University of Colorado at Denver - Mathematics Department
 Applied Linear Algebra Preliminary Exam
 16 January 2009, 10:00 am - 2:00 pm

Name: \qquad
The proctor will let you read the following conditions before the exam begins, and you will have time for questions. Once the exam begins, you will have 4 hours to do your best. This is a closed book exam. Please put your name on each sheet of paper that you turn in.

Exam conditions:

- Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your six best solutions.
- Each problem is worth 20 points; parts of problems have equal value.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write legibly using a dark pencil or pen.
- Notation: \mathcal{C} denotes the field of complex numbers, \mathcal{R} denotes the field of real numbers, and F denotes a field which may be either \mathcal{C} or \mathcal{R}. \mathcal{C}^{n} and \mathcal{R}^{n} denote the vector spaces of n-tuples of complex and real scalars, respectively. T^{*} is the adjoint of the operator T and λ^{*} is the complex conjugate of the scalar $\lambda . v^{T}$ and A^{T} denote vector and matrix transposes, respectively.
- Ask the proctor if you have any questions.

> Good luck!
Total \qquad

On this exam V is a finite dimensional vector space over the field F, where either $F=\mathcal{C}$, the field of complex numbers, or $F=\mathcal{R}$, the field of real numbers. Also, F^{n} denotes the vector space of column vectors with n entries from F, as usual. For $T \in \mathcal{L}(V)$, the image (sometimes called the range) of T is denoted $\operatorname{Im}(T)$.

1. Suppose that $P \in \mathcal{L}(V)$ (the vector space of linear maps from V to itself) and that $P^{2}=P$.
(a) (6 points) Determine all possible eigenvalues of P.
(b) (10 points) Prove that $V=\operatorname{null}(P) \oplus \operatorname{Im}(P)$.
(c) (4 points) Is it necessary that all possible eigenvalues found in part (a) actually must occur? Prove that your answer is correct.
2. Define $T \in \mathcal{L}\left(F^{n}\right)$ by $T:\left(w_{1}, w_{2}, w_{3}, w_{4}\right)^{T} \mapsto\left(0, w_{2}+w_{4}, w_{3}, w_{4}\right)^{T}$.
(a) (8 points) Determine the minimal polynomial of T.
(b) (6 points) Determine the characteristic polynomial of T.
(c) (6 points) Determine the Jordan form of T.
3. Let T be a normal operator on a complex inner product space V of dimension n.
(a) (10 points) If $T(v)=\lambda v$ with $\mathbf{0} \neq v \in V$, show that v is an eigenvector of the adjoint T^{*} with associated eigenvalue $\bar{\lambda}$.
(b) (10 points) Show that T^{*} is a polynomial in T.
4. Let A and B be $n \times n$ Hermitian matrices over \mathcal{C}.
(a) (10 points) If A is positive definite, show that there exists an invertible matrix P such that $P^{*} A P=I$ and $P^{*} B P$ is diagonal.
(b) (10 points) If A is positive definite and B is positive semidefinite, show that

$$
\operatorname{det}(A+B) \geq \operatorname{det}(A)
$$

5. Let $\|\cdot\|_{\infty}: \mathcal{C}^{n} \rightarrow \mathcal{R}$ be defined by

$$
\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| .
$$

(a) (8 points) Prove that $\|\cdot\|_{\infty}$ is a norm.
(b) (12 points) A norm $\|\cdot\|$ is said to be derived from an inner product if there is an inner product $\langle\cdot, \cdot\rangle$ such that $\|\mathbf{x}\|=\langle\mathbf{x}, \mathbf{x}\rangle^{1 / 2}$ for all $\mathbf{x} \in \mathcal{C}^{n}$. Show that $\|\cdot\|_{\infty}$ cannot be derived from an inner product.
6. Suppose that $F=\mathcal{C}$ and that $S, T \in \mathcal{L}(V)$ satisfy $S T=T S$. Prove each of the following:
(a) (4 points) If λ is an eigenvalue of S, then the eigenspace

$$
V_{\lambda}=\{\mathbf{x} \in V \mid S \mathbf{x}=\lambda \mathbf{x}\}
$$

is invariant under T.
(b) (4 points) S and T have at least one common eigenvector (not necessarily belonging to the same eigenvalue).
(c) (12 points) There is a basis \mathcal{B} of V such that the matrix representations of S and T are both upper triangular.
7. Let $F=\mathcal{C}$ and suppose that $T \in \mathcal{L}(V)$.
(a) (10 points) Prove that the dimension of $\operatorname{Im}(T)$ equals the number of nonzero singular values of T.
(b) (10 points) Suppose that $T \in \mathcal{L}(V)$ is positive semidefinite. Prove that T is invertible if and only if $\langle T(\mathbf{x}), \mathbf{x}\rangle>0$ for every $\mathbf{x} \in V$ with $\mathbf{x} \neq \mathbf{0}$.
8. Let N be a real $n \times n$ matrix of rank $n-m$ and nullity m. Let L be an $m \times n$ matrix whose rows form a basis of the left null space of N, and let R be an $n \times m$ matrix whose columns form a basis of the right null space of N. Put $Z=L^{T} R^{T}$. Finally, put $M=N+Z$.
(a) (2 points) For $\mathbf{x} \in \mathcal{R}^{n}$, show that $N^{T} \mathbf{x}=\mathbf{0}$ if and only if $\mathbf{x}=L^{T} \mathbf{y}$ for some $\mathbf{y} \in \mathcal{R}^{m}$.
(b) (2 points) For $\mathbf{x} \in \mathcal{R}^{n}$, show that $N \mathbf{x}=\mathbf{0}$ if and only if $\mathbf{x}=R \mathbf{y}$ for some $\mathbf{y} \in \mathcal{R}^{m}$.
(c) (4 points) Show that Z is an $n \times n$ matrix with rank m for which $N^{T} Z=\mathbf{0}$, $N Z^{T}=\mathbf{0}$ and $M M^{T}=N N^{T}+Z Z^{T}$.
(d) (12 points) Show that the eigenvalues of $M M^{T}$ are precisely the positive eigenvalues of $N N^{T}$ and the positive eigenvalues of $Z Z^{T}$, and conclude that $M M^{T}$ is nonsingular.

