January 2018 Preliminary exam in Applied Analysis

February 7, 2018

Solve all of Problems 1 to 4, and two out of the problems 5, 6, 7.

1. Let (X,dx) and (Y, dy) be metric spaces and K C X be compact. Prove the standard
result that if f: X — Y is continuous, then f(K) C Y is compact.

Solution. Let {V,} .4 be an open cover of f(K), that is, all V,, are open in ¥ and
F(K) CUues Va- From f(K) C U,cy Vas it follows that

Kc fH(f(K)) c (U Va> =UJ o

acA aEA

Since f is continuous, all f~! (V) are open. Since K is compact, there exists finite
I C A such that

Kc|]Jf ().

Then
FE)y U va) = Ve

acl acl
Thus, every open cover of f (K) has a finite subcover, so f (K) is compact.

(Note that while f (f~!(V,)) = V,, in general only K C f~! (f(K)) - what if f is not

one-to-one.)

2. Let (X, d) be a metric space, A C X nonempty, and for any = € X, define the distance
from x to A as

dist(z, A) = inf{d(z,a) : a € A}.

We say that y is a limit point of A if for all » > 0 there exists a € A such that
d(a,y) < r. Using this definition of a limit point, show that y is a limit point of A if
and only if dist(y, A) = 0.

Solution.



=-: Assume that y is a limit point of A. For every r > 0, there exists a € A such
that d(a,y) < r, thus dist(z, A) < d(a,y) < r. Consequently, dist(z, A) < 0, and since
dist(x, A) > 0 because metric is nonnegative, we have dist(x, A) = 0.

<:Assume that dist(z, A) = 0. Let » > 0. Since inf{d(z,a) : a € A} = 0, from
properties of infimum, there exists a € A such that d(z,a) < r. Otherwise r would
be lower bound on {d(z,a) : a € A}, and since infimum is largest lower bound,
inf{d(z,a) : a € A} >r >0).

. Let a < b be real numbers and (f,) be a sequence of contraction maps such that
fn i [a,b] = [a,b] for all n, prove the following:

(a) There exists a uniformly convergent subsequence (f,, ).

(b) If f denotes the limit of the uniformly convergent subsequence, then there exists
x € [a,b] such that f(x) = x.

Solution.

(a) By assumption, f,, are contraction maps, that is, there exist ¢, < 1 such that

\V/TLVZL‘,Z/ < [a’ b] : |fn ({L‘) - fn (y)l < e |£L‘ _yl :

In particular,.
VnVx,y € [a,b] : |fn (x) = fu (y)] < |z —yl.

Therefore, the functions {f,,} are uniformly equicontinuous: choose = ¢ in
Ve > 030 > 0VnVa,y € [a,b] : |z —y| < = |fo(z) — fu (y)] <e.

Since f, (x) € [a,b], the functions {f,} are also uniformly bounded. Since [a, b]
is compact, by the Arzela-Ascoli theorem, there exists a uniformly convergent
subsequence (fp, )

(b) Fix k. Since each f,, is a contraction, f,, : [a,b] — [a,b], and the closed interval
[a,b] is a closed subset of R, which is complete, so [a,b] is complete, the Banach
contraction theorem applies, and there exists x,,, € [a,b] such that f,, (x,,) = zp, .
Since [a, b] is compact, there exists a convergent subsequence (zy,), {n/} C {ni}.
Denote x = limy_, x,,. We will show that f (x) = z. By triangle inequality,

|f (ZE) - l‘| < |f (ZE) - fne (I‘)| + ’fnz (I) - fne (xne>| + |fnz (xnz) - xnel + ‘xne - l‘|
<[ (@) = fog ()] + |2, — 2]+ 0+ |an, — x|
= |f (@) = fo, (@)| + 2|25, — 2.

Let ¢ > 0. Since f,, (zr) — f(z) and z,, — z, there exists N; such that for all
n > Ny, |f (x) — fu, (x)| < /3 and N; such that n > N, |z — z,,,| < £/3. Then
|f () — x| < e. Since € > 0 was arbitrary, |f (z) — x| = 0.
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4. Let (X,d) be a compact metric space and (f,) a sequence of continuous real-valued
functions defined on X that converge pointwise to a continuous function f. Prove
the standard result: if f,(z) > f,e1(2z) for all x € X and n € N| then (f,,) converge
uniformly.

Solution. Define g, () = f,(z) — f(x) > 0. Let ¢ > 0. Then, for each z € X,
lim,, 00 gn () = 0, so there exists N, such that gy, (z) < £/2. Since g,, is continuous,
there exists d,, such that if d (z,y) < d,, then |gn, () — gn, (¥)| < €/2. By the triangle
inequality and f,(z) > f,.11(x), we conclude that

VzdN, € N,§, > 0Vn > N, d(z,y) <, : gn (y) < €.

The open balls Bs, (x) are cover of X because {z} C Bjs, (z), so X = [J,cx {7} C
U.ex Bs. (). Because X is compact, there exist a finite subcover B;, (), k =
1,...,m. Set N = max{ng,,...,n,, }. Let n > N and y € X. Then there exists
k such that y € Bs, (), thus N > N, , consequently g, (y) < e. We have proved that
gn = 0on X, thus f, = f on X.

5. Let L < 1 and f : R — R be differentiable with the property that sup,.g f'(z) < L.
Prove that there exists a fixed point for f, i.e., that there exists x € R such that
f(z) = x. Hint: Consider the function g (z) = = — f ().

Solution.

(a) Define g () =2 — f(x). Then ¢’ (z) =1— f'(x) > 1 — L > 0. From the mean
value theorem, if , then

1>0=g(@)—g(0)=¢ (o> 1-L)a

and
r<0=g(@)—g0)=gar=<1-L)z
Consequently,
r>0=g(x)>g(0)+(1—-L)x
and

r<0=g(x)<g0)+(1—-L)x

Thus, there exists points a such that g (a) < 0 and b > a such that g (b) > 0,
so by the intermediate value theorem, there exists x such that g (z) = 0, that is,

flx) =
6. Define f (z) = e /" for 2 # 0 and f (0) = 0. Prove that derivatives of f of all orders
exist at 0, and f™ (0) = 0.

Solution. First we prove by induction for all n =0,1,... and z # 0,

() (o :ﬂe—ﬁ
f () @’



where p,, and g, are some polynomials. Clearly, py = ¢o = 1. Suppose the statement
hods for some n > 0. Then

f(n+1) (z) = (p” (x)e—;z)/

n (2)
_ P (@)@ (@) — g (@) pn (@) 1y Palr) =2
a2 (z) qn (z) 23
_ (Po(@) 4 (@) — gp (@) pu (2) | P (@) =2
- ( ¢ (2) T @) T )

where the bracket is again a rational function. Now we show by induction that £ (0)
exists and equals 0. For n = 0, this is by definition. Suppose that we already know
that for some n. By the definition of derivative,

f(n+1) (0) = lim f(n) (r) — f(“) (0) — lim lf(n) (z)

z—0 x—0 z—0
1pn a1
— lim -2 (x)e =0
z—=0 T qp, (x)
since lim, o y¥e ¥ = 0 for any k, we have lim, . R (y) e v’ = 0 for any rational
function R, and so
lim p(z) e =0
=0 q ()

for any polynomials p, ¢

. Let a < b be real numbers and f : [a,b] — R Riemann integrable. Prove that for all
e > 0 there exists g € C([a, b]) such that

b
/]f—g|d$<e.

Hint: Define g piecewise.

Solution. Since f is Riemann integrable, there exists a partition P = {a = 2o < x1 < + - -

such that U (f, P) — L (f, P) < € where

E mz z_le E M _le

and
=inf{f(x):z € [r,_1, 2]}, M;=sup{f(x):x € [r;1,7]}.
Note that from this definition

my < f(zo) <M
max {m;, m; 1} < f(z;) <min{M;, M;1},i=1,....n—1
my, < f(x,) <M,

< x, = b}



Now define ¢ as the picewise linear function given by the values f (z;) = g(x;), i =
0,...,n. Then
ngg(x)SMl, zE[mi,l,xi],izl,...,n

and since also
ngf(«x)SMz’ $€[.T7;_1,Ii]7i:].,.--,n

we have
f(x) =g @) <My —my, x€zi,x],i=1,...,n

Consequently

/ 7= glde <7 (Ms = mi) (e = 2e2) = U (f, P) — L(J, P) < =



