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• This exam lasts 4 hours.

• There are 8 problems. Each problem is worth 20 points. You are asked to submit
solutions to 6 problems. If you submit solutions to more than six problems, you must
indicate which problems to grade. If you do not indicate which problems to grade,
only the first six solutions will contribute to your grade. Your final score will be out
of 120 points.

• You are not allowed to use books or any other auxiliary material on this exam.

• Start each problem on a separate sheet of paper, write only on one side, and label all
of your pages in consecutive order (e.g., use 1-1, 1-2, 1-3, . . . , 2-1, 2-2, 2-3, . . . ).

• Read all problems carefully, and write your solutions legibly using a dark pencil or pen
in “essay-style” using full sentences and correct mathematical notation.

• Justify your solutions: cite theorems you use, provide counterexamples for disproof,
give clear but concise explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, you may not merely quote or rephrase that theorem
as your solution; instead, you must produce a complete proof.

• Parts of a multipart question are not necessarily worth the same number of points.

• If you feel that any problem or any part of a problem is ambiguous or may have been
stated incorrectly, please indicate your interpretation of that problem as part of your
solution. Your interpretation should be such that the problem is not trivial.

• Please ask the proctor if you have any other questions.
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Problem 1

Consider the map ϕ : R4 → R2×2 where
a
b
c
d

 7→ (
a+ b− c c− d

2a+ c a− b+ d

)

a) Is ϕ bijective? Prove your claim.

b) Compute (a, b, c, d)T such that ϕ((a, b, c, d)T ) =

(
1 0
0 1

)
or decide that this is not possible.

Solution: Recall the isomorphism of all 4-dimensional vector spaces over R. Instead of ϕ,
we consider the map ϕ̄ : R4 → R4 with (a, b, c, d)T 7→ (a+ b− c, c− d, 2a+ c, a− b+ d)T . All
claims for ϕ̄ can be readily transferred to ϕ. But now we have ϕ̄((a, b, c, d)T ) = A(a, b, c, d)T

with A :=


1 1 −1 0
0 0 1 −1
2 0 1 0
1 −1 0 1

 .

a) As ϕ̄ is linear and maps from R4 to R4, ϕ̄ is bijective if it is injective, i.e. if ker(A) = {0}.
Thus it remains to check whether A has full rank:

III − 2I
II

IV − 2I


1 1 −1 0
0 −2 3 0
0 0 1 −1
0 −2 1 1


−1/2II

IV − II


1 1 −1 0
0 1 −3/2 0
0 0 1 −1
0 0 −2 1



IV + 2III


1 1 −1 0
0 1 −3/2 0
0 0 1 −1
0 0 0 −1


Thus ϕ̄ and then also ϕ are bijective.

b) We use (1, 0, 0, 1)T as right-hand side for the above computation and obtain
1 1 −1 0 1
0 1 −3/2 0 1
0 0 1 −1 0
0 0 0 −1 1


This gives d = −2, c = d = −2, b = 1 + 3/2c = −2 and a = 1− b+ c = 1.



Problem 2

Let x1, . . . , xn ∈ C with n ≥ 2. Then

V (x1, . . . , xn) =


1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

. . .
...

1 xn x2n · · · xn−1n


is called a Vandermonde Matrix. Prove that

det(V (x1, . . . , xn)) =
∏

1≤i<j≤n

(xj − xi).

Solution: We prove the claim by induction over n. For n = 2, we see det(V (x1, x2)) =
1 · x2 − x1 · 1 = x2 − x1 =

∏
1≤i<j≤2(xj − xi). Now assume that the given formula holds for

all n ∈ [n0 − 1], n0 ≥ 2. Then we will prove that it also holds for n = n0. To do so, we
subtract the x1-multiple of each column from the column following it and obtain

det(V (x1, . . . , xn0)) = det


1 0 0 · · · 0
1 x2 − x1 (x2 − x1)x2 · · · (x2 − x1)xn0−2

2
...

...
...

. . .
...

1 xn0 − x1 (xn0 − x1)xn0 · · · (xn0 − x1)xn0−2
n0


= det

 x2 − x1 (x2 − x1)x2 · · · (x2 − x1)xn0−2
2

...
...

. . .
...

xn0 − x1 (xn0 − x1)xn0 · · · (xn0 − x1)xn0−2
n0


= (x2 − x1)(x3 − x1) · · · (xn0 − x1) · det

1 x2 · · · xn0−2
2

...
...

. . .
...

1 xn0 · · · xn0−2
n0


=

n0∏
j=2

(xj − x1) · det(V (x2, . . . , xn0))

By our induction assumption, we know that det(V (x2, . . . , xn0)) =
∏

2≤i<j≤n0
(xj−xi), so we

obtain det(V (x1, . . . , xn0)) =
∏n0

j=2(xj − x1) · det(V (x2, . . . , xn0)) =
∏

1≤i<j≤n0
(xj − xi).



Problem 3

Let V = R[x]≤2 = {a0 + a1x+ a2x
2 : a0, a1, a2 ∈ R} be the space of polynomials of degree

≤ 2. Let u1 = 1, u2 = x, u3 = x2 and b1 = 1, b2 = x + 1, b3 = x2 + x + 1. Then
E = {u1, u2, u3} and B = {b1, b2, b3} are bases of V . Further, let C = {c1, c2, c3} be a basis
that is not explicitly known. The only available information is the basis transformation
matrix

SE,C =

1 1 2
0 1 0
1 1 3

 .

Notation. SE,C is the representation matrix of the identity id : R3 → R3, x 7→ x, where the
coordinates of x with respect to E are given before the mapping, and the coordinates with
respect to C are given after the mapping.

a) Compute the basis transformation matrices SE,B and SB,E.

b) Let y := (1, 2,−1)T ∈ R3 be the coordinate vector of a vector v ∈ V with respect to basis
B. What is the coordinate vector of v with respect to E? Further, compute v explicitly.

c) What is the coordinate vector of w := 2− 3x+ x2 ∈ V with respect to C? Further, write
w as a linear combination of the elements of C.

d) Compute the basis C.

Solution:

a) b1 = u1, b2 = u1 + u2, b3 = u1 + u2 + u3. Thus

SB,E =

1 1 1
0 1 1
0 0 1

 .

Due to SE,B = S−1B,E, we could obtain SE,B by inverting SB,E. Alternatively, we can
represent the basis vectors as linear combinations: u1 = b1, u2 = −b1 + b2, u3 = −b2 + b3
and thus

SE,B =

1 −1 0
0 1 −1
0 0 1

 .

b) y = (1, 2,−1)T are the coordinates of v with respect to B. Thus we obtain coordinates
for v with respect to E through SB,Ey = (2, 1,−1)T .

Explicitly: v = b1 + 2b2 − b3 = 1 + 2(x+ 1)− (x2 + x+ 1) = 2 + x− x2 = 2u1 + u2 − u3.

c) w = 2 − 3x + x2 = 2u1 − 3u2 + u3, so w has coordinates (2,−3, 1)T with respect to E.
The coordinates with respect to C are obtained by SE,C(2,−3, 1)T = (1,−3, 2)T , which
gives w = c1 − 3c2 + 2c3.



d) We first compute SC,E: 1 1 2 1 0 0
0 1 0 0 1 0
1 1 3 0 0 1



III − I

1 1 2 1 0 0
0 1 0 0 1 0
0 0 1 −1 0 1


I − II − 2III

1 0 0 3 −1 −2
0 1 0 0 1 0
0 0 1 −1 0 1



Thus SC,E =

 3 −1 −2
0 1 0
−1 0 1

. The columns of SC,E give C: c1 = 3u1 − u3 = 3 − x2,

c2 = −u1 + u2 = x− 1, c3 = −2u1 + u3 = x2 − 2.



Problem 4

Two n × n real matrices A and B are called simultaneously diagonalizable if there is an
invertible matrix S ∈ Rn×n such that S−1AS and S−1BS both are diagonal matrices. Let A
and B be two n× n real matrices. Prove:

a) If A and B are simultaneously diagonalizable, then AB = BA.

b) If AB = BA and if A has n different eigenvalues, then A and B are simultaneously
diagonalizable.

Solution:

a) Let DA = S−1AS and DB = S−1BS be the two diagonal matrices. Then DADB = DBDA

and thus

AB = SDAS
−1SDBS

−1 = SDADBS
−1 = SDBDAS

−1 = SDBS
−1SDAS

−1 = BA.

b) Since A has n different eigenvalues, A is diagonalizable, i.e. there is an invertible n×n real
matrix S, such that DA = S−1AS = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues
λ1, . . . , λn of A.

We define DB := S−1BS. Since AB = BA, we obtain DADB = S−1ASS−1BS =
S−1ABS = S−1BAS = S−1BSS−1AS = DBDA. Let DADB = (cij) and DBDA = (dij).
Then cii = dii is the λi-multiple of the i, j entry of DB, but for i 6= j, cij is the λi-multiple
of the i, j entry of DB, while dij is the λj-multiple of the i, j entry of DB. As all the
eigenvalues of A are different and as DADB = DBDA, DB must be a diagonal matrix.



Problem 5

Let A ∈ R3×3 be an unknown matrix, and let

v1 :=

1
0
2

 , v2 :=

0
1
0

 , v3 :=

1
1
1

 ∈ R3.

Further let S := (v1|v2|v3) ∈ R3×3 be the real 3 × 3 matrix with columns v1, v2, v3. Finally,
let

ker(A+ 2I3) = span 〈v1〉 and ker(A− I3) = span 〈v2, v3〉 ,
where I3 is the 3× 3 identity matrix.

a) Prove that A is diagonalizable and give the characteristic polynomial χA in factorized
form. Further, give all eigenvalues of A with their geometric and algebraic multiplicities.
Finally, give the minimal polynomial mA of A.

b) Compute the matrix A.

Solution:

a) The geometric multiplicities add up to 3, so A is diagonalizable. We obtain χA(x) =
(x + 2)(x − 1)2 and the eigenvalues are −2 (with geometric and algebraic multiplicity
1) and 1 (with geometric and algebraic multiplicity 2). As A is diagonalizable, the
minimal polynomial mA splits (i.e. it is the product of linear factors). It takes the form
mA(x) = (x+ 2)(x− 1).

b) As A is diagonalizable, S is invertible. First, we compute S−1.1 0 1 1 0 0
0 1 1 0 1 0
2 0 1 0 0 1

 →

1 0 0 −1 0 1
0 1 1 0 1 0
0 0 1 2 0 −1

 →

1 0 0 −1 0 1
0 1 0 −2 1 1
0 0 1 2 0 −1



Thus S−1 =

−1 0 1
−2 1 1
2 0 −1

. Now A = SDS−1 with D = diag(−2, 1, 1), so we obtain

A =

1 0 1
0 1 1
2 0 1

 · diag(−2, 1, 1) ·

−1 0 1
−2 1 1
2 0 −1


=

−2 0 1
0 1 1
−4 0 1

 ·
−1 0 1
−2 1 1
2 0 −1


=

4 0 −3
0 1 0
6 0 −5





Problem 6

Suppose you are given eight 6× 6 complex matrices whose cube is zero (i.e., A3 = 0). Show
that two of the matrices must be similar.

Solution: Since the cube is zero, each matrix has 0 as an eigenvalue and has no other
eigenvalues. Also, since the cube is zero, each Jordan block appearing in the Jordan canonical
form can be at most 3× 3. Thus, we must determine the possible number of Jordan blocks
for each size: 1×1, 2×2, and 3×3. The possibilities for the number and sizes of the Jordan
blocks in the Jordan canonical form for each matrix are as follows. The list is organized
according to the largest block, and then in decreasing number of that block.

(1) two 3× 3 Jordan blocks;

(2) one 3× 3 Jordan block, one 2× 2 block, and one 1× 1 block;

(3) one 3× 3 Jordan block and three 1× 1 blocks;

(4) three 2× 2 Jordan blocks;

(5) two 2× 2 Jordan blocks and two 1× 1 blocks;

(6) one 2× 2 Jordan blocks and four 1× 1 blocks;

(7) six 1× 1 blocks.

Since there are only seven possibilities for Jordan canonical forms for these matrices and we
have eight matrices, by the Pigeonhole Principle there must be two matrices A and A′ that
have the same Jordan canonical form. Since matrices that have the same Jordan canonical
form are similar, A and A′ are similar.



Problem 7

Let V be a real finite-dimensional inner-product space with proper subspaces U and W . Let
PU and PW be the orthogonal projections onto U and W , respectively.

(a) Prove or give a counterexample: PUPW = PWPU = PU∩W .

(b) Prove that trace(PU) = dim U .

(c) Let V = Cn, and let dim U=1. Write downM(PU) with respect to the standard basis
for V .

Solution:

(a) A counterexample exists if U and W are disjoint subspaces. Clearly PU∩W = 0. How-
ever, given v ∈ V , PUPWv is equal to PUw = u, where w ∈ W = u + u⊥. Similarly,
PWPUv = w̃. This is only true if u = w̃ = 0, which means that one space is a subset
of the orthogonal complement of the other space. This is not true in general. For
example, take two lines through the origin in R2 that are not perpindicular.

The statement is true if we specify that U ∩ W is non-trivial. We may write any
vector v in V as y + z, with y in U ∩W and z in its orthogonal complement. Clearly
PU∩Wv = y, while PUPW (y + z) = y + PUPW z → y + PU w̃, where w̃ is in W ∩ U⊥.
But PU on an object in U⊥ is zero, so PUPWv = y. A symmetric argument holds for
PWPU .

(b) The trace of an operator is the sum of its eigenvalues. All u in U are eigenvectors
with eigenvalue 1(as PUu = u). All (non-zero) vectors in U⊥ are eigenvectors with
eigenvalue 0. As V = U ⊕U⊥, the trace of PU is equal to the number of vectors in the
basis for U , i.e. the dimension of U .

(c) If U is one dimensional then there exists a basis vector u than spans U . The orthogonal

projection of a vector v onto U is <u,v>u
<u,u>

. The corresponding matrix is uu>

u>u
.



Problem 8

Let T be an operator on a finite-dimensional complex valued vector space V . Suppose that
there exists a v ∈ V such that {v, Tv, T 2v, . . . T n−1v} is a basis for V .

(a) Prove thatM(T ) can be written with respect to this basis such that the matrix is zero
below the principal subdiagonal (i.e., that the matrix is upper Hessenberg).

(b) Let T be diagonalizable. Prove that T is invertible.

(c) If T is not invertible, prove that the range of T is invariant under T .

Solution:

(a) M(T ) for the given basis: given ith basis element bi = T i−1v, the corresponding ith
column inM(T ) is T (bi) = T iv. For i < n this is bi+1, so the correspoding ith column
is 0 in all entries except the (i+ 1)st row. We do not know what T nv is, but as b is a
basis we can write the last column as a linear combination of the basis functions with
coefficients ai. The resulting matrix is

M(T ) =


0 0 0 . . . 0 a1
1 0 0 . . . 0 a2
0 1 0 . . . 0 a3
...

...
... . . .

...
...

0 0 0 . . . 1 an


which is upper Hessenberg.

(b) As T is diagonalizable, V = range T + null T . By the above basis, dim range T is at
least n− 1 as T (v), T (Tv), . . . T (T n−2v) are linearly independent and in range T . If v
is in range T , we are done, as T is surjective. If v is not in range T , it is in null T by
the direct sum decomposition. But then Tv would be zero, a contradiction.

(c) This result is trivially true. Let w be in range T . Then w = Tv, and z = Tw = T 2v =
T (Tv), so z is in the range of T . Thus range T is invariant under T .


