
Spring 2013 Analysis Prelim Solutions

1. Let x1 = 1 and xn =
√

3 +
√
xn−1, n > 1. Prove that {xn} converges.

Solution: First we show that {xn} is an increasing sequence. x2 =
2 > x1. Suppose xk > xk−1, k < n. Then

x2
n − x2

n−1 = (3 +
√
xn−1)− (3 +

√
xn−2) =

√
xn−1 −

√
xn−2 > 0.

To show that the sequnce is bounded note that x1 < 3, and suppose
xk < 3, k < n. Then

x2
n = 3 +

√
xn−1 ≤ 3 +

√
3 < 9,

so xn < 3 as well. Since the sequence is increasing and bounded, it
must converge, e.g., Rudin, Theorem 3.14.

2. Prove that Cauchy sequences converge.

Solution: Standard, e.g., Rudin, Theorem 3.11.

3. Prove that if {fn} is a sequence of Riemann integrable functions, and
fn → f uniformly on [a, b] then f is Riemann integrable on [a, b].

Solution: Standard, e.g., Rudin, Theorem 7.16.

4. Let f(x) be continuously differentiable with f(0) < −1, f(1) > 0, and
f(2) < 0. Prove that ∀c ∈ [0, 1], ∃xc ∈ (0, 2) with f ′(xc) = c.

Solution: By the MVT there is z1 ∈ (0, 1) with f ′(z) > 1. By the
MVT, there is z2 ∈ (1, 2) with f ′(z2) < 0. Since f ′(x) is continuous, the
IVT implies that for any c ∈ (0, 1), there is xc ∈ (z1, z2) with f ′(x) = c.

5. Prove that

(a)
∑∞

n=1 sin( 1
n
) =∞

(b)
∑∞

n=1 sin( 1
n2 ) <∞

Solution: Since

lim
n→∞

sin( 1
n
)

1
n

= lim
n→∞

sin( 1
n2 )

1
n2

= 1

(a) diverges since
∑ 1

n
diverges, and (b) converges since

∑ 1
n2 converges.

(e.g., Corollary 4.3.12, Trench)
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6. Let F : <2 → <2 be F (x, y) = (x+ y, x2 + y2).

(a) Find A = {(x, y) ∈ <2 : F is not locally invertable at (x, y)}.
Demonstrate that F is not one-to-one in any neighborhood of A.

(b) Find a first order approximation of F at (x, y) ∈ <2. (Note: A first
order approximation of F at (x, y) is an affine function G such that
‖F (u, v) − G(u, v)‖ ∼ o(‖(x, y) − (u, v)‖). Is the approximation
valid on A?

Solution: (a) The derivative matrix of F is

dF =

[
1 1

2x 2y

]
.

Since det(dF ) = 2y − 2x, F is locally invertable except when y = x,
so A is the line y = x. We can see that F is not one-to-one in any
neighborhood of A since F (x+ ε, x− ε) = F (x− ε, x+ ε) for any ε > 0.

(b) Since F is differentiable, it follows (e.g., Trench, Theorem 6.22)
that since F is differentiable everywhere, for any (x, y),

lim
(u,v)→(x,y)

F (u, v)− (F (x, y) + dF

[
u− x
v − y

]
)

‖(u, v)− (x, y)‖
= 0.

But the numerator in the expression is exactly F (u, v)−G(u, v), where
G(u, v) is the first order approximation.

7. Let <∞ be the space of sequences, {x1, x2, . . .}, xn ∈ <, and define

H = {(x1, x2, . . .) ∈ <∞ :
∑

x2
i <∞}

Gn = {(x1, x2 . . . , xn, 0, 0, . . .) ∈ <∞}

and
G = ∪∞n=1Gn.

(a) Is H ⊂ G, G ⊂ H, or G = H? Explain.

(b) Prove that G is dense in H in the `2 metric.
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Solution: G ⊂ H since sequences with a finite number of nonzero
elements are always in `2, but there are elements of `2 with an in-
finite number of nonzero elements which are therefore in H but not
G. To show that G is dense in H, let h = (h1, h2 . . .) ∈ H. Since∑
h2

i < ∞, for any ε > 0 there is N so that
∑∞

i=N+1 h
2
i < ε. Thus

g = (h1, h2 . . . , hN , 0, 0 . . .) ∈ G and ‖h− g‖ < ε.

8. Let X and Y be metric spaces, and let fn : X → Y be a sequence
of continuous functions that converge uniformly to f . Prove that f is
continuous.

Solution: Standard, e.g., Rudin, Theorem 7.12.
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