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1 Prolegomena

A prelim exam in real analysis was given on 18 January 2013 for Ph.D.
students in the Department of Mathematical and Statistical Sciences of the
University of Colorado Denver. In due course this exam along with brief
sketches of solutions of the problems will be posted on the Department’s web
page. However, in discussing some of the solutions with students after the
exam, it occurred to me that it would be helpful to use the recent exam as
a guide to reviewing a significant bit of our curriculum in real analysis. So
the present notes give a more nearly complete treatment of the ideas used in
solving the problems on this exam.

2 Problem 1

.
Let fn(x) = (−1)n x

n

n
.

(a) Show that
∑∞

n=1 fn(x) converges uniformly on [0, 1].

(b) Show that
∑∞

n=1 |fn(x)| converges pointwise on [0, 1).

(c) Show that
∑∞

n=1 |fn(x)| does not converge uniformly on [0, 1).

Solution: For part (a) the alternating series test provides a simple solu-
tion. But we need the complete theorem.
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Theorem 2.1. (Leibniz’s Rule for Alternating Series) If {an} is a monotonic
decreasing sequence with limit 0, then the alternating series

∑∞
n=1(−1)n+1an

converges. If S denotes its sum and sn denotes its nth partial sum, we also
have the inequalities

0 < (−1)n(S − sn) < an+1 (1)

Note: The first inequality tells us that the error, S − sn, has the sign
(−1)n, which is the same as the sign of the first neglected tern, (−1)nan+1.
The second inequality states that the absolute value of this error is less than
that of the first neglected term.

Proof. Start with sn =
∑n

k=1(−1)k+1ak. Then s2k+2−s2k = a2k+1−a2k+2 > 0.
This says that the partial sums s2k form an increasing subsequence. Similarly,
s2k+1 − s2k−1 = −(a2k − a2k+1) < 0. This says that the partial sums s2k−1

form a decreasing subsequence. So the sequence {s2k+1} is clearly bounded
above by s1, but so is the sequence of even numbered partial sums: s2r+2 =
a1−

∑r
k=1(a2k − a2k+1)− a2r+2. Similarly, both sequences {s2k} and {s2k−1}

are bounded below by s2. (s2k+1 = a1 −
∑k

t=1(a2t − a2t+1). Therefore, each
sequence {a2k} and {a2k−1}, being bounded and monotonic, converges to a
limit. Say a2k → S ′ and a2k−1 → S ′′. But

S ′ − S ′′ = lim
n→∞

s2k − lim
n→∞

s2k−1 = lim
n→∞

(s2k − s2k−1) = lim
n→∞

(−a2k = 0.

Hence S ′ = S ′′, and we denote the common limit by S. Since s2k is increasing
and s2k−1 is decreasing, we have

s2k < s2k+2 ≤ S and S ≤ s2k+1 < s2k−1 for all k ≥ 1. (2)

So −S > −s2k and we have

0 < S − s2k ≤ s2k+1 − s2k = a2k+1 =⇒ |S − s2k| ≤ a2k+1, (3)

and
0 < s2k−1 − S ≤ s2k−1 − s2k = a2k =⇒ |S − s2k−1| ≤ a2k. (4)

Putting these last two equations together gives the result

|S − sn| ≤ an+1 for all n ∈ N.
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For part (a), note that for each x ∈ S = [0, 1] the series
∑∞

n=1(−1)n x
n

n

converges pointwise since it is an alternating series of decreasing positive
terms approaching 0. So let F (x) be the function to which the series con-
verges on S = [0, 1]. For the series to converge uniformly to F , we need to
see that the uniform norm

‖
n∑
j=1

(−1)j
xj

j
− F (x)‖S

approaches 0 as n→∞. This is clearly true, since by Eq. 1

|
∞∑
n=m

fn(x) < |fm(x)| = 1

m
→ 0 as m→∞.

For part (b), use the ratio test:∣∣∣∣fn+1(x)

fn(x)

∣∣∣∣ =
nx

n+ 1
→ x as n→∞,

so for x ∈ [0, 1), convergence follows from the ratio test.

For part (c) we offer two slightly different approaches. One way to deny
uniform convergence is to show the existence of an ε0 > 0 such that no matter
how large m ∈ N is, there is some x ∈ [0, 1) such that

∑∞
n=m+1

xn

n
≥ ε0. So let

m be given and put ε0 = 1/4. Choose x close enough to 1 so that x2m > 1/2
(so xj > 1/2 for m+ 1 ≤ j ≤ m). Then

∞∑
n=m+1

xn

n
>

2m∑
n=m+1

xn

n
>

1

2

2m∑
n=m+1

1

n
>

1

2

2m∑
n=m+1

1

2m
=

1

4
.

This completes our first proof.

For the second approach, denote the partial sums by

sm(x) =
m∑
n=1

|fn(x)| =
m∑
n=1

xn

n
,

and put s(x) = limm→∞ sm. Suppose that sm converges to s uniformly on
[0, 1). Then there must exist an m0 such that

x ∈ [0, 1) =⇒ |sm0(x)− s(x)| < 1.
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Because sm0 is bounded on [0, 1), it follows that s is bounded on [0, 1). But
for any m ∈ N,

lim
x→1−

s(x) ≥ lim
x→1−

sm(x) =
m∑
n=1

1

n
→∞ as m→∞.

Hence s cannot be bounded on [0, 1), a contradiction.

3 Problem 2

Let {an} and {bn} be sequences of real numbers, and let cn = an + bn for
n ∈ N.

(a) Prove or find a counterexample: If a is a limit point of {an} and b is a
limit point of {bn}, then a+ b is a limit point of {cn}.

(b) Prove or find a counterexample: If a = limn→∞ an and b is a limit point
of {bn}, then a+ b is a limit point of {cn}.

Solution: For part (a) there is a simple counterexample: Put an =
(−1)n+1 and bn = (−1)n for n ∈ N. Then cn = 0 for all n and a = b = 1 is a
limit point of both {an} and {bn}, but a+ b = 2 is not a limit point of {cn}.

For part (b), since b is a limit point of {bn}, there is a subsequence {bnk}∞k
that converges to b. Then the corresponding subsequence {ank} of {an} must
converge to the limit a, implying that the subsequence {cnk} must converge
to a+ b, so a+ b is indeed a limit point of {cn}.

4 Problem 3

Suppose that f(x) is continuous and unbounded on [a, b). Prove that
limx→b− f(x) does not exist.

Solution: Suppose that limx→b− = L ∈ R. This means (putting ε = 1)
there is a δ > 0 such that if 0 < b − x < δ then |f(x) − L| < 1. Hence
|f(x)| ≤ 1 + |L| for x ∈ (b − δ, b). Since f is continuous on [a, b − δ], which
is a closed bounded interval, f(x) is bounded on [a, b − δ]. (Usually this is
proved long before a student studies compact sets, but one quick argument
is that, [a, b − δ] is a compact connected set, and the continuous image of
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a compact connected set is compact and connected. And the only compact
and connected sets of real numbers are the closed bounded intervals.) Hence
f(x) is bounded on both [a, b− δ] and (b− δ, b), implying that it is bounded
on [a, b). Hence if f(x) is unbounded on [a, b) and continuous there, it must
be that limx→b− f(x) does not exist.

We make an additional comment at this point. Suppose that f : [a, b)→
R is a given function. Consider the following three statements about f .

(i) f(x) is continuous on [a, b).

(ii) limx→b− f(x) exists as a real number.

(iii) f(x) is unbounded on [a, b).

The proof given above amounts to a proof that not all three statements
(i), (ii) and (iii) can be true about the same function f . This means that if
we take as hypothesis the truth of any two of the three statements, the proof
given above shows that the third statement must be false. For example, if we
are given that f(x) is unbounded and limx→b− f(x) exists as a real number,
then we may conclude that f(x) is not continuous on [a, b).

5 Problem 4

Suppose that f(x) is continuous on the interval [a, b]. Prove each of the
following statements:

(a) There is a c ∈ (a, b) such that f(c) = 1
b−a

∫ b
a
f(x)dx.

(b) There is a c ∈ (a, b) such that f(c) = 1
b−a

∫ b
a
f(x)dx.

Proof: (a) We offer two proofs. For x ∈ [a, b] put F (x) =
∫ x
a
f(t)dt. Then

F is continuous on [a, b] and differentiable on (a, b) with F ′(x) = f(x). By
the Mean Value Theorem there is a c ∈ (a, b) for which

F ′(c) =
F (b)− F (a)

b− a
, i.e., f(c) =

1

b− a

∫ b

a

f(t)dt.

This is a simple argument, but it does not immediately suggest a way to deal
with part (b). So we offer a second proof that does suggest a way to deal
with part (b).
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If f is constant, the result is trivial. Suppose f is not constant. Since [a, b]
is compact, and f is contintuous, f attains its maximum at some M ∈ [a, b]
and minimum at some m ∈ [a, b]. Thus,∫ b

a

f(m)dx <

∫ b

a

f(x)dx <

∫ b

a

f(M)dx,

which implies

f(m) <
1

b− a

∫ b

a

f(x)dx < f(M).

By the intermediate value thm, there is a c between m and M such that
f(c) = 1

b−a

∫ b
a
f(x)dx.

(b) This problem was incorrectly posed! There is a simple counterexample
(discovered by one of the students while taking the exam): Let f(x) = x and
let (a, b) = (0, 1) Then for all c ∈ (a, b) we have

1

c− a

∫ c

a

f(x)dx =
1

c

∫ c

0

xdx =
1

c
[
x2

2
]c0 =

c

2
< c = f(c).

The problem should have specified that f(a) is not the minimum or max-
imum of f(x), x ∈ [a, b]. In that case the function takes its minimum at
some m ∈ (a, b] and maximum at some M ∈ (a, b], so

f(m) <
1

m− a

∫ m

a

f(x)dx and f(M) >
1

M − a

∫ M

a

f(x)dx.

Let g(z) = f(z)− 1
z−a

∫ z
a
f(x)dx. Then g(m) < 0 and g(M) > 0. Since f is

continuous, so is g. By the Intermediate Value theorem, there is c between
m and M such that g(z) = 0, which proves the result.

6 Problem 5

Suppose f : R→ R is continuous with limx→−∞ f(x) = α and limx→∞ f(x) =
β, where α, β are finite. Prove that f is uniformly continuous.

Proof. Let ε > 0 be given. There is an m with −∞ < m < 0 such that
x < m implies |f(x) − α| < ε/2, and there is an M with 0 < M < ∞ such
that x > M implies |f(x)− β| < ε/2.
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Since f is continuous on R, it is uniformly continuous on [m− 1,M + 1],
so there is a δ with 0 < δ < 1 such that if x, y ∈ [m−1,M+1] and |x−y| < δ
then |f(x) − f(y)| < ε. Now, choose any x, y ∈ R with |x − y| < δ. Then
x and y are either both in [m − 1,M + 1] or both in (−∞,m) or both in
(M,∞). For example, if x and y are both in (−∞,m), then |f(x)− f(y)| ≤
|f(x) − α| + |α − f(y)| < ε. In all cases we have |f(x) − f(y)| < ε, so f is
uniformly continuous.

One student offered a valid argument that under the hypotheses of the
problem f(x) is bounded on (−∞,+∞), and then claimed that if f(x) is con-
tinuous and bounded on (−∞,+∞) it must be uniformly continuous there.
So we give an interesting counterexample to that claim.

To prepare for the example, we first prove a useful lemma.

Lemma 6.1. Let c be a fixed positive number. Then

lim
x→∞

[
√
x+ c−

√
x] = 0.

Proof of lemma:

|
√
x+ c−

√
x| = (x+ c)− x√

x+ c+
√
x
<

c

2
√
x
→ 0 as x→∞.

Now consider the function f(x) = sin(x2) for x ∈ R. Put c = π, xk =√
kπ + π/2 and yk =

√
(k + 1)π + π/2. Then |xk − yk| → 0 as k →∞, but

|f(xk)−f(yk)| = | sin((k+1)π+π/2)−sin((kπ)+π/2)| = |±1−∓1| = 2. So
we can find distinct x and y arbitrarily close together with |f(x)−f(y)| = 2.
This shows that f(x) is not uniformly continuous on (−∞,+∞).

7 Problem 6

For which α > 0 does
∞∑
k=1

αk ln k

k!

converge?

Solution: The ratio of the (k + 1)st to kth term is

1

k + 1
α(k+1) ln(k+1)−k ln(k) =

1

k + 1
eln(1+ 1

k
)k ln(α)eln(k+1) ln(α)
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= (k + 1)ln(α)−1

(
(1 +

1

k
)k
)ln(α)

.

The second factor converges to α, since limk→∞(1 + 1
k
)k = e. The first factor

converges to 0 if α < e, to 1 if α = e, and to ∞ if α > e. So the ratio tends
to a limit less than 1 if α < e and to a limit greater than 1 if α ≥ e. Thus
the series converges iff α < e.

It is possible to use the root test instead of the ratio test if one remembers
the appropriate form of the Stirling - De Moivre formula for n!.

lim
k→∞

(
αk ln k

k!

) 1
k

= lim
k→∞

αln k

(k!)
1
k

.

First we write c = α/e, i.e., α = ce. So αln k = cln k · k. Recall Stirling’s
formula for n!:

n! = nne−n(2nπ)1/2e
θ

12n , where 0 < θ < 1.

(I can provide a proof of this if necessary. Just send me an email message
asking for a pdf file giving a proof of Stirling’s formula.)

So the kth root of the kth term is:

cln k · k
(k!)1/k

= cln k · 1

e−1(2π)1/(2k)(k1/k)1/2e
θ

12k2

.

The factors of the denominator (except for the first one) approach 1 as k →
∞. So the entire right hand factor approaches e. If c = 1, cln k → 1, so the
entire limit is greater than 1 and the original series diverges. But if 0 < c < 1,
(i.e., if 0 < α < e), then the limit of the kth root of the kth term is 0 < 1,
and the series converges.

8 Problem 7

Suppose fn → f uniformly on A ⊂ X, where (X, d) is a metric space, and
let x ∈ Ā, i.e., x is a limit point of A. Also assume that for n = 1, 2, 3, ... the
limits limt→x fn(t) = an ∈ R exist.

(a) Prove {an} converges. Hint: Show the sequence is Cauchy.

(b) Prove limt→x f(t) = a, where a = lim an.
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Proof: (a) Choose ε > 0, and N large enough so that m,n > N implies
|fn(t) − fm(t)| < ε for every t ∈ X. Fix n,m > N . Choose δ > 0 so that
d(t, x) < δ imples |fn(t)− an| < ε and |fm(t)− am| < ε. Then for d(t, x) < δ,
|an − am| < |an − fn(t)| + |fn(t) − fm(t)| + |fm(t) − am| < 3ε. This shows
that the sequence is Cauchy, and therefore converges.

(b) Since an → a, there is M so that n > M implies |an− a| < ε. Choose
n > max(N,M) and t so that d(t, x) < δ. Then

|f(t)− a| < |f(t)− fn(t)|+ |fn(t)− an|+ |an − a| < 3ε.

Hence limt→x f(t) = a.

9 Problem 8

Prove that the system of equations

3x = y + sinx

3y = x+ cos y

has a unique solution.

Solution We are going to apply a general mean value theorem for func-
tions from Rn to Rn along with the Contraction Mapping theorem to show
that certain systems of equation have a unique solution. First recall the
Contraction Mapping theorem.

Theorem 9.1. (The Contraction Mapping Theorem) Let (X, d) be a metric
space. A function f : X → X is a contraction provided there is a number c
with 0 < c < 1 for which d(f(x), f(y)) ≤ c · d(x, y) for all x, y ∈ X.

If (X, d) is a complete metric space and f : X → X is a contraction, then
there is a unique x0 ∈ X for which f(x0) = x0.

Since the proof of this theorem is given in essentially all analysis courses,
we do not give a proof here. However, there is not universal agreement on
what theorem should be called “the” mean value theorem for continuous
functions from Rn to Rm, so we state such a theorem and give a proof.

Theorem 9.2. (A Mean Value Theorem) Let D be open in Rn and suppose
that f : D → Rm is differentiable at each point of D. Let x, y ∈ D be such
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that the closed line segment L(x,y) ⊆ D. Then for each point a ∈ Rm there
is a point z ∈ L(x,y) different from x or y such that

a · (f(y)− f(x)) = a · (f ′(z)(y − x)) .

Proof. Let u = y−x. Since D is open and L(x,y) ⊆ D, an open line segment
slightly longer than L(x,y) is contained in D. So there is a δ > 0 such that
x+ tu ∈ D for all t ∈ (−δ, 1 + δ). This corresponds to the open line segment
from x − δu = (1 + δ)x − δy to the point x + (1 + δ)u = −δx + (1 + δ)y.
Now let a be a fixed vector in Rm, and let F be the real-valued function
defined on (−δ, 1 + δ) by F (t) = a · f(x + tu). Then F is differentiable
on (−δ, 1 + δ). By a routine argument we see that G : t 7→ f(x + tu) has
derivative G′(t) = f ′(x+tu; u). (This is just another notation for ∂f

∂u
(c+tu).)

Here is the proof: If G(t) = f(x + tu), for a < t < b, then

G′(t) = limh→0
G(t+ h)−G(t)

h
=

= limh→0
f(x + (t+ h)u)− f(x + tu)

h

= limh→0
f((x + tu) + hu)− f(x + tu)

h
=

=
∂f

∂u
(x + tu).

Moreover, the map

A : Rn → R : v 7→ a · v

is linear with [A] = a = [a1, . . . , an]. So A′c(v) = a · v (for any c ∈ D). In
particular this means that

A′(G(t))(G′(t)) = A′G(t)(G
′(t)) = a ·G′(t) = a · (f ′(x + tu; u)).

So if F (t) = a · f(x + tu) = (A ◦G)(t), then by the Chain Rule F ′(t) =
a · (f ′(x + tu; u)). By the usual mean value theorem, F (1) − F (0) = F ′(θ),
where 0 < θ < 1. Put z = x + θu ∈ L(x,y). Then F ′(θ) = a · (f ′(z)(u)) and
F (1) − F (0) = a · (f(y) − f(x)). It is easy to see that we now have proved
Theorem 9.2.
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Let A = (aij) be an m× n matrix over R, and put

MA =

 ∑
1≤i≤m
1≤j≤n

a2
ij


1
2

.

If x = (x1, . . . , xn) ∈ Rn, define the norm ‖x‖ of x by

‖x‖ =

√√√√ n∑
i=1

x2
i .

Lemma 9.3. If A is an m× n matrix over R, then we have

‖Ax‖ ≤MA · ‖x‖ for all x ∈ Rn.

Proof. Suppose that x = (x1, . . . , xn)T , y = Ax = (y1, . . . , ym)T . Then

‖y‖2 = ‖Ax‖2 =
m∑
i=1

y2
i =

m∑
i=1

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣
2

≤
n∑
i=1

{
n∑
j=1

|aij| · |xj|

}2

(now use Cauchy-Schwarz)

≤
m∑
i=1

{
n∑
j=1

|aij|2 ·
n∑
j=1

|xj|2
}

=
m∑
i=1

{
‖x‖2 ·

n∑
j=1

|aij|2
}

= M2
A‖x‖2.

So ‖Ax‖ ≤MA‖x‖.

We now put these ideas together!

Theorem 9.4. Let D be open in Rn and suppose that f : D → Rm is
differentiable at each point of D. Let x, y ∈ D be such that the closed line
segment L(x,y) ⊆ D. Then for some z ∈ L(x,y), x 6= z 6= y, we have

‖f(y)− f(x)‖ ≤ ‖f ′(z) · (y − x)‖ ≤M · ‖y − x‖.
Here M is the square root of the sum of the squares of the entries of f ′(z).
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Proof. If f(x) = f(y), the result is trivial. For f(x) 6= f(y), put a =
f(y)−f(x)
‖f(y)−f(x)‖ . Then ‖a‖ = 1 and

a · (f(y)− f(x)) = ‖f(y)− f(x)‖.

Now apply the Mean Value theorem (and use the Cauchy - Schwarz inequal-
ity) to get a point z ∈ L(x,y) different from x or y such that

‖f(y)− f(x)‖ = a · (f(y)− f(x)) = a · (f ′(z)(y − x)) .

Hence

‖f(y)− f(x)‖ = |a · (f ′(z)(y − x))| ≤ ‖f ′(z)(y − x)‖
implying ‖f(y)− f(x)‖ ≤M · ‖y − x‖, where M2 is the sum of the squares
of the entries of f ′(z). (Here M depends on z, and hence on x and y.)

Note: If D is convex in Theorem 9.4 and all the partials Djfk
are bounded on D, there is a constant A > 0 such that f satisfies a

Lipschitz condition on D, i.e., ‖f(y)− f(x)‖ ≤ A · ‖y − x‖.
Next, reread the original problem # 8.
Solution: Write the system of equations as the fixed point problem

f

([
x
y

])
=

[
x
y

]
with

f

([
x
y

])
=

1

3

[
y + sinx
x+ cos y

]
The function f maps the complete space R2 into itself and it has the

Jacobian matrix

f ′ (x, y) =
1

3

[
cosx 1

1 − sin y

]
and we can see that the constant M for the matrix f

′
(x, y) satisfies M ≤

2
3
< 1. Thus for any z,w ∈ R2, since R2 contains the segment connecting z

and w, we have

‖f (z)− f (w)‖ ≤ 2

3
‖z−w‖

so the function f is a contraction. The statement follows from the Banach
contraction theorem.
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We give a second application.
Exercise. Prove that the following system of equations has a unique

solution.

2x = sin(y) + cos(z)

2y = cos(x) + sin(z)

2z = sin(x) + cos(y)

Solution Start by defining

F : R3 → R3 :

 x
y
z

 7→
 1

2
sin(y) + 1

2
cos(z)

1
2

cos(x) + 1
2

sin(z)
1
2

sin(x) + 1
2

cos(y)

 .

Calculate the Jacobian matrix as a function of x, y, z:

(F ′) =

 0 1
2

cos(y) −1
2

sin(z)
−1

2
sin(x) 0 1

2
cos(z)

1
2

cos(x) −1
2

sin(y) 0

 .

No matter what x, y, z we use, the sum of the squares of the entries of F ′

is always equal to 3/4. Hence M =
√

3
4
< 1, so F is a contraction on the

complete metric space R3. Hence it must have a unique fixed point in R3,
showing that the original system of equations has a unique solution.
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