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Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points; parts of problems have equal value unless said
otherwise.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!
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1. Prove that every sequence of real numbers contains a monotone subsequence.



2. Prove or disprove that if M is infinite compact subset of R, then M contains a
nondegenerate interval. (A nondegenerate interval is off the form (a, b], [a, b], (a, b),
[a, b) with a < b.)



3. Show that in a neighborhood of (0, 0, 0, 0) the system of equations

3w + x− y + z2 = 0
w − x + 2y + z = 0

2w + 2x− 3y + 2z = 0

can be solved for w, x, z in terms of y; for w, y, z in terms of x; for x, y, z in terms
of w; but not for w, x, y in terms of z.



4. Let f : [0, 1] → R be Riemann integrable and g : R → R defined by

∀ y ∈ R, g(y) =
∫ 1

0
f(x)exydx.

(a) Show that g is continuous.

(b) Show that limy→−∞ g(y) = 0.



5. Let f : R → R be a continuous function such that there exists α in R and β in R
such that limx→−∞ f(x) = α and limx→+∞ f(x) = β. Show that f is uniformly
continuous on R, and bounded.



6. Let X ⊂ R, and (fn : X → R)n∈N be a sequence of functions uniformly continuous
on X and uniformly converging on X to the function f : X → R. Show that f is
uniformly continuous on X.



7. Find the radius of convergence of the power series
∑∞

n=1 cnxn when

(a) cn = ln
(
1 + 1

n

)
(b) cn is the n-th decimal digit of π.



8. Let En be subsets of a metric space and E =
⋃N

n=1 En. Prove that E′ =
⋃N

n=1 E′n,
where A′ denotes the set of all limit points of A.


