University of Colorado Denver Department of Mathematical and Statistical Sciences

Applied Analysis Preliminary Exam June 7, 2013

Name:		
Exam Rules:		

- This is a closed book exam. Once the exam begins, you have 4 hours to do your best.
- Submit **no more than** 6 solutions. If you submit more than 6 solutions only the first six problems (as determined by the numbering of the problems) will be graded.
- Each problem is worth 20 points; parts of problems have equal value.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write legibly using a dark pencil or pen. Rewrite your solution if it gets too messy.
- Ask the proctor if you have any questions.

	Goo	d luck!	
		5. 6. 7. 8.	
		Total	

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

- 1. Let $x_1 = 1$ and $x_n = \sqrt{3 + \sqrt{x_{n-1}}}$, n > 1. Prove that $\{x_n\}$ converges.
- 2. Prove that Cauchy sequences converge.
- 3. Prove that if $\{f_n\}$ is a sequence of Riemann integrable functions, and $f_n \to f$ uniformly on [a, b] then f is Riemann integrable on [a, b].
- 4. Let f(x) be continuously differentiable with f(0) < -1, f(1) > 0, and f(2) < 0. Prove that $\forall c \in [0, 1], \exists x_c \in (0, 2)$ with $f'(x_c) = c$.
- 5. Prove that
 - (a) $\sum_{n=1}^{\infty} \sin(\frac{1}{n}) = \infty$
 - (b) $\sum_{n=1}^{\infty} \sin(\frac{1}{n^2}) < \infty$
- 6. Let $F: \Re^2 \to \Re^2$ be $F(x,y) = (x+y, x^2 + y^2)$.
 - (a) Find $A = \{(x, y) \in \Re^2 : F \text{ is not locally invertable at } (x, y)\}$. Demonstrate that F is not one-to-one in any neighborhood of A.
 - (b) Find a first order approximation of F at $(x,y) \in \mathbb{R}^2$. Is the approximation valid on A?

 (Note: A first order approximation of F at (x,y) is an affine function G such that $||F(u,v) G(u,v)|| \sim o(||(x,y) (u,v)||)$.
- 7. Let \Re^{∞} be the space of sequences, $\{x_1, x_2, \ldots\}, x_n \in \Re$, and define

$$H = \{(x_1, x_2, \ldots) \in \Re^{\infty} : \sum x_i^2 < \infty \}$$

$$G_n = \{(x_1, x_2 \dots, x_n, 0, 0, \dots) \in \Re^{\infty}\}$$

and

$$G = \bigcup_{n=1}^{\infty} G_n.$$

- (a) Is $H \subset G$, $G \subset H$, or G = H? Explain.
- (b) Prove that G is dense in H in the ℓ^2 metric.
- 8. Let X and Y be metric spaces, and let $f_n: X \to Y$ be a sequence of continuous functions that converge uniformly to f. Prove that f is continuous.