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Name:

The proctor will let you read the following conditions before the exam begins, and you will
have time for questions. Once the exam begins, you will have 4 hours to do your best. This
is a closed book exam. Please put your name on each sheet of paper that you turn in, and
only use one side of each sheet.

Exam conditions:

• Submit as many solutions as you can. All solutions will be graded and your final
grade will be based on your six best solutions.

• Each problem is worth 20 points; parts of problems have equal value unless noted
otherwise.

• Justify your solutions: cite theorems that you use, provide counter-examples for dis-
proof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your proof;
instead, produce an independent proof.

• Ask the proctor if you have any questions.

Good luck!
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1. Let fn(x) = (−1)n xn

n .

(a) Show that
∑∞

n=1 fn(x) converges uniformly on [0, 1].

(b) Show that
∑∞

n=1 |fn(x)| converges pointwise on [0, 1).

(c) Show that
∑∞

n=1 |fn(x)| does not converge uniformly on [0, 1).

2. Let {an} and {bn} be sequences of real numbers, and let cn = an + bn.

(a) Prove or find a counterexample. If a is a limit point of {an} and b is a limit point
of {bn} then a+ b is a limit point of {cn}.

(b) Prove or find a counterexample. a = lim an, and b a limit point of {bn}, then
a+ b is a limit point of {cn}.

3. Suppose f(x) is continuous and unbounded on [a, b). Prove that limx→b− f(x) does
not exist.

4. Suppose f is continuous on [a, b]. Prove

(a) ∃c ∈ (a, b) such that f(c) = 1
b−a

∫ b
a f(x)dx.

(b) ∃c ∈ (a, b) such that f(c) = 1
c−a

∫ c
a f(x)dx.

5. Suppose f : < → < is continuous with limx→−∞ f(x) = α and limx→∞ f(x) = β,
where α, β are finite. Prove that f is uniformly continuous.

6. For which α > 0 does
∞∑

k=1

αk ln k

k!

converge?

7. Suppose fn → f uniformly on A ⊂ X, where (X, d) is a metric space, and let x ∈ Ā,
i.e., x is a limit point of A. Also assume that for n = 1, 2, 3, ... the limits limt→x fn(t) =
an ∈ < exist.

(a) Prove {an} converges. Hint: Show the sequence is Cauchy.

(b) Prove limt→x f(t) = a, where a = lim an.

8. Prove that the system of equations

3x = y + sinx
3y = x+ cos y

has a unique solution.


