## University of Colorado at Denver — Mathematics Department Applied Linear Algebra Preliminary Exam 16 January 2009, 10:00 am – 2:00 pm

## Name:

The proctor will let you read the following conditions before the exam begins, and you will have time for questions. Once the exam begins, you will have 4 hours to do your best. This is a closed book exam. Please put your name on each sheet of paper that you turn in.

## Exam conditions:

- Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your <u>six best solutions</u>.
- Each problem is worth 20 points; parts of problems have equal value.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write legibly using a dark pencil or pen.
- Notation: C denotes the field of complex numbers,  $\mathcal{R}$  denotes the field of real numbers, and F denotes a field which may be either C or  $\mathcal{R}$ .  $C^n$  and  $\mathcal{R}^n$  denote the vector spaces of *n*-tuples of complex and real scalars, respectively.  $T^*$  is the adjoint of the operator T and  $\lambda^*$  is the complex conjugate of the scalar  $\lambda$ .  $v^T$  and  $A^T$  denote vector and matrix transposes, respectively.
- Ask the proctor if you have any questions.





On this exam V is a finite dimensional vector space over the field F, where either F = C, the field of complex numbers, or  $F = \mathcal{R}$ , the field of real numbers. Also,  $F^n$  denotes the vector space of column vectors with n entries from F, as usual. For  $T \in \mathcal{L}(V)$ , the *image* (sometimes called the *range*) of T is denoted Im(T).

- 1. Suppose that  $P \in \mathcal{L}(V)$  (the vector space of linear maps from V to itself) and that  $P^2 = P$ .
  - (a) (6 points) Determine all possible eigenvalues of P.
  - (b) (10 points) Prove that  $V = \operatorname{null}(P) \oplus \operatorname{Im}(P)$ .
  - (c) (4 points) Is it necessary that all possible eigenvalues found in part (a) actually must occur? Prove that your answer is correct.
- 2. Define  $T \in \mathcal{L}(F^n)$  by  $T: (w_1, w_2, w_3, w_4)^T \mapsto (0, w_2 + w_4, w_3, w_4)^T$ .
  - (a) (8 points) Determine the minimal polynomial of T.
  - (b) (6 points) Determine the characteristic polynomial of T.
  - (c) (6 points) Determine the Jordan form of T.
- 3. Let T be a normal operator on a complex inner product space V of dimension n.
  - (a) (10 points) If  $T(v) = \lambda v$  with  $\mathbf{0} \neq v \in V$ , show that v is an eigenvector of the adjoint  $T^*$  with associated eigenvalue  $\overline{\lambda}$ .
  - (b) (10 points) Show that  $T^*$  is a polynomial in T.
- 4. Let A and B be  $n \times n$  Hermitian matrices over C.
  - (a) (10 points) If A is positive definite, show that there exists an invertible matrix P such that  $P^*AP = I$  and  $P^*BP$  is diagonal.
  - (b) (10 points) If A is positive definite and B is positive semidefinite, show that

$$\det(A+B) \ge \det(A).$$

5. Let  $\|\cdot\|_{\infty} \colon \mathcal{C}^n \to \mathcal{R}$  be defined by

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

- (a) (8 points) Prove that  $\|\cdot\|_{\infty}$  is a norm.
- (b) (12 points) A norm  $\|\cdot\|$  is said to be derived from an inner product if there is an inner product  $\langle\cdot,\cdot\rangle$  such that  $\|\mathbf{x}\| = \langle \mathbf{x}, \mathbf{x} \rangle^{1/2}$  for all  $\mathbf{x} \in \mathcal{C}^n$ . Show that  $\|\cdot\|_{\infty}$ cannot be derived from an inner product.
- 6. Suppose that F = C and that  $S, T \in \mathcal{L}(V)$  satisfy ST = TS. Prove each of the following:
  - (a) (4 points) If  $\lambda$  is an eigenvalue of S, then the eigenspace

$$V_{\lambda} = \{ \mathbf{x} \in V | S\mathbf{x} = \lambda \mathbf{x} \}$$

is invariant under T.

- (b) (4 points) S and T have at least one common eigenvector (not necessarily belonging to the same eigenvalue).
- (c) (12 points) There is a basis  $\mathcal{B}$  of V such that the matrix representations of S and T are both upper triangular.
- 7. Let  $F = \mathcal{C}$  and suppose that  $T \in \mathcal{L}(V)$ .
  - (a) (10 points) Prove that the dimension of Im(T) equals the number of nonzero singular values of T.
  - (b) (10 points) Suppose that  $T \in \mathcal{L}(V)$  is positive semidefinite. Prove that T is invertible if and only if  $\langle T(\mathbf{x}), \mathbf{x} \rangle > 0$  for every  $\mathbf{x} \in V$  with  $\mathbf{x} \neq \mathbf{0}$ .
- 8. Let N be a real  $n \times n$  matrix of rank n m and nullity m. Let L be an  $m \times n$  matrix whose rows form a basis of the left null space of N, and let R be an  $n \times m$  matrix whose columns form a basis of the right null space of N. Put  $Z = L^T R^T$ . Finally, put M = N + Z.
  - (a) (2 points) For  $\mathbf{x} \in \mathcal{R}^n$ , show that  $N^T \mathbf{x} = \mathbf{0}$  if and only if  $\mathbf{x} = L^T \mathbf{y}$  for some  $\mathbf{y} \in \mathcal{R}^m$ .
  - (b) (2 points) For  $\mathbf{x} \in \mathcal{R}^n$ , show that  $N\mathbf{x} = \mathbf{0}$  if and only if  $\mathbf{x} = R\mathbf{y}$  for some  $\mathbf{y} \in \mathcal{R}^m$ .
  - (c) (4 points) Show that Z is an  $n \times n$  matrix with rank m for which  $N^T Z = \mathbf{0}$ ,  $NZ^T = \mathbf{0}$  and  $MM^T = NN^T + ZZ^T$ .
  - (d) (12 points) Show that the eigenvalues of  $MM^T$  are precisely the positive eigenvalues of  $NN^T$  and the positive eigenvalues of  $ZZ^T$ , and conclude that  $MM^T$  is nonsingular.