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Problem 1

Let V be an inner product space over C, with inner product 〈u, v〉.

(a) Prove that any finite set S of nonzero, pairwise orthogonal vectors is linearly indepen-
dent.

(b) If T : V → V is a linear operator satisfying 〈T (u), v〉 = 〈u, T (v)〉 for all u, v ∈ V , prove
that all eigenvalues of T are real.

(c) If T : V → V is a linear operator satisfying 〈T (u), v〉 = 〈u, T (v)〉 for all u, v ∈ V , prove
that the eigenvectors of T associated with distinct eigenvalues λ and µ are orthogonal.

Solution:

(Note in the solution we write T (u) as Tu. This is standard notation.)

(a) Let S = (v1, . . . , vn) be a finite set of n nonzero, pairwise orthogonal vectors. We
want to prove that (v1, . . . , vn) is linearly independent. Let α1, . . . , αn be n complex
numbers such that

α1v1 + . . .+ αnvn = 0.

We want to prove that α1 = . . . = αn = 0. Applying 〈v1, ·〉 to the previous equality, we
get

0 = 〈v1, α1v1 + . . .+ αnvn〉 = α1〈v1, v1〉+ . . . αn〈v1, vn〉 = α1〈v1, v1〉.
(First equality is what we start with. Second is first slot linearity of 〈·, ·〉. Third is
pairwise orthogonality.) So we get α1〈v1, v1〉 = 0. But v1 is nonzero, so 〈v1, v1〉 is not
zero, and so this previous equality implies α1 = 0. With a similar method repeated
n− 1 times, we get α2 = . . . = αn = 0.

(b) Let T : V → V be a self-adjoint linear operator. (So that we have 〈T (u), v〉 = 〈u, T (v)〉
for all u, v ∈ V .) Let λ be an eigenvalue of T . We want to prove that λ is real. Let v
be an associated (nonzero) eigenvector of λ. We have

Tv = λv.

Applying 〈v, ·〉 to the previous equality, we get

〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉.

Applying 〈·, v〉 to the same equality, we get

〈Tv, v〉 = 〈λv, v〉 = λ̄〈v, v〉.

Since 〈v, Tv〉 = 〈Tv, v〉, we get

λ〈v, v〉 = λ̄〈v, v〉.

Since v is nonzero, so 〈v, v〉 is not zero, and so this previous equality implies

λ = λ̄.

So λ is real.



(c) Let T : V → V be a self-adjoint linear operator. (So that we have 〈T (u), v〉 = 〈u, T (v)〉
for all u, v ∈ V .) Let (u, λ) and (v, µ) be two eigencouples of T where λ and µ are
distinct. We want to prove that 〈u, v〉 = 0. We have that Tu = λu, applying 〈·, v〉, we
get

〈Tu, v〉 = 〈λu, v〉 = λ̄〈u, v〉 = λ〈u, v〉.

(The last equality comes from part (b): λ is real.) We also have that Tv = µv, applying
〈u, ·〉, we get

〈u, Tv〉 = 〈u, µv〉 = µ〈u, v〉.

But 〈u, Tv〉 = 〈Tu, v〉, so we get that

λ〈u, v〉 = µ〈u, v〉,

in other words,
(λ− µ)〈u, v〉 = 0.

We have that λ and µ are distinct, so (λ− µ) 6= 0, and so we must have

〈u, v〉 = 0.



Problem 2

(a) Let A be a 2-by-2 real matrix of the form A =

(
λ 0
0 λ

)
where λ ∈ R. Prove that A

has a square root: that is, there exists a matrix B such that B2 = A.

(b) Prove that a real symmetric matrix having the property that every negative eigenvalue
occurs with even multiplicity has a square root.

Solution:

(a) Let A be a 2-by-2 real matrix of the form A =

(
λ 0
0 λ

)
where λ ∈ R.

Method 1: Take B =

(
0 λ
1 0

)
. Observe that B2 = A.

Method 2: (Much longer but might be more intuitive.) Two cases:

(a) Either λ is nonnegative in which case we have that a square root of A is B =(
λ1/2 0

0 λ1/2

)
.

(b) Or λ is negative in which case we have that a square root ofA isB =

(
0 −(−λ)1/2

(−λ)1/2 0

)
.

For both cases, we exhibited a square root of A.

We note that, for the negative case, we were inspired by(
0 −1
1 0

)2

=

(
−1 0
0 −1

)
.

This can be understood by saying that two 90-degree rotation is same as a 180-degree
rotation.

(b) Let A be a real symmetric matrix having the property that every negative eigenvalue
occurs with even multiplicity.

(We note that the question does not specify whether the multiplicity is algebraic or
geometric. Since the matrix is symmetric, we remind that the geometric multiplicity
and the algebraic multiplicity are the same.)

Since A is symmetric, we can use the spectral theorem to diagonalize A in an orthonor-
mal basis. So we have that there exist real matrices V and D such that A = V DV T ,
D is diagonal with the eigenvalues of A on its diagonal ordered from the smallest to
largest, V is orthogonal matrix (i.e. V V T = V TV = I).

Now we pay special attention to matrix D. We explain why D has a square root, D1/2,
below. We call λ−i , . . ., λ−1 , the i negative eigenvalues of A ordered from smallest to
largest. We call λ+1 , . . ., λ+j , the j nonnegative eigenvalues of A ordered from smallest



to largest. The matrix D therefore is made of scalar diagonal blocks of the form λI.
It looks like:

D =



Dλ−i
. . .

Dλ−1
Dλ+1

. . .

Dλ+j


.

By part (a), we see that each of the Dλ block has a square root. Either λ is nonnegative
and then simply Bλ = λ1/2I. Or λ is negative, in which case the dimension of Dλ is
even, (by assumption of the problem) and so we can split Dλ in 2-by-2 identical scalar

blocks of the form

(
λ 0
0 λ

)
, which each has a square root, (see part (a),) for example(

0 −(−λ)1/2

(−λ)1/2 0

)
. So we see that each of the Dλ block has a square root, Bλ,

whether λ is nonnegative or negative. And so we set

BD =



Bλ−i
. . .

Bλ−1
Bλ+1

. . .

Bλ+j


.

And we have
D = BDBD.

This explains why D has a square root, BD.

So now we call BA = V BDV
T and we see that

A = V DV T = V BDBDV
T = V BD(V TV )BDV

T = (V BDV
T )(V BDV

T ) = BABA.

So that BA is a square root of A.



Problem 3

Let A and B be two complex square matrices, and suppose that A and B have the same
eigenvectors. Show that if the minimal polynomial of A is (x + 1)2 and the characteristic
polynomial of B is x5, then B3 = 0.

Solution: Since A and B have the same eigenvectors, the matrices A and B have the same
dimension.
(Note: since we are working with complex square matrices, matrices A and B have at least
one eigenvector, and so the statement “A and B have the same eigenvectors” cannot be
vacuously true.)
Since the characteristic polynomial of B is of degree 5, matrices B is 5-by-5; consequently,
so is A.
Since the minimal polynomial of A is (x+ 1)2, we see that the Jordan form of A is

(a) either 
−1 1 0 0 0

0 −1 0 0 0
0 0 −1 1 0
0 0 0 −1 0
0 0 0 0 −1

 ,

so 2 Jordan blocks of size 2 and 1 Jordan block of size 1, in this case dim(Null(A+I)) =
3;

(b) or 
−1 1 0 0 0

0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 ,

so 1 Jordan block of size 2 and 3 Jordan blocks of size 1, in this case dim(Null(A+I)) =
4.

So either dim(Null(A+ I)) is 3 or 4.
Since the characteristic polynomial of B is x5, 0 is the only eigenvalue of B.
Since A and B have the same eigenvectors, and since B has only one eigenvalue, 0, and since
dim(Null(A+ I)) is 3 or 4, then dim(Null(B)) is either 3 or 4 as well. So B has either 3 or
4 Jordan blocks.
This means that the possible Jordan block structures for B are

(a) (3 Jordan blocks, dim(Null(B)) = 3 ), B has 2 Jordan blocks of size 2 and 1 Jordan
block of size 1, 

0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 .



In that case, the minimal polynomial of B is x2. And so B2 = 0. And so indeed
B3 = 0.

(b) (3 Jordan blocks, dim(Null(B)) = 3 ), B has 1 Jordan block of size 3 and 2 Jordan
blocks of size 1, 

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

In that case, the minimal polynomial of B is x3. And so B3 = 0.

(c) (4 Jordan blocks, dim(Null(B)) = 4 ), B has 1 Jordan block of size 2 and 3 Jordan
blocks of size 1, 

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

In that case, the minimal polynomial of B is x2. And so B2 = 0. And so indeed
B3 = 0.

In all three cases, we see that B3 = 0.



Problem 4

Let A be an m-by-n complex matrix. Let B =

(
0 A∗

A 0

)
. Prove that ‖B‖2 = ‖A‖2.

Solution: By definition of the 2-norm, we have that

‖A‖2 = max
x∈Rns.t.‖x‖2=1

‖Ax‖2,

‖A∗‖2 = max
y∈Rms.t.‖y‖2=1

‖A∗y‖2,

‖B‖2 = max
z∈R(m+n)s.t.‖z‖2=1

‖Bz‖2.

We also know that
‖A‖2 = ‖A∗‖2.

Let x in Rn such that ‖x‖2 = 1 and ‖Ax‖2 = ‖A‖2. Consider the vector z in Rm+n

z =

(
x
0

)
.

Now we have that

‖z‖2 = ‖
(
x
0

)
‖2 = ‖x‖2 = 1.

and ‖Bz‖2 = ‖
(

0 A∗

A 0

)(
x
0

)
‖2 = ‖

(
0
Ax

)
‖2 = ‖Ax‖2 = ‖A‖2.

Since ‖B‖2 = maxz∈R(m+n)s.t.‖z‖2=1 ‖Bz‖2, and since we have found a z such that ‖z‖2 = 1
and ‖Bz‖2 = ‖A‖2, this proves that

‖A‖2 ≤ ‖B‖2.

Let z in R(m+n) such that ‖z‖2 = 1. Let x in Rn and y in Rm such that

z =

(
x
y

)
.

We have
√
‖x‖22 + ‖y‖22 = 1.

We now look at ‖Bz‖2. We have that

‖Bz‖2 = ‖
(

0 A∗

A 0

)(
x
y

)
‖2 = ‖

(
A∗y
Ax

)
‖2 =

√
‖A∗y‖22 + ‖Ax‖22

But, on the one hand, ‖Ax‖2 ≤ ‖A‖2‖x‖2. And, on the other hand, ‖A∗y‖2 ≤ ‖A∗‖2‖y‖2
and, since ‖A‖2 = ‖A∗‖2, we get ‖A∗y‖2 ≤ ‖A‖2‖y‖2. So

‖Bz‖2 ≤ ‖A‖2
√
‖x‖22 + ‖y‖22,



and, since
√
‖x‖22 + ‖y‖22 = 1, we find

‖Bz‖2 ≤ ‖A‖2.

We proved that, for all z such that ‖z‖2 = 1, we have ‖Bz‖2 ≤ ‖A‖2, so, since ‖B‖2 =
maxz∈R(m+n)s.t.‖z‖2=1 ‖Bz‖2, we get that

‖B‖2 ≤ ‖A‖2.

We can now conclude
‖B‖2 = ‖A‖2.

Note: Another way to go about this problem is to know the relation between the SVD of A
and the eigenvalues of B. For example, in the case where m ≥ n, A has n singular values.
We denote these singular values are (σ1, . . . , σn). Then B has m + n eigenvalues and they
are (σ1, . . . , σn,−σ1, . . . ,−σn, 0, . . . , 0), where we have m−n 0’s at the end. (To make m+n
eigenvalues. Indeed m+ n = n+ n+ (m− n).) The proof of this results is by construction.
(The construction can be hinted by the work above in this problem actually.) Below is the
proof of this result. Note that once we know this result it is clear that ‖B‖2 = ‖A‖2. Indeed
(1) the 2-norm is same as the maximum singular value so ‖A‖2 = maxi σi, and (2), for a
symmetric matrix (i.e. B), the 2-norm is same as the maximum absolute value eigenvalue.

Proof of previous claimed result. (Note: proof would have been needed for full credit.)
Let m ≥ n. Let A be m-by-n. We consider the full singular value decomposition of A. We
have

A = (U1U2) ∗
(

Σ
0

)
∗W ∗

where

(a) U1 is m-by-n, U2 is (m− n)-by-n, Σ is n-by-n, 0 is (m− n)-by-n and W is n-by-n,

(b) (U1U2) is orthogonal: (U1U2)
∗ (U1U2) = (U1U2) (U1U2)

∗ = Im,

(c) W is orthogonal: W ∗W = WW ∗ = In,

(d) Σ is diagonal with singular values of A on diagonal.

Now we form

V =

( √
2
2
U1

√
2
2
U1 U2√

2
2
W −

√
2
2
W 0

)
and D =

 Σ
−Σ

0

 .

(Note: the 0 matrix in D is (m− n)-by-(m− n).)
We claim (simple computations) that

(a) B = V DV ∗,

(b) V ∗V = V V ∗ = Im+n,

(c) D is diagonal.

So V is the matrix of eigenvectors of B and the eigenvalues of B are in D. A similar result
exists for n ≥ m.



Problem 5

Given the 2-by-2 real matrix A =

(
0 1
a b

)
, determine the set of all real a, b such that

(a) A is orthogonal.

(b) A is symmetric positive definite.

(c) A is nilpotent.

(d) A is unitarily diagonalizable.

Solution:

(a) We want A to be orthogonal. That is ATA = AAT = I. This means that the row of A
has to form an orthonormal basis. The first row of A is

(
0 1

)
, the second row has

to be
(
±1 0

)
. We have

A =

(
0 1
±1 0

)
, a = ±1, b = 0.

(b) We want A to be symmetric positive definite. Clearly by symmetry a has to be 1. Now
we know that a symmetric positive definite matrix has a positive diagonal. (Because,
we have that for all nonzero vector x, we need xTAx > 0; and we also have that
aii = eTi Aei.) And we see that a11 is 0 so no value b can make A symmetric positive
definite. There is no solution.

(c) We want A to be nilpotent. For A to be nilpotent, we need A2 = 0. We have(
0 1
a b

)(
0 1
a b

)
=

(
a b
ab a+ b2

)
.

For this to be the zero matrix, we want a = 0 and b = 0. We have

A =

(
0 1
0 0

)
, a = 0, b = 0.

(d) We want A to be unitarily diagonalizable. This is equivalent to we want A to be
normal. For A to be normal, we need ATA = AAT . We have(

0 1
a b

)(
0 a
1 b

)
=

(
0 a
1 b

)(
0 1
a b

)
.

This leads to (
1 b
b a2 + b2

)
=

(
a2 ab
ab 1 + b2

)
.

So this leads to either( a = 1 and b is any real number) or ( a = −1 and b = 0). We
have

either

(
A =

(
0 1
1 b

)
, a = 1, b ∈ R

)
or

(
A =

(
0 1
−1 0

))
.



Problem 6

Note: Question (a) and (b) are not related.

(a) We consider C([0, 1]), the space of continuous function on [0, 1]. We dot C([0, 1]) with
the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

We consider the subspace P1 of all polynomials of degree 1 or less on the unit interval
0 ≤ x ≤ 1.

Find the least squares approximation to the function f(x) = x3 by a polynomial p ∈ P1

on the interval [0, 1], i.e., find p ∈ P1 that minimizes ‖p− f‖2.

(b) We consider the vector space P2 of all polynomials of degree 2 or less on the unit
interval 0 ≤ x ≤ 1. We consider the set of functions

S = {p ∈ P2 :

∫ 1

0

p(x)dx =

∫ 1

0

p′(x)dx}.

Show that this is a linear subspace of P2, determine its dimension and find a basis for
S.

Solution:

(a) Goal: We want to find the orthogonal projection p of f onto P1. (Orthogonal in the
sense of the given inner product.)

Method:

(1) Get a basis (e1, e2) of P1,

(2) Construct an orthonormal basis (q1, q2) of P1 from (e1, e2) using the Gram-Schmidt
procedure

i. r11 = ‖e1‖,
ii. q1 = e1/r11,

iii. r12 = 〈q1, e2〉,
iv. w = e2 − r12q1,
v. r22 = ‖w‖,

vi. q2 = w/r22.

(3) Compute p, the orthogonal projection of f onto P1, with the formula

p = 〈q1, f〉q1 + 〈q2, f〉q2.

Computation:

(1) e1 = 1 and e2 = x is a basis of P1, let us take this one,



(2) i.

‖e1‖2 = 〈e1, e1〉 =

∫ 1

0

dx = 1 so r11 = ‖e1‖ = 1,

ii.
q1 = e1/r11 = 1,

iii.

r12 = 〈q1, e2〉 =

∫ 1

0

x dx =
1

2
,

iv.

w = e2 − r12q1 = x− 1

2
,

v.

r22 = ‖w‖ =

∫ 1

0

(x− 1

2
)2 dx =

1

12
,

vi.
q2 = w/r22 =

√
3(2x− 1).

(1, 2
√

3x−
√

3) is an orthonormal basis of P1.

(3) i.

〈q1, f〉 =

∫ 1

0

x3 dx =
1

4
,

ii.

〈q2, f〉 =

∫ 1

0

√
3(2x− 1)x3 dx =

3

20

√
3,

iii.

p = 〈q1, f〉q1 + 〈q2, f〉q2 =
1

4
+ (

3

20

√
3)(
√

3(2x− 1)) =
9

10
x− 1

5
.

The orthogonal projection of f onto P1 is p = 9
10
x − 1

5
. It is also the least squares

approximation to the function f(x) = x3 by a polynomial p ∈ P1 on the interval [0, 1].
That is p is such that it minimizes ‖q − f‖2 over all q in P1.

(b) To prove that S is a linear subspace, one takes two polynomials p and q in S and two
real numbers α and β and proves that the polynomial αp+ βq is in S. This is routine
exercise. We skip the writing here.

We now want to find a basis of S and find its dimension. Let p ∈ P2, then p writes

p = ax2 + bx+ c.

If p is in S, it must sastifies the constraint∫ 1

0

p(x)dx =

∫ 1

0

p′(x)dx,

that is ∫ 1

0

(
ax2 + bx+ c

)
dx =

∫ 1

0

(2ax+ b) dx,



that is
1

3
a+

1

2
b+ c = a+ b,

that is
4a+ 3b− 6c = 0.

Two linearly independent vectors (a, b, c) satisfying this equation are for example:
(3, 0, 2) and (0, 2, 1). So a basis for S is for example(

3x2 + 2, 2x+ 1
)
.

S is of dimension 2.



Problem 7

Let E, F , and G be vector spaces. Let f ∈ L(E,F ) and g ∈ L(F,G). Prove that:

Range(g ◦ f) = Range(g)⇐⇒ Null(g) + Range(f) = F

Solution:
⇐ We assume that Null(g) + Range(f) = F . It is clear that Range(g ◦ f) ⊂ Range(g).

We want to prove that Range(g) ⊂ Range(g ◦ f). Let x ∈ Range(g). We want to prove
that x ∈ Range(g ◦ f). Since x ∈ Range(g), there exists y ∈ F such that x = g(y). Since
y ∈ F and F = Null(g) + Range(f) ( by our assumption ), there exists u ∈ Null(g) and
v ∈ Range(f) such that y = u + v. Since v ∈ Range(f), there exists w ∈ E such that
v = f(w). Now we have that x = g(y), y = u + v and v = f(w), so x = g(u + f(w)), so
x = g(u) + (g ◦ f)(w), but u ∈ Null(g), so x = (g ◦ f)(w), so x ∈ Range(g ◦ f).

⇒ We assume that Range(g ◦ f) = Range(g). It is clear that Null(g) + Range(f) ⊂ F .
We want to prove that F ⊂ Null(g) + Range(f). Let x ∈ F . We want to prove that
x ∈ Null(g)+Range(f). So we want to find u ∈ Null(g) and v ∈ Range(f) such that x = u+v.
Clearly, we have that g(x) ∈ Range(g) so ( by our assumption ) g(x) ∈ Range(g ◦ f)), so
there exists z ∈ E such that g(x) = (g◦f)(z). Let u = x−f(z) and v = f(z). We have that (
please check )(1) x = u+v, (2) u ∈ Null(g) and (3) v ∈ Range(f). So x ∈ Null(g)+Range(f).



Problem 8

Let A and B be n× n complex matrices such that AB = BA. Show that if A has n distinct
eigenvalues, then A, B, and AB are all diagonalizable.

Solution:

This question was given as question #4 in the June 2012 Linear Algebra Preliminary Exam.
Please check answer there.


