January 2018 Preliminary exam in Applied Analysis

February 7, 2018

Solve all of Problems 1 to 4, and two out of the problems 5, 6, 7.

1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and $K \subset X$ be compact. Prove the standard result that if $f: X \rightarrow Y$ is continuous, then $f(K) \subset Y$ is compact.
Solution. Let $\left\{V_{\alpha}\right\}_{\alpha \in A}$ be an open cover of $f(K)$, that is, all V_{α} are open in Y and $f(K) \subset \bigcup_{\alpha \in A} V_{\alpha}$. From $f(K) \subset \bigcup_{\alpha \in A} V_{\alpha}$, it follows that

$$
K \subset f^{-1}(f(K)) \subset f^{-1}\left(\bigcup_{\alpha \in A} V_{\alpha}\right)=\bigcup_{\alpha \in A} f^{-1}\left(V_{\alpha}\right)
$$

Since f is continuous, all $f^{-1}\left(V_{\alpha}\right)$ are open. Since K is compact, there exists finite $I \subset A$ such that

$$
K \subset \bigcup_{\alpha \in I} f^{-1}\left(V_{\alpha}\right)
$$

Then

$$
f(K) \subset \bigcup_{\alpha \in I} f\left(f^{-1}\left(V_{\alpha}\right)\right)=\bigcup_{\alpha \in I} V_{\alpha}
$$

Thus, every open cover of $f(K)$ has a finite subcover, so $f(K)$ is compact.
(Note that while $f\left(f^{-1}\left(V_{\alpha}\right)\right)=V_{\alpha}$, in general only $K \subset f^{-1}(f(K))$ - what if f is not one-to-one.)
2. Let (X, d) be a metric space, $A \subset X$ nonempty, and for any $x \in X$, define the distance from x to A as

$$
\operatorname{dist}(x, A)=\inf \{d(x, a): a \in A\}
$$

We say that y is a limit point of A if for all $r>0$ there exists $a \in A$ such that $d(a, y)<r$. Using this definition of a limit point, show that y is a limit point of A if and only if $\operatorname{dist}(y, A)=0$.

Solution.

\Rightarrow : Assume that y is a limit point of A. For every $r>0$, there exists $a \in A$ such that $d(a, y)<r$, thus $\operatorname{dist}(x, A) \leq d(a, y)<r$. Consequently, $\operatorname{dist}(x, A) \leq 0$, and since $\operatorname{dist}(x, A) \geq 0$ because metric is nonnegative, we have $\operatorname{dist}(x, A)=0$.
\Leftarrow :Assume that $\operatorname{dist}(x, A)=0$. Let $r>0$. Since $\inf \{d(x, a): a \in A\}=0$, from properties of infimum, there exists $a \in A$ such that $d(x, a)<r$. Otherwise r would be lower bound on $\{d(x, a): a \in A\}$, and since infimum is largest lower bound, $\inf \{d(x, a): a \in A\} \geq r>0)$.
3. Let $a<b$ be real numbers and $\left(f_{n}\right)$ be a sequence of contraction maps such that $f_{n}:[a, b] \rightarrow[a, b]$ for all n, prove the following:
(a) There exists a uniformly convergent subsequence $\left(f_{n_{k}}\right)$.
(b) If f denotes the limit of the uniformly convergent subsequence, then there exists $x \in[a, b]$ such that $f(x)=x$.

Solution.

(a) By assumption, f_{n} are contraction maps, that is, there exist $c_{n}<1$ such that

$$
\forall n \forall x, y \in[a, b]:\left|f_{n}(x)-f_{n}(y)\right| \leq c_{n}|x-y| .
$$

In particular,

$$
\forall n \forall x, y \in[a, b]:\left|f_{n}(x)-f_{n}(y)\right| \leq|x-y| .
$$

Therefore, the functions $\left\{f_{n}\right\}$ are uniformly equicontinuous: choose $\delta=\varepsilon$ in

$$
\forall \varepsilon>0 \exists \delta>0 \forall n \forall x, y \in[a, b]:|x-y|<\delta \Rightarrow\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon .
$$

Since $f_{n}(x) \in[a, b]$, the functions $\left\{f_{n}\right\}$ are also uniformly bounded. Since $[a, b]$ is compact, by the Arzela-Ascoli theorem, there exists a uniformly convergent subsequence $\left(f_{n_{k}}\right)$.
(b) Fix k. Since each $f_{n_{k}}$ is a contraction, $f_{n_{k}}:[a, b] \rightarrow[a, b]$, and the closed interval $[a, b]$ is a closed subset of \mathbb{R}, which is complete, so $[a, b]$ is complete, the Banach contraction theorem applies, and there exists $x_{n_{k}} \in[a, b]$ such that $f_{n_{k}}\left(x_{n_{k}}\right)=x_{n_{k}}$. Since $[a, b]$ is compact, there exists a convergent subsequence $\left(x_{n_{\ell}}\right),\left\{n_{\ell}\right\} \subset\left\{n_{k}\right\}$. Denote $x=\lim _{\ell \rightarrow \infty} x_{n_{\ell}}$. We will show that $f(x)=x$. By triangle inequality,

$$
\begin{aligned}
|f(x)-x| & \leq\left|f(x)-f_{n_{\ell}}(x)\right|+\left|f_{n_{\ell}}(x)-f_{n_{\ell}}\left(x_{n_{\ell}}\right)\right|+\left|f_{n_{\ell}}\left(x_{n_{\ell}}\right)-x_{n_{\ell}}\right|+\left|x_{n_{\ell}}-x\right| \\
& \leq\left|f(x)-f_{n_{\ell}}(x)\right|+\left|x_{n_{\ell}}-x\right|+0+\left|x_{n_{\ell}}-x\right| \\
& =\left|f(x)-f_{n_{\ell}}(x)\right|+2\left|x_{n_{\ell}}-x\right| .
\end{aligned}
$$

Let $\varepsilon>0$. Since $f_{n_{\ell}}(x) \rightarrow f(x)$ and $x_{n_{\ell}} \rightarrow x$, there exists N_{1} such that for all $n \geq N_{1},\left|f(x)-f_{n_{\ell}}(x)\right|<\varepsilon / 3$ and N_{2} such that $n \geq N_{2},\left|x-x_{n_{\ell}}\right|<\varepsilon / 3$. Then $|f(x)-x|<\varepsilon$. Since $\varepsilon>0$ was arbitrary, $|f(x)-x|=0$.
4. Let (X, d) be a compact metric space and $\left(f_{n}\right)$ a sequence of continuous real-valued functions defined on X that converge pointwise to a continuous function f. Prove the standard result: if $f_{n}(x) \geq f_{n+1}(x)$ for all $x \in X$ and $n \in \mathbb{N}$, then $\left(f_{n}\right)$ converge uniformly.

Solution. Define $g_{n}(x)=f_{n}(x)-f(x) \geq 0$. Let $\varepsilon>0$. Then, for each $x \in X$, $\lim _{n \rightarrow \infty} g_{n}(x)=0$, so there exists N_{x} such that $g_{N_{x}}(x)<\varepsilon / 2$. Since $g_{n_{x}}$ is continuous, there exists δ_{x} such that if $d(x, y)<\delta_{x}$, then $\left|g_{N_{x}}(x)-g_{N_{x}}(y)\right|<\varepsilon / 2$. By the triangle inequality and $f_{n}(x) \geq f_{n+1}(x)$, we conclude that

$$
\forall x \exists N_{x} \in N, \delta_{x}>0 \forall n>N_{x}, d(x, y)<\delta_{x}: g_{n}(y)<\varepsilon .
$$

The open balls $B_{\delta_{x}}(x)$ are cover of X because $\{x\} \subset B_{\delta_{x}}(x)$, so $X=\bigcup_{x \in X}\{x\} \subset$ $\bigcup_{x \in X} B_{\delta_{x}}(x)$. Because X is compact, there exist a finite subcover $B_{\delta_{x_{k}}}(x), k=$ $1, \ldots, m$. Set $N=\max \left\{n_{x_{1}}, \ldots, n_{x_{m}}\right\}$. Let $n>N$ and $y \in X$. Then there exists k such that $y \in B_{\delta_{x_{k}}}(x)$, thus $N \geq N_{x_{k}}$, consequently $g_{n}(y)<\varepsilon$. We have proved that $g_{n} \rightrightarrows 0$ on X, thus $f_{n} \rightrightarrows f$ on X.
5. Let $L<1$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable with the property that $\sup _{x \in \mathbb{R}} f^{\prime}(x)<L$. Prove that there exists a fixed point for f, i.e., that there exists $x \in \mathbb{R}$ such that $f(x)=x$. Hint: Consider the function $g(x)=x-f(x)$.

Solution.

(a) Define $g(x)=x-f(x)$. Then $g^{\prime}(x)=1-f^{\prime}(x) \geq 1-L>0$. From the mean value theorem, if, then

$$
x>0 \Rightarrow g(x)-g(0)=g^{\prime}(\xi) x \geq(1-L) x
$$

and

$$
x<0 \Rightarrow g(x)-g(0)=g^{\prime}(\xi) x \leq(1-L) x
$$

Consequently,

$$
x>0 \Rightarrow g(x) \geq g(0)+(1-L) x
$$

and

$$
x<0 \Rightarrow g(x) \leq g(0)+(1-L) x
$$

Thus, there exists points a such that $g(a) \leq 0$ and $b>a$ such that $g(b) \geq 0$, so by the intermediate value theorem, there exists x such that $g(x)=0$, that is, $f(x)=x$.
6. Define $f(x)=e^{-1 / x^{2}}$ for $x \neq 0$ and $f(0)=0$. Prove that derivatives of f of all orders exist at 0 , and $f^{(n)}(0)=0$.
Solution. First we prove by induction for all $n=0,1, \ldots$ and $x \neq 0$,

$$
f^{(n)}(x)=\frac{p_{n}(x)}{q_{n}(x)} e^{-\frac{1}{x^{2}}},
$$

where p_{n} and q_{n} are some polynomials. Clearly, $p_{0}=q_{0}=1$. Suppose the statement hods for some $n \geq 0$. Then

$$
\begin{aligned}
f^{(n+1)}(x) & =\left(\frac{p_{n}(x)}{q_{n}(x)} e^{-\frac{1}{x^{2}}}\right)^{\prime} \\
& =\frac{p_{n}^{\prime}(x) q_{n}(x)-q_{n}^{\prime}(x) p_{n}(x)}{q_{n}^{2}(x)} e^{-\frac{1}{x^{2}}}+\frac{p_{n}(x)}{q_{n}(x)} \frac{-2}{x^{3}} e^{-\frac{1}{x^{2}}} \\
& =\left(\frac{p_{n}^{\prime}(x) q_{n}(x)-q_{n}^{\prime}(x) p_{n}(x)}{q_{n}^{2}(x)}+\frac{p_{n}(x)}{q_{n}(x)} \frac{-2}{x^{3}}\right) e^{-\frac{1}{x^{2}}}
\end{aligned}
$$

where the bracket is again a rational function. Now we show by induction that $f^{(n)}(0)$ exists and equals 0 . For $n=0$, this is by definition. Suppose that we already know that for some n. By the definition of derivative,

$$
\begin{aligned}
f^{(n+1)}(0) & =\lim _{x \rightarrow 0} \frac{f^{(n)}(x)-f^{(n)}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{1}{x} f^{(n)}(x) \\
& =\lim _{x \rightarrow 0} \frac{1}{x} \frac{p_{n}(x)}{q_{n}(x)} e^{-\frac{1}{x^{2}}}=0
\end{aligned}
$$

since $\lim _{y \rightarrow \infty} y^{k} e^{-y}=0$ for any k, we have $\lim _{y \rightarrow \infty} R(y) e^{-y^{2}}=0$ for any rational function R, and so

$$
\lim _{x \rightarrow 0} \frac{p(x)}{q(x)} e^{-\frac{1}{x^{2}}}=0
$$

for any polynomials p, q.
7. Let $a<b$ be real numbers and $f:[a, b] \rightarrow \mathbb{R}$ Riemann integrable. Prove that for all $\epsilon>0$ there exists $g \in \mathcal{C}([a, b])$ such that

$$
\int_{a}^{b}|f-g| d x<\epsilon
$$

Hint: Define g piecewise.
Solution. Since f is Riemann integrable, there exists a partition $P=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ such that $U(f, P)-L(f, P)<\varepsilon$ where

$$
L(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right), \quad U(f, P)=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)
$$

and

$$
m_{i}=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}, \quad M_{i}=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}
$$

Note that from this definition

$$
\begin{aligned}
m_{1} & \leq f\left(x_{0}\right) \leq M_{1} \\
\max \left\{m_{i}, m_{i+1}\right\} & \leq f\left(x_{i}\right) \leq \min \left\{M_{i}, M_{i+1}\right\}, i=1, \ldots, n-1 \\
m_{n} & \leq f\left(x_{n}\right) \leq M_{n}
\end{aligned}
$$

Now define g as the picewise linear function given by the values $f\left(x_{i}\right)=g\left(x_{i}\right), i=$ $0, \ldots, n$. Then

$$
m_{i} \leq g(x) \leq M_{i}, \quad x \in\left[x_{i-1}, x_{i}\right], i=1, \ldots, n
$$

and since also

$$
m_{i} \leq f(x) \leq M_{i}, \quad x \in\left[x_{i-1}, x_{i}\right], i=1, \ldots, n
$$

we have

$$
|f(x)-g(x)| \leq M_{i}-m_{i}, \quad x \in\left[x_{i-1}, x_{i}\right], i=1, \ldots, n
$$

Consequently

$$
\int_{a}^{b}|f-g| d x \leq \sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right)=U(f, P)-L(f, P)<\varepsilon
$$

