{-1}(V_{\alpha})) = V_{\alpha}$, in general only $K \subset f^{-1}(f(K))$ - what if f is not one-to-one.)

2. Let (X, d) be a metric space, $A \subset X$ nonempty, and for any $x \in X$, define the distance from x to A as

$$\operatorname{dist}(x, A) = \inf \{ d(x, a) : a \in A \}.$$

We say that y is a limit point of A if for all r > 0 there exists $a \in A$ such that d(a, y) < r. Using this definition of a limit point, show that y is a limit point of A if and only if dist(y, A) = 0.

Solution.

⇒: Assume that y is a limit point of A. For every r > 0, there exists $a \in A$ such that d(a, y) < r, thus $dist(x, A) \le d(a, y) < r$. Consequently, $dist(x, A) \le 0$, and since $dist(x, A) \ge 0$ because metric is nonnegative, we have dist(x, A) = 0.

 \Leftarrow :Assume that dist(x, A) = 0. Let r > 0. Since $\inf\{d(x, a) : a \in A\} = 0$, from properties of infimum, there exists $a \in A$ such that d(x, a) < r. Otherwise r would be lower bound on $\{d(x, a) : a \in A\}$, and since infimum is largest lower bound, $\inf\{d(x, a) : a \in A\} \ge r > 0$.

- 3. Let a < b be real numbers and (f_n) be a sequence of contraction maps such that $f_n : [a, b] \to [a, b]$ for all n, prove the following:
 - (a) There exists a uniformly convergent subsequence (f_{n_k}) .
 - (b) If f denotes the limit of the uniformly convergent subsequence, then there exists $x \in [a, b]$ such that f(x) = x.

Solution.

(a) By assumption, f_n are contraction maps, that is, there exist $c_n < 1$ such that

$$\forall n \forall x, y \in [a, b] : |f_n(x) - f_n(y)| \le c_n |x - y|.$$

In particular,.

 $\forall n \forall x, y \in [a, b] : \left| f_n(x) - f_n(y) \right| \le \left| x - y \right|.$

Therefore, the functions $\{f_n\}$ are uniformly equicontinuous: choose $\delta = \varepsilon$ in

$$\forall \varepsilon > 0 \exists \delta > 0 \forall n \forall x, y \in [a, b] : |x - y| < \delta \Rightarrow |f_n(x) - f_n(y)| < \varepsilon.$$

Since $f_n(x) \in [a, b]$, the functions $\{f_n\}$ are also uniformly bounded. Since [a, b] is compact, by the Arzela-Ascoli theorem, there exists a uniformly convergent subsequence (f_{n_k}) .

(b) Fix k. Since each f_{n_k} is a contraction, $f_{n_k} : [a, b] \to [a, b]$, and the closed interval [a, b] is a closed subset of \mathbb{R} , which is complete, so [a, b] is complete, the Banach contraction theorem applies, and there exists $x_{n_k} \in [a, b]$ such that $f_{n_k}(x_{n_k}) = x_{n_k}$. Since [a, b] is compact, there exists a convergent subsequence (x_{n_ℓ}) , $\{n_\ell\} \subset \{n_k\}$. Denote $x = \lim_{\ell \to \infty} x_{n_\ell}$. We will show that f(x) = x. By triangle inequality,

$$\begin{aligned} |f(x) - x| &\leq |f(x) - f_{n_{\ell}}(x)| + |f_{n_{\ell}}(x) - f_{n_{\ell}}(x_{n_{\ell}})| + |f_{n_{\ell}}(x_{n_{\ell}}) - x_{n_{\ell}}| + |x_{n_{\ell}} - x| \\ &\leq |f(x) - f_{n_{\ell}}(x)| + |x_{n_{\ell}} - x| + 0 + |x_{n_{\ell}} - x| \\ &= |f(x) - f_{n_{\ell}}(x)| + 2 |x_{n_{\ell}} - x| . \end{aligned}$$

Let $\varepsilon > 0$. Since $f_{n_{\ell}}(x) \to f(x)$ and $x_{n_{\ell}} \to x$, there exists N_1 such that for all $n \ge N_1$, $|f(x) - f_{n_{\ell}}(x)| < \varepsilon/3$ and N_2 such that $n \ge N_2$, $|x - x_{n_{\ell}}| < \varepsilon/3$. Then $|f(x) - x| < \varepsilon$. Since $\varepsilon > 0$ was arbitrary, |f(x) - x| = 0.

4. Let (X, d) be a compact metric space and (f_n) a sequence of continuous real-valued functions defined on X that converge pointwise to a continuous function f. Prove the standard result: if $f_n(x) \ge f_{n+1}(x)$ for all $x \in X$ and $n \in \mathbb{N}$, then (f_n) converge uniformly.

Solution. Define $g_n(x) = f_n(x) - f(x) \ge 0$. Let $\varepsilon > 0$. Then, for each $x \in X$, $\lim_{n\to\infty} g_n(x) = 0$, so there exists N_x such that $g_{N_x}(x) < \varepsilon/2$. Since g_{n_x} is continuous, there exists δ_x such that if $d(x, y) < \delta_x$, then $|g_{N_x}(x) - g_{N_x}(y)| < \varepsilon/2$. By the triangle inequality and $f_n(x) \ge f_{n+1}(x)$, we conclude that

$$\forall x \exists N_x \in N, \delta_x > 0 \forall n > N_x, d(x, y) < \delta_x : g_n(y) < \varepsilon$$

The open balls $B_{\delta_x}(x)$ are cover of X because $\{x\} \subset B_{\delta_x}(x)$, so $X = \bigcup_{x \in X} \{x\} \subset \bigcup_{x \in X} B_{\delta_x}(x)$. Because X is compact, there exist a finite subcover $B_{\delta_{x_k}}(x)$, $k = 1, \ldots, m$. Set $N = \max\{n_{x_1}, \ldots, n_{x_m}\}$. Let n > N and $y \in X$. Then there exists k such that $y \in B_{\delta_{x_k}}(x)$, thus $N \ge N_{x_k}$, consequently $g_n(y) < \varepsilon$. We have proved that $g_n \rightrightarrows 0$ on X, thus $f_n \rightrightarrows f$ on X.

5. Let L < 1 and $f : \mathbb{R} \to \mathbb{R}$ be differentiable with the property that $\sup_{x \in \mathbb{R}} f'(x) < L$. Prove that there exists a fixed point for f, i.e., that there exists $x \in \mathbb{R}$ such that f(x) = x. Hint: Consider the function g(x) = x - f(x).

Solution.

(a) Define g(x) = x - f(x). Then $g'(x) = 1 - f'(x) \ge 1 - L > 0$. From the mean value theorem, if , then

$$x > 0 \Rightarrow g(x) - g(0) = g'(\xi) x \ge (1 - L) x$$

and

$$x < 0 \Rightarrow g(x) - g(0) = g'(\xi) x \le (1 - L) x$$

Consequently,

$$x > 0 \Rightarrow g(x) \ge g(0) + (1 - L)x$$

and

$$x < 0 \Rightarrow g(x) \le g(0) + (1 - L)x$$

Thus, there exists points a such that $g(a) \leq 0$ and b > a such that $g(b) \geq 0$, so by the intermediate value theorem, there exists x such that g(x) = 0, that is, f(x) = x.

6. Define $f(x) = e^{-1/x^2}$ for $x \neq 0$ and f(0) = 0. Prove that derivatives of f of all orders exist at 0, and $f^{(n)}(0) = 0$.

Solution. First we prove by induction for all n = 0, 1, ... and $x \neq 0$,

$$f^{(n)}(x) = \frac{p_n(x)}{q_n(x)} e^{-\frac{1}{x^2}},$$

where p_n and q_n are some polynomials. Clearly, $p_0 = q_0 = 1$. Suppose the statement hods for some $n \ge 0$. Then

$$f^{(n+1)}(x) = \left(\frac{p_n(x)}{q_n(x)}e^{-\frac{1}{x^2}}\right)'$$

= $\frac{p'_n(x)q_n(x) - q'_n(x)p_n(x)}{q_n^2(x)}e^{-\frac{1}{x^2}} + \frac{p_n(x)}{q_n(x)}\frac{-2}{x^3}e^{-\frac{1}{x^2}}$
= $\left(\frac{p'_n(x)q_n(x) - q'_n(x)p_n(x)}{q_n^2(x)} + \frac{p_n(x)}{q_n(x)}\frac{-2}{x^3}\right)e^{-\frac{1}{x^2}}$

where the bracket is again a rational function. Now we show by induction that $f^{(n)}(0)$ exists and equals 0. For n = 0, this is by definition. Suppose that we already know that for some n. By the definition of derivative,

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0} = \lim_{x \to 0} \frac{1}{x} f^{(n)}(x)$$
$$= \lim_{x \to 0} \frac{1}{x} \frac{p_n(x)}{q_n(x)} e^{-\frac{1}{x^2}} = 0$$

since $\lim_{y\to\infty} y^k e^{-y} = 0$ for any k, we have $\lim_{y\to\infty} R(y) e^{-y^2} = 0$ for any rational function R, and so

$$\lim_{x \to 0} \frac{p(x)}{q(x)} e^{-\frac{1}{x^2}} = 0$$

for any polynomials p, q.

7. Let a < b be real numbers and $f : [a, b] \to \mathbb{R}$ Riemann integrable. Prove that for all $\epsilon > 0$ there exists $g \in \mathcal{C}([a, b])$ such that

$$\int_{a}^{b} |f - g| \, dx < \epsilon.$$

Hint: Define g piecewise.

Solution. Since f is Riemann integrable, there exists a partition $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$ such that $U(f, P) - L(f, P) < \varepsilon$ where

$$L(f,P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1}), \quad U(f,P) = \sum_{i=1}^{n} M_i (x_i - x_{i-1})$$

and

$$m_i = \inf \{f(x) : x \in [x_{i-1}, x_i]\}, \quad M_i = \sup \{f(x) : x \in [x_{i-1}, x_i]\}.$$

Note that from this definition

$$m_{1} \leq f(x_{0}) \leq M_{1}$$
$$\max\{m_{i}, m_{i+1}\} \leq f(x_{i}) \leq \min\{M_{i}, M_{i+1}\}, i = 1, \dots, n-1$$
$$m_{n} \leq f(x_{n}) \leq M_{n}$$

Now define g as the picewise linear function given by the values $f(x_i) = g(x_i), i = 0, \ldots, n$. Then

$$m_i \le g(x) \le M_i, \quad x \in [x_{i-1}, x_i], i = 1, \dots, n$$

and since also

$$m_i \le f(x) \le M_i, \quad x \in [x_{i-1}, x_i], i = 1, \dots, n$$

we have

$$|f(x) - g(x)| \le M_i - m_i, \quad x \in [x_{i-1}, x_i], i = 1, \dots, n$$

Consequently

$$\int_{a}^{b} |f - g| \, dx \le \sum_{i=1}^{n} \left(M_{i} - m_{i} \right) \left(x_{i} - x_{i-1} \right) = U\left(f, P \right) - L\left(f, P \right) < \varepsilon$$