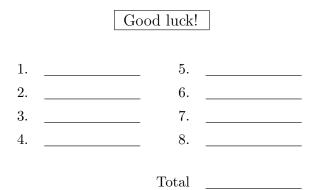
University of Colorado Denver Deptartment of Mathematical and Statistical Sciences Applied Analysis Preliminary Exam January 18, 2013, 10:00 am – 2:00 pm

Name:

The proctor will let you read the following conditions before the exam begins, and you will have time for questions. Once the exam begins, you will have 4 hours to do your best. This is a closed book exam. Please put your name on each sheet of paper that you turn in, and only use one side of each sheet.

Exam conditions:

- Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your <u>six best solutions</u>.
- Each problem is worth 20 points; parts of problems have equal value unless noted otherwise.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Ask the proctor if you have any questions.



DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

1. Let $f_n(x) = (-1)^n \frac{x^n}{n}$.

- (a) Show that $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on [0, 1].
- (b) Show that $\sum_{n=1}^{\infty} |f_n(x)|$ converges pointwise on [0, 1).
- (c) Show that $\sum_{n=1}^{\infty} |f_n(x)|$ does not converge uniformly on [0, 1).
- 2. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers, and let $c_n = a_n + b_n$.
 - (a) Prove or find a counterexample. If a is a limit point of $\{a_n\}$ and b is a limit point of $\{b_n\}$ then a + b is a limit point of $\{c_n\}$.
 - (b) Prove or find a counterexample. $a = \lim a_n$, and b a limit point of $\{b_n\}$, then a + b is a limit point of $\{c_n\}$.
- 3. Suppose f(x) is continuous and unbounded on [a, b). Prove that $\lim_{x\to b^-} f(x)$ does not exist.
- 4. Suppose f is continuous on [a, b]. Prove
 - (a) $\exists c \in (a, b)$ such that $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$.
 - (b) $\exists c \in (a, b)$ such that $f(c) = \frac{1}{c-a} \int_a^c f(x) dx$.
- 5. Suppose $f : \Re \to \Re$ is continuous with $\lim_{x\to-\infty} f(x) = \alpha$ and $\lim_{x\to\infty} f(x) = \beta$, where α, β are finite. Prove that f is uniformly continuous.
- 6. For which $\alpha > 0$ does

$$\sum_{k=1}^{\infty} \frac{\alpha^{k \ln k}}{k!}$$

converge?

- 7. Suppose $f_n \to f$ uniformly on $A \subset X$, where (X, d) is a metric space, and let $x \in \overline{A}$, i.e., x is a limit point of A. Also assume that for n = 1, 2, 3, ... the limits $\lim_{t\to x} f_n(t) = a_n \in \Re$ exist.
 - (a) Prove $\{a_n\}$ converges. Hint: Show the sequence is Cauchy.
 - (b) Prove $\lim_{t\to x} f(t) = a$, where $a = \lim a_n$.
- 8. Prove that the system of equations

$$3x = y + \sin x$$
$$3y = x + \cos y$$

has a unique solution.