Analysis Prelim—January 2015

Name:

- All seven answers will be graded, the problem with the lowest point score will be dropped.
- Be sure to show all your relevant work. Rewrite your solutions, if necessary, so they are neat and easy to read.
- Only write on one side of each sheet.
- Start a new sheet of paper for every problem, and write your name and the problem number on every sheet.
- If you use a statement from Rudin or class, state it. If you are unsure if a statement must be proved or may merely be stated, ask your friendly proctor.

1	2	3	4	5	6	7	\sum

Problems

- 1. Let (X, d) be a complete metric space. Prove that a subspace of (X, d) is complete if and only if it is closed.
- 2. Let X be any nonempty set and d_X the discrete metric on X. Let (Y, d_Y) be a metric space. Let $\mathcal{F} = \{f_\alpha\}_{\alpha \in \mathcal{A}}$ denote a family of functions $f_\alpha : X \to Y$ for each $\alpha \in \mathcal{A}$. Prove that \mathcal{F} is uniformly equicontinuous.
- 3. Let $x = (\xi_i)$, $y = (\eta_j)$ denote points in ℓ^2 .
 - (a) Prove that the function $d_1(x, y)$ defined by

$$d_1(x,y) = \sum_{j=1}^{\infty} |\xi_j - \eta_j|$$

is not a metric on ℓ^2 .

(b) Prove that the function $d_2(x, y)$ defined by

$$d_2(x,y) = \left(\sum_{j=1}^{\infty} |\xi_j - \eta_j|^2\right)^{1/2}$$

is a metric on ℓ^2 . Hint: Use Minkowski's inequality.

4. Consider the metric space (ℓ^2, d_2) from problem 3 where $x = (\xi_i) \in \ell^2$. For each $n \in \mathbb{N}$, let $f_n : \ell^2 \to \mathbb{R}$ be defined by

$$f_n(x) = f_n((\xi_i)) = \sum_{i=n}^{\infty} |\xi_i|^2$$

Prove that (a) $f_n(x) \to 0$ for every $x \in \ell^2$, but (b) the convergence to the function f(x) = 0 is *not* uniform.

- 5. Let (X, d_X) and (Y, d_Y) be metric spaces. For each $n \in \mathbb{N}$, suppose $f_n : X \to Y$ is a continuous function. Prove if Y is complete and (f_n) is uniformly Cauchy, then there exists continuous $f : X \to Y$ such that $f_n \to f$ uniformly.
- 6. Let (g_n) and (f_n) denote sequences of Riemann integrable functions, $[a, b] \to \mathbb{R}$. Suppose
 - (i) $\forall m \in \mathbb{N}, \lim_{n \to \infty} \int_a^b |f_m g_n| dx = 0,$
 - (ii) $f_n \to f$ uniformly on [a, b], and
 - (iii) the sequence $(\int_a^b |g_n| dx)$ is bounded.

Prove that

$$\lim_{n \to \infty} \int_{a}^{b} fg_n dx = 0.$$

7. Prove the following standard theorem. A compact metric space is separable.

Useful definitions and theorems

- 1. A family of functions $\{f_{\alpha}\}, \alpha \in \mathcal{A}$ maping metric spaces $(X, d_X) \to (Y, d_Y)$ is equicontinuous if $\forall x \in X$, and $\forall \epsilon > 0$, $\exists \delta > 0$ such that $d_Y(f_{\alpha}(x), f_{\alpha}(y)) < \epsilon$ for every $\alpha \in \mathcal{A}$ and every $y \in X$ with $d_X(x, y) < \delta$.
- 2. The discrete metric d on X assigns d(x, y) = 1 if $x \neq y$ and d(x, x) = 0.
- 3. For $1 \leq p < \infty$, the space ℓ^p is the set of sequences $(x_i) = (x_1, x_2, \ldots) \subset \mathbb{R}$ such that $\sum_{i=1}^{\infty} |x_i|^p < \infty$.
- 4. Minkowski's inequality: Let $x = (\xi_j) \in \ell^p$ and $y = (\eta_j) \in \ell^p$. Then

$$\left(\sum_{j=1}^{\infty} |\xi_j + \eta_j|^p\right)^{1/p} \le \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{1/p} + \left(\sum_{m=1}^{\infty} |\eta_m|^p\right)^{1/p}.$$

5. From Rudin, Theorem 7.16: Suppose f_n is Riemann integrable on [a, b] for n = 1, 2, ... and $f_n \to f$ uniformly on [a, b], then f is Riemann integrable on [a, b] and $\int_a^b f_n dx \to \int_a^b f dx$.