Name:

- All seven answers will be graded, the problem with the lowest point score will be dropped.
- Be sure to show all your work.
- Only write on one side of each sheet.
- Start a new sheet of paper for every problem, and write your name and the problem number on every sheet.
- If you use a statement from Rudin or class, state it. If you are unsure if a statement must be proved or may merely be stated, ask your friendly proctor.

1	2	3	4	5	6	7	\sum

Problems

- 1. Let (x_n) and (y_n) be Cauchy sequences in a metric space (X, d). Prove that the sequence $(d(x_n, y_n))$ converges regardless of whether or not (x_n) or (y_n) converges.
- 2. Let $f:[0,1] \to \mathbb{R}$ satisfy
 - (a) f(0) = f(1) = 0
 - (b) $f(x) > 0, x \in (0, 1)$, and
 - (c) f is continuous.

Prove that there exists $x \in (0, 1)$ satisfying

$$\int_0^x f(u) \ du = x f(x).$$

[Hint: use Intermediate Value Theorem]

3. Consider the following proposition:

Every bounded continuous real-valued function on IR attains its maximum.

The following argument has an error. Find the error and provide a counterexample that the argument indeed fails at that point:

Let $f(x) \leq M$, where M is some constant, and let $f^* = \sup \{f(x) : x \in \mathbb{R}\}$. Clearly, $f^* \leq M$. Now let $x_n \to x^*$ such that $f(x_n) \to f^*$. Then, since f is continuous, $f(x_n) \to f(x^*)$, so $f(x^*) = f^*$. Hence, x^* is where f attains its maximum.

- 4. Let f and g be continuous maps of a metric space (X, d_X) into a metric space (Y, d_Y) and let E be a dense subset of X. If g(x) = f(x) for all $x \in E$, prove that g(x) = f(x) for all $x \in X$.
- 5. Prove the following theorem from Rudin:

Suppose f maps a convex open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , f is differentiable in E, and there is a real number M such that

$$\|f'(\mathbf{x})\| \le M$$

for every $\mathbf{x} \in E$. Then

$$|f(\mathbf{b}) - f(\mathbf{a})| \le M |\mathbf{b} - \mathbf{a}|$$

for all $\mathbf{a} \in E$, $\mathbf{b} \in E$.

- 6. Let F be an equicontinuous set of functions from a metric space (X, d_X) to metric space (Y, d_Y) . Let \overline{F} be the set of functions defined as pointwise limits of sequences of functions in F. Show that \overline{F} is equicontinuous.
- 7. Let ℓ^1 be the metric space of all real sequences, $x = (\xi_j)$, such that $\sum_{j=1}^{\infty} \xi_j$ converges absolutely and where the distance between two sequences, $x = (\xi_j)$ and $y = (\eta_j)$, is given by

$$d(x,y) = \sum_{j=1}^{\infty} |\xi_j - \eta_j|$$

Let ℓ^{∞} be the metric space of all bounded sequences and where the distance between two sequences x and y is given by $d(x, y) = \sup_j |\xi_j - \eta_j|$.

We know that ℓ^1 and ℓ^∞ are metric spaces and that $\ell^1 \subset \ell^\infty$.

Is ℓ^1 closed in ℓ^{∞} ? If yes, prove it. If not, provide a counterexample.