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Name:

The proctor will let you read the following conditions before the exam begins, and you will
have time for questions. Once the exam begins, you will have 4 hours to do your best. This
is a closed book exam. Please put your name on each sheet of paper that you turn in.

Exam conditions:

• Submit as many solutions as you can. All solutions will be graded and your final
grade will be based on your six best solutions.

• Each problem is worth 20 points; parts of problems have equal value unless noted
otherwise.

• Justify your solutions: cite theorems that you use, provide counter-examples for dis-
proof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your proof;
instead, produce an independent proof.

• Ask the proctor if you have any questions.

Good luck!
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1. Let a and b be real numbers with a 6= 0. Determine the radius of convergence of

∞∑
n=1

(ax)n(
1 + b

n

)n2 .

Solution: This is a power series so we use the root test on the series of absolute
values.

lim
n→∞

(
|ax|n(

1 + b
n

)n2

) 1
n

= lim
n→∞

|ax|(
1 + b

n

)n =
|ax|
eb

< 1 ⇐⇒ |x| < eb

|a|
.

Hence the radius of convergence is eb

|a| .

2. Given two real, bounded sequences {an} and {bn}, put a = lim supn→∞{an} and
b = lim supn→∞{bn}. Also, put s = lim sup{an + bn}. Prove that

s ≤ a+ b when it is valid.

Is it always valid?

Since both sequences are bounded, we clearly have that a < +∞ and b < +∞. Choose
real numbers a and b such that a < a and b < b. Since a > a, we know that a is
eventually an upper bound, i.e., there is an integer Na for which an ≤ a for n ≥ Na.
Similarly, there is an integer Nb for which bn ≤ b for n ≥ Nb. Put N = max{Na, Nb}.
Then for n ≥ N we have an + bn ≤ a+ b. Hence a+ b is eventually an upper bound,
which implies that

s = lim sup
n→∞

{an + bn} ≤ a+ b.

Since this holds for all a > a and all b > b, it must be that s ≤ a + b. In detail we
have the following. Suppose that s = a+ b+ ε, where ε > 0, then just put a = a+ ε/3
and b = b + ε/3 in the argument above to see that s ≤ a + b + 2ε/3 < a + b + ε = s,
an impossibility.

3. A real number x is said to be a dyadic rational provided there is an integer k and
a nonnegative integer n for which x = k

2n . For each x ∈ [0, 1] and each n ∈ N, put

fn(x) =

{
1, if x = k

2n for some k ∈ N;

0, otherwise.

(i) Prove that the dyadic rationals are dense in R.

Solution: Let a, b ∈ R with a < b. We want to show that there is a dyadic
rational in the open interval (a, b). By the Archimedean principle we can choose
a positive integer n such that 2n(b− a) > 1, so that we know there is an integer
k with 2na < k < 2nb, hence a < k

2n < b, as desired.



(ii) Let f : [0, 1]→ R be the function to which the sequence {fn} converges pointwise.
Show that

∫ 1
0 f does not exist.

Solution: If x = k
2n ∈ [0, 1] for some k, n ∈ N, then x = k2r

2n+r for all r ≥ 0.
This says that fm(x) = 1 for all m ≥ n. And if x is not a dyadic rational, then
fn(x) = 0 for all n ∈ N. Hence the limit function f is given by

f(x) =

{
1, if x is a nonzero dyadic rational;

0, otherwise.

Consider any partition P = {x0, . . . , xn} of [0, 1]. By the density of the dyadic
rationals sup{f(x) : x ∈ [xi−1, xi]} = 1 for each subinterval of the partition. This
says that upper integral of f on [0, 1] equals 1. Similarly, since the irrationals
are dense in [0, 1], it follows that the lower integral of f on [0.1] equals 0. Hence∫ 1

0
f does not exist.

(iii) Show that the convergence {fn} → f is not uniform.

Solution: There are (at least) two ways to prove this. Our first way is the
more simplistic. In order to show that the convergence is NOT uniform, we will
show that for fixed ε = 1

2 , no matter how large an n we consider, there is some
xn ∈ [0.1] for which |f(xn)− fn(xn)| > 1

2 . For given n put

xn =
1

2n+1
.

Then xn is a dyadic rational, so f(xn) = 1. But xn cannot be written in the
form k

2n for any integer k, so fn(xn) = 0, implying |f(xn) − fn(xn)| = 1 > 1
2 .

Hence the convergence is not uniform.
Our second way to prove this is to quote the theorem that says that if {fn} is a
sequence of integrable functions from [a, b] to R, and if {fn} converges uniformly
to f , then

∫ b
a f exists (and even equals the limit of the integrals). Each fn has

the value 1 at only finitely many values of x, so fn is integrable on [0, 1]. As f
is not integrable on [0, 1], the convergence could not have been uniform.

4. Show that if {fn} and {gn} are two sequences of real bounded functions that converge
uniformly on some set E ⊆ R, then

(i) the functions fn and gn are uniformly bounded;
(ii) {fngn} also converges uniformly on E.

Solution From the Cauchy criterion for uniformly convergent sequences of functions
there is an N such that

m,n > N =⇒ ∀x ∈ E we have |fm(x)− fn(x)| < 1.

Since each fn is bounded, for each k ∈ N and for all x ∈ E we have |fk(x)| ≤ ck for
some constant ck. Then using the triangle inequality we see that for n > N we have

|fn(x)| ≤ |fn(x)− fN+1(x)|+ |fN+1(x)| < cN+1 + 1.



Hence

∀n > N and ∀k ∈ N and ∀x ∈ E we have |fk(x)| ≤ max{c1, . . . , cN , cN+1 + 1}.

This shows that the fn are uniformly bounded. The same argument works for the
functions gn. So we know there is a constant C such that

∀k ∈ N and ∀x ∈ E we have |fk(x)| ≤ C and |gk(x)| ≤ C.

This proves part (i).

We now show that {fngn} satisfies the uniform Cauchy criterion. Let ε > 0 be given.
From the uniform Cauchy criterion for {fn} and {gn}, there are N1 and N2 such that

m,n > N1 =⇒ ∀x ∈ E : |fm(x)− fn(x)| < ε

2C
;

m,n > N1 =⇒ ∀x ∈ E : |gm(x)− gn(x)| < ε

2C
.

Now let m,n > N = max{N1, N2} and compute that

|fm(x)gm(x)− fn(x)gn(x)|
≤ |fm(x)gm(x)− fn(x)gm(x)|+ |fn(x)gm(x)− fn(x)gn(x)|
= |fm(x)− fn(x)| · |gm(x)|+ |fn(x)| · |gm(x)− gn(x)|

<
ε

2C
C +

ε

2C
C = ε.

5. Let A be a subset of the metric space (X, d). Suppose that x is a limit point of A.
Show that x must be a limit point of A.

Solution Suppose that x is a limit point of A but not a limit point of A. Since x is
not a limit point of A there must be an open ball Br(x), r > 0, with Br(x) ∩ A = ∅.
But since x is a limit point of A, each open set containing x must contain a point y
of A \ {x}. But since y ∈ A, each open set containing y must have a point of A. This
means Br(x) must contain a point of A, giving a contradiction. Hence x must be a
limit point of A.

Alternative Solution: We have seen that A is closed, and that a closed set contains
all its limit points. Hence x ∈ A. We suppose that x is NOT a limit point of A and
work for a contradiction. It follows that x ∈ A and is not a limit point of A. But
since x is a limit point of A, for each n ≥ 1 there is a point yn ∈ B 1

2n
(x)∩ (A \ {x}).

Put rn = d(yn, x), so 0 < rn <
1
2n . Since x is not a limit point of A, there must be some

r > 0 such that Br(x)∩A = {x}. Choose N large enough so that n > N =⇒ 1
2n < r.

Then n > N =⇒ yn ∈ A \ A =⇒ yn is a limit point of A. Hence Brn(yn) contains
a point xn ∈ A. But d(xn, yn) < rn = d(yn, x) =⇒ xn 6= x. And

d(xn, x) ≤ d(xn, yn) + d(yn, x) < rn + rn <
1
n
.



We have now established a sequence {xn} of points of A different from x with
d(xn, x) < 1

n for all n > N .

Let U be any open set containing x. There must be some s > 0 such that x ∈ Bs(x) ⊆
U . Now pick N ′ > N such that n > N ′ =⇒ 1

n < s. Then n > N ′ implies that

xn ∈ B 1
n

(x) ⊆ Bs(x) ⊆ U, xn ∈ A, xn 6= x.

This shows that x is a limit point of A, contradicting our hypothesis that x is not a
limit point of A. Hence it must be that x is indeed a limit point of A.

6. Let (X, d) and (Y, ρ) be metric spaces and let ∅ 6= A ⊆ X. If f and g are continuous
mappings of X into Y for which f(x) = g(x) for all x ∈ A, show that f(x) = g(x) for
all x ∈ A.

Solution: Let x ∈ A \ A. We want to show that f(x) = g(x). Let ε > 0 be given.
Since f and g are continuous at x, there are δg > 0 and δf > 0 such that the following
hold:

d(x, y) < δf =⇒ ρ(f(x), f(y)) < ε/2;

and
d(x, y) < δg =⇒ ρ(g(x), g(y)) < ε/2.

Since x is a limit point of A by hypothesis, for each positive integer n, the open ball
B1/n(x) contains a point an ∈ A. Choose n large enough so that 1

n < min{δf , δg}.
Then we have

ρ(f(x), g(x)) ≤ ρ(f(x), f(an)) + ρ(f(an), g(an)) + ρ(g(an), g(x))

≤ ε/2 + 0 + ε/2 = ε.

Since ε > 0 is arbitrary, we must have f(x) = g(x).

7. Find

lim
n→∞

1
n

n∑
i=1

√
i

n
,

and justify your answer. Hint: Think of the sum as a Riemann sum.

Solution: For each n the sum is a Riemann sum,
∑n

i=1 f(ti)∆xi, where ti = i/n and
the partition is uniform, i.e., ∆xi = 1/n. By Theorem 6.14 in Rudin (or any such
theorem), the sum converges to

∫ 1
0

√
xdx = 2/3.

8. Let f(x) be continuous, real-valued function on [a, b].

(a) Prove that for any ε > 0 there is a polynomial, p(x), such that∫ b

a
|f(x)− p(x)|dx < ε.



Solution: By the Weierstrass theorem (e.g. thm 7.24 Rudin), there exists p(x)
so that for every x ∈ [a, b], |f(x)− p(x)| < ε/(b− a). So,∫ b

a
|f(x)− p(x)|dx <

∫ b

a
ε/(b− a)dx = ε.

(b) Prove that there is a sequence pk(x) of polynomials having the property that

f(x) =
∞∑

k=1

pk(x) for all x ∈ [a, b].

Solution: By the Weierstrass Theorem, for ε = 1/2 there is a polynomial p1(x)
such that for each x ∈ [a, b] there holds |f(x)−p1(x)| < 1/2. Then for ε = 1/(22),
there is a polynomial p2(x) such that for all x ∈ [a, b] there holds |(f(x)−p1(x))−
p2(x)| < 1/(22). We now proceed by induction. Suppose that p1(x), . . . , pj(x)
have been chosen so that

|f(x)− (p1(x) + · · ·+ pk(x))| < 1
2k
, for 1 ≤ k ≤ j.

Then by the Weierstrass Theorem there is a polynomial pj(x) such that for all
x ∈ [a, b] we have

|f(x)− (p1(x) + · · ·+ pj(x))− pj+1(x)| < 1
2j+1

.

By induction we may assume that pn(x) has been constructed for each n ∈ N so
that

|f(x)−
m∑

i=1

pi(x)| < 1
2m

.

Hence f(x) =
∑∞

k=1 pk(x) for all x ∈ [a, b].


