Spring 2013 Analysis Prelim Solutions

1. Let $x_{1}=1$ and $x_{n}=\sqrt{3+\sqrt{x_{n-1}}}, n>1$. Prove that $\left\{x_{n}\right\}$ converges.

Solution: First we show that $\left\{x_{n}\right\}$ is an increasing sequence. $x_{2}=$ $2>x_{1}$. Suppose $x_{k}>x_{k-1}, k<n$. Then

$$
x_{n}^{2}-x_{n-1}^{2}=\left(3+\sqrt{x_{n-1}}\right)-\left(3+\sqrt{x_{n-2}}\right)=\sqrt{x_{n-1}}-\sqrt{x_{n-2}}>0 .
$$

To show that the sequnce is bounded note that $x_{1}<3$, and suppose $x_{k}<3, k<n$. Then

$$
x_{n}^{2}=3+\sqrt{x_{n-1}} \leq 3+\sqrt{3}<9,
$$

so $x_{n}<3$ as well. Since the sequence is increasing and bounded, it must converge, e.g., Rudin, Theorem 3.14.
2. Prove that Cauchy sequences converge.

Solution: Standard, e.g., Rudin, Theorem 3.11.
3. Prove that if $\left\{f_{n}\right\}$ is a sequence of Riemann integrable functions, and $f_{n} \rightarrow f$ uniformly on $[a, b]$ then f is Riemann integrable on $[a, b]$.

Solution: Standard, e.g., Rudin, Theorem 7.16.
4. Let $f(x)$ be continuously differentiable with $f(0)<-1, f(1)>0$, and $f(2)<0$. Prove that $\forall c \in[0,1], \exists x_{c} \in(0,2)$ with $f^{\prime}\left(x_{c}\right)=c$.

Solution: By the MVT there is $z_{1} \in(0,1)$ with $f^{\prime}(z)>1$. By the MVT, there is $z_{2} \in(1,2)$ with $f^{\prime}\left(z_{2}\right)<0$. Since $f^{\prime}(x)$ is continuous, the IVT implies that for any $c \in(0,1)$, there is $x_{c} \in\left(z_{1}, z_{2}\right)$ with $f^{\prime}(x)=c$.
5. Prove that
(a) $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)=\infty$
(b) $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n^{2}}\right)<\infty$

Solution: Since

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n^{2}}\right)}{\frac{1}{n^{2}}}=1
$$

(a) diverges since $\sum \frac{1}{n}$ diverges, and (b) converges since $\sum \frac{1}{n^{2}}$ converges. (e.g., Corollary 4.3.12, Trench)
6. Let $F: \Re^{2} \rightarrow \Re^{2}$ be $F(x, y)=\left(x+y, x^{2}+y^{2}\right)$.
(a) Find $A=\left\{(x, y) \in \Re^{2}: F\right.$ is not locally invertable at $\left.(x, y)\right\}$. Demonstrate that F is not one-to-one in any neighborhood of A.
(b) Find a first order approximation of F at $(x, y) \in \Re^{2}$. (Note: A first order approximation of F at (x, y) is an affine function G such that $\|F(u, v)-G(u, v)\| \sim o(\|(x, y)-(u, v)\|)$. Is the approximation valid on A ?

Solution: (a) The derivative matrix of F is

$$
d F=\left[\begin{array}{cc}
1 & 1 \\
2 x & 2 y
\end{array}\right]
$$

Since $\operatorname{det}(d F)=2 y-2 x, F$ is locally invertable except when $y=x$, so A is the line $y=x$. We can see that F is not one-to-one in any neighborhood of A since $F(x+\epsilon, x-\epsilon)=F(x-\epsilon, x+\epsilon)$ for any $\epsilon>0$.
(b) Since F is differentiable, it follows (e.g., Trench, Theorem 6.22) that since F is differentiable everywhere, for any (x, y),

$$
\lim _{(u, v) \rightarrow(x, y)} \frac{F(u, v)-\left(F(x, y)+d F\left[\begin{array}{l}
u-x \\
v-y
\end{array}\right]\right)}{\|(u, v)-(x, y)\|}=0 .
$$

But the numerator in the expression is exactly $F(u, v)-G(u, v)$, where $G(u, v)$ is the first order approximation.
7. Let \Re^{∞} be the space of sequences, $\left\{x_{1}, x_{2}, \ldots\right\}, x_{n} \in \Re$, and define

$$
\begin{gathered}
H=\left\{\left(x_{1}, x_{2}, \ldots\right) \in \Re^{\infty}: \sum x_{i}^{2}<\infty\right\} \\
G_{n}=\left\{\left(x_{1}, x_{2} \ldots, x_{n}, 0,0, \ldots\right) \in \Re^{\infty}\right\}
\end{gathered}
$$

and

$$
G=\cup_{n=1}^{\infty} G_{n} .
$$

(a) Is $H \subset G, G \subset H$, or $G=H$? Explain.
(b) Prove that G is dense in H in the ℓ^{2} metric.

Solution: $G \subset H$ since sequences with a finite number of nonzero elements are always in ℓ^{2}, but there are elements of ℓ^{2} with an infinite number of nonzero elements which are therefore in H but not G. To show that G is dense in H, let $h=\left(h_{1}, h_{2} \ldots\right) \in H$. Since $\sum h_{i}^{2}<\infty$, for any $\epsilon>0$ there is N so that $\sum_{i=N+1}^{\infty} h_{i}^{2}<\epsilon$. Thus $g=\left(h_{1}, h_{2} \ldots, h_{N}, 0,0 \ldots\right) \in G$ and $\|h-g\|<\epsilon$.
8. Let X and Y be metric spaces, and let $f_{n}: X \rightarrow Y$ be a sequence of continuous functions that converge uniformly to f. Prove that f is continuous.

Solution: Standard, e.g., Rudin, Theorem 7.12.

