
January 2018 Preliminary exam in Applied Analysis

February 7, 2018

Solve all of Problems 1 to 4, and two out of the problems 5, 6, 7.

1. Let (X, dX) and (Y, dY ) be metric spaces and K ⊂ X be compact. Prove the standard
result that if f : X → Y is continuous, then f(K) ⊂ Y is compact.

Solution. Let {Vα}α∈A be an open cover of f(K), that is, all Vα are open in Y and
f(K) ⊂

⋃
α∈A Vα. From f(K) ⊂

⋃
α∈A Vα, it follows that

K ⊂ f−1 (f(K)) ⊂ f−1

(⋃
α∈A

Vα

)
=
⋃
α∈A

f−1 (Vα)

Since f is continuous, all f−1 (Vα) are open. Since K is compact, there exists finite
I ⊂ A such that

K ⊂
⋃
α∈I

f−1 (Vα) .

Then
f (K) ⊂

⋃
α∈I

f
(
f−1 (Vα)

)
=
⋃
α∈I

Vα.

Thus, every open cover of f (K) has a finite subcover, so f (K) is compact.

(Note that while f (f−1 (Vα)) = Vα, in general only K ⊂ f−1 (f(K)) - what if f is not
one-to-one.)

2. Let (X, d) be a metric space, A ⊂ X nonempty, and for any x ∈ X, define the distance
from x to A as

dist(x,A) = inf{d(x, a) : a ∈ A}.

We say that y is a limit point of A if for all r > 0 there exists a ∈ A such that
d(a, y) < r. Using this definition of a limit point, show that y is a limit point of A if
and only if dist(y, A) = 0.

Solution.

1



⇒: Assume that y is a limit point of A. For every r > 0, there exists a ∈ A such
that d(a, y) < r, thus dist(x,A) ≤ d(a, y) < r. Consequently, dist(x,A) ≤ 0, and since
dist(x,A) ≥ 0 because metric is nonnegative, we have dist(x,A) = 0.

⇐:Assume that dist(x,A) = 0. Let r > 0. Since inf{d(x, a) : a ∈ A} = 0, from
properties of infimum, there exists a ∈ A such that d(x, a) < r. Otherwise r would
be lower bound on {d(x, a) : a ∈ A}, and since infimum is largest lower bound,
inf{d(x, a) : a ∈ A} ≥ r > 0).

3. Let a < b be real numbers and (fn) be a sequence of contraction maps such that
fn : [a, b]→ [a, b] for all n, prove the following:

(a) There exists a uniformly convergent subsequence (fnk
).

(b) If f denotes the limit of the uniformly convergent subsequence, then there exists
x ∈ [a, b] such that f(x) = x.

Solution.

(a) By assumption, fn are contraction maps, that is, there exist cn < 1 such that

∀n∀x, y ∈ [a, b] : |fn (x)− fn (y)| ≤ cn |x− y| .

In particular,.
∀n∀x, y ∈ [a, b] : |fn (x)− fn (y)| ≤ |x− y| .

Therefore, the functions {fn} are uniformly equicontinuous: choose δ = ε in

∀ε > 0∃δ > 0∀n∀x, y ∈ [a, b] : |x− y| < δ ⇒ |fn (x)− fn (y)| < ε.

Since fn (x) ∈ [a, b], the functions {fn} are also uniformly bounded. Since [a, b]
is compact, by the Arzela-Ascoli theorem, there exists a uniformly convergent
subsequence (fnk

).

(b) Fix k. Since each fnk
is a contraction, fnk

: [a, b]→ [a, b], and the closed interval
[a, b] is a closed subset of R, which is complete, so [a, b] is complete, the Banach
contraction theorem applies, and there exists xnk

∈ [a, b] such that fnk
(xnk

) = xnk
.

Since [a, b] is compact, there exists a convergent subsequence (xn`
) , {n`} ⊂ {nk}.

Denote x = lim`→∞ xn`
. We will show that f (x) = x. By triangle inequality,

|f (x)− x| ≤ |f (x)− fn`
(x)|+ |fn`

(x)− fn`
(xn`

)|+ |fn`
(xn`

)− xn`
|+ |xn`

− x|
≤ |f (x)− fn`

(x)|+ |xn`
− x|+ 0 + |xn`

− x|
= |f (x)− fn`

(x)|+ 2 |xn`
− x| .

Let ε > 0. Since fn`
(x) → f (x) and xn`

→ x, there exists N1 such that for all
n ≥ N1, |f (x)− fn`

(x)| < ε/3 and N2 such that n ≥ N2, |x− xn`
| < ε/3. Then

|f (x)− x| < ε. Since ε > 0 was arbitrary, |f (x)− x| = 0.
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4. Let (X, d) be a compact metric space and (fn) a sequence of continuous real-valued
functions defined on X that converge pointwise to a continuous function f . Prove
the standard result: if fn(x) ≥ fn+1(x) for all x ∈ X and n ∈ N, then (fn) converge
uniformly.

Solution. Define gn (x) = fn (x) − f (x) ≥ 0. Let ε > 0. Then, for each x ∈ X,
limn→∞ gn (x) = 0, so there exists Nx such that gNx (x) < ε/2. Since gnx is continuous,
there exists δx such that if d (x, y) < δx, then |gNx (x)− gNx (y)| < ε/2. By the triangle
inequality and fn(x) ≥ fn+1(x), we conclude that

∀x∃Nx ∈ N, δx > 0∀n > Nx, d (x, y) < δx : gn (y) < ε.

The open balls Bδx (x) are cover of X because {x} ⊂ Bδx (x), so X =
⋃
x∈X {x} ⊂⋃

x∈X Bδx (x). Because X is compact, there exist a finite subcover Bδxk
(x), k =

1, . . . ,m. Set N = max {nx1 , . . . , nxm}. Let n > N and y ∈ X. Then there exists
k such that y ∈ Bδxk

(x), thus N ≥ Nxk , consequently gn (y) < ε. We have proved that
gn ⇒ 0 on X, thus fn ⇒ f on X.

5. Let L < 1 and f : R → R be differentiable with the property that supx∈R f
′(x) < L.

Prove that there exists a fixed point for f , i.e., that there exists x ∈ R such that
f(x) = x. Hint: Consider the function g (x) = x− f (x).

Solution.

(a) Define g (x) = x − f (x). Then g′ (x) = 1 − f ′ (x) ≥ 1 − L > 0. From the mean
value theorem, if , then

x > 0⇒ g (x)− g (0) = g′ (ξ)x ≥ (1− L)x

and
x < 0⇒ g (x)− g (0) = g′ (ξ)x ≤ (1− L)x

Consequently,
x > 0⇒ g (x) ≥ g (0) + (1− L)x

and
x < 0⇒ g (x) ≤ g (0) + (1− L)x

Thus, there exists points a such that g (a) ≤ 0 and b > a such that g (b) ≥ 0,
so by the intermediate value theorem, there exists x such that g (x) = 0, that is,
f (x) = x.

6. Define f (x) = e−1/x
2

for x 6= 0 and f (0) = 0. Prove that derivatives of f of all orders
exist at 0, and f (n) (0) = 0.

Solution. First we prove by induction for all n = 0, 1, . . . and x 6= 0,

f (n) (x) =
pn (x)

qn (x)
e−

1
x2 ,
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where pn and qn are some polynomials. Clearly, p0 = q0 = 1. Suppose the statement
hods for some n ≥ 0. Then

f (n+1) (x) =

(
pn (x)

qn (x)
e−

1
x2

)′
=
p′n (x) qn (x)− q′n (x) pn (x)

q2n (x)
e−

1
x2 +

pn (x)

qn (x)

−2

x3
e−

1
x2

=

(
p′n (x) qn (x)− q′n (x) pn (x)

q2n (x)
+
pn (x)

qn (x)

−2

x3

)
e−

1
x2

where the bracket is again a rational function. Now we show by induction that f (n) (0)
exists and equals 0. For n = 0, this is by definition. Suppose that we already know
that for some n. By the definition of derivative,

f (n+1) (0) = lim
x→0

f (n) (x)− f (n) (0)

x− 0
= lim

x→0

1

x
f (n) (x)

= lim
x→0

1

x

pn (x)

qn (x)
e−

1
x2 = 0

since limy→∞ y
ke−y = 0 for any k, we have limy→∞R (y) e−y

2
= 0 for any rational

function R, and so

lim
x→0

p (x)

q (x)
e−

1
x2 = 0

for any polynomials p, q.

7. Let a < b be real numbers and f : [a, b] → R Riemann integrable. Prove that for all
ε > 0 there exists g ∈ C([a, b]) such that∫ b

a

|f − g| dx < ε.

Hint: Define g piecewise.

Solution. Since f is Riemann integrable, there exists a partition P = {a = x0 < x1 < · · · < xn = b}
such that U (f, P )− L (f, P ) < ε where

L (f, P ) =
n∑
i=1

mi (xi − xi−1) , U (f, P ) =
n∑
i=1

Mi (xi − xi−1)

and
mi = inf {f (x) : x ∈ [xi−1, xi]} , Mi = sup {f (x) : x ∈ [xi−1, xi]} .

Note that from this definition

m1 ≤ f (x0) ≤M1

max {mi,mi+1} ≤ f (xi) ≤ min {Mi,Mi+1} , i = 1, . . . , n− 1

mn ≤ f (xn) ≤Mn
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Now define g as the picewise linear function given by the values f (xi) = g (xi), i =
0, . . . , n. Then

mi ≤ g (x) ≤Mi, x ∈ [xi−1, xi] , i = 1, . . . , n

and since also
mi ≤ f (x) ≤Mi, x ∈ [xi−1, xi] , i = 1, . . . , n

we have
|f (x)− g (x)| ≤Mi −mi, x ∈ [xi−1, xi] , i = 1, . . . , n

Consequently∫ b

a

|f − g| dx ≤
n∑
i=1

(Mi −mi) (xi − xi−1) = U (f, P )− L (f, P ) < ε
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