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Problem 1

For each of the following parts, determine all real 2-by-2 matrices A that satisfy the following:

(a) A2 =

(
1 0
0 −1

)
; (b) AAT =

(
1 0
0 −1

)
. [10 points each]

Solution 1 (“brute force”) Let A =

(
a b
c d

)
with a, b, c, d ∈ R so that:

AA =

(
a b
c d

)(
a b
c d

)
=

(
a2 + bc ab+ bd
ac+ cd bc+ d2

)
.

For (a), it follows that a2 + bc = 1 and d2 + bc = −1 so that a2 − d2 = (a + d)(a − d) = 2
and thus a + d 6= 0. Hence, from b(a + d) = c(a + d) = 0, we get b = c = 0 yielding
d2 + bc = d2 = −1 which shows that such matrix cannot exist. Similarly, for (b), we get:

AAT =

(
a b
c d

)(
a c
b d

)
=

(
a2 + b2 ac+ bd
ac+ bd c2 + d2

)
,

and the same conclusion follows immediately because c2 + d2 ≥ 0 > −1.

Solution 2 (using determinant) For (a), on the one hand,

det(A2) = det(

(
1 0
0 −1

)
) = −1.

On the other hand,
det(A2) = (det(A))2 .

Therefore
(det(A))2 = −1.

Since A is real, det(A) is real. No such A exists.
For (b), on the one hand,

det(AAT ) = det(

(
1 0
0 −1

)
) = −1.

On the other hand,
det(AAT ) = det(A)det(AT ) = (det(A))2 .

Therefore
(det(A))2 = −1.

Since A is real, det(A) is real. No such A exists.



Solution 3 (using eigenvalues for (a) and a basic observation for (b)) For (a), if

A2 =

(
1 0
0 −1

)
,

then one could observe that:
(A2 − I)(A2 + I) = 0,

so that the eigenvalues of A are among ± 1 and ± i. Moreover, because A is real so that its
complex eigenvalues come in complex conjugate pairs, it follows that if A has the eigenvalue
i, then −i is also an eigenvalue of A, and A2 would have the eigenvalue −1 twice. (Ditto
if −i is an eigenvalue of A.) Clearly, such A2 does not satisfy our equation which rules out
that i and −i are eigenvalues for A. Similarly, if A has eigenvalues 1 and −1, then A2 would
have the eigenvalue 1 twice and clearly, such A2 again does not satisfy our equation. As a
consequence, we can see that there is no real 2-by-2 matrix that satisfies (a). For any A in
(b), we can observe that AAT has to be symmetric positive semidefinite whereas the matrix
( 1 0
0 −1 ) is not. As a consequence, we see that there is no real 2-by-2 matrix that satisfies (b).



Problem 2

Let A be a real symmetric n-by-n matrix. Show that the following three statements are
equivalent. [20 points]

(a) All the eigenvalues of A are positive.

(b) For every nonzero x ∈ Rn, one has xTAx > 0.

(c) There exists an invertible matrix Q such that A = QQT .

Solution We understand that all these three statements relates symmetric positive definite
matrices. Any one of the three statements above can be used as the definition for a symmetric
positive definite matrix.

(c) ⇒ (b) We assume that there exists an invertible n-by-n matrix Q such that A = QQT .
Let x be a nonzero vector in Rn, then:

xTAx = xTQQTx = (QTx)T (QTx) = ‖QTx‖22.

Since Q is invertible, QT is invertible, and since x is nonzero, QTx is nonzero. Since

QTx is nonzero,
∥∥QTx

∥∥2
2
> 0. So we proved that, for every nonzero x ∈ Rn, one has

xTAx > 0.

(b) ⇒ (a) We assume that, for every nonzero x ∈ Rn, one has xTAx > 0. Let λ be an
eigenvalue of A and v be an associated eigenvector such that Av = λv and v 6= 0. Now
vTAv = λvTv but vTAv > 0 by our assumption, so λvTv > 0, and since vTv > 0, we
have λ > 0. So we proved that all the eigenvalues of A are positive.

(a) ⇒ (c) We now assume that all the eigenvalues of A are positive. Since A is symmetric,
there exists an orthogonal n-by-n matrix V (such that V TV = I) and a diagonal
matrix D such that A = V DV T where D has the eigenvalues of A on its diagonal.
Since eigenvalues of A are positive, we consider D

1
2 which has the square roots of the

eigenvalues of A on its diagonal. Then, if we call Q = (V D
1
2V T ), we have

A = V DV T = V D
1
2D

1
2V T = (V D

1
2V T )(V D

1
2V T ) = QQT .

(Note that Q is invertible, since V and D
1
2 are.) We proved that there exists an

invertible n-by-n matrix Q such that A = QQT .

Remarks Given a symmetric positive definite matrix A, there are plenty of matrices Q
that satisfy A = QQT . In our proof above, we have chosen to use the (unique) (symmetric
positive definite) square root of A: if A is symmetric positive definite, then we know that
there exists a unique symmetric positive definite Q such that A = Q2. (This is equivalent to
A = QQT since Q is symmetric.) Another choice for Q would have been to take the Cholesky
factor of A: if A is symmetric positive definite, then there exists a (unique) lower triangular
matrix Q (with positive diagonal elements) such that A = QQT . There were plenty of other
valid choices for Q.



Problem 3

(a) Let A be an m-by-n matrix. Prove that if the matrix ATA is invertible, then the matrix

I − A(ATA)−1AT

is symmetric positive semidefinite. [10 points]

(b) In addition, let B be an m-by-p matrix. Prove that if ATA and BTB are invertible
and if the ranges of A and B do not share a nontrivial subspace, then the matrix

BT (I − A(ATA)−1AT )B

is invertible. [10 points]

Solution 1 (based on the orthogonal projection in (a))

(a) We should be able to recognize the following facts: (1) Since ATA is invertible, then A
has full column rank and m ≥ n. (2) I−A(ATA)−1AT is nothing else than the orthog-
onal projection on the orthogonal complement of Span(A), an orthogonal projection
is a symmetric operator and its eigenvalues are 0 or 1. So the claim is indeed correct:
I − A(ATA)−1AT is symmetric positive semidefinite. The question asks to prove this
fact.

We call P = I − A(ATA)−1AT .

First, we check that P is symmetric:

P T = (I − A(ATA)−1AT )T = I − A(ATA)−TAT = I − A(ATA)−1AT = P.

Here we used the fact that (ATA)−1 is symmetric.

Second, we check that P 2 = P :

P 2 = (I − A(ATA)−1AT )2

= I − 2A(ATA)−1AT + A(ATA)−1ATA(ATA)−1AT

= I − A(ATA)−1AT = P.

Since P 2 = P , we have P (P − I) = 0, so the eigenvalues of P are either 0 or 1.

P is symmetric with eigenvalue either 0 or 1 so P is symmetric positive semidefinite.

(b) Some remarks about this problem. Since ATA is invertible, then n ≤ m and A is full
column rank. Since BTB is invertible, then p ≤ m and B is full column rank. We also
know that the ranges of A and B do not have common nontrivial subspaces so, in other
words, Range(A) ∩ Range(B) = {0}. So we see that we must have n + p ≤ m. Also,
as explained above, I −A(ATA)−1AT is the orthogonal projection onto the orthogonal
complement of Range(A). And we call it P .

We are to prove that BTPB is invertible. We note, since P 2 = P and P is symmetric,
that BTPB = (PB)T (PB). We therefore are to prove that (PB)T (PB) is invertible,
or equivalently, that PB is full rank. We know that Null(P ) = Range(A). So, since
Range(A)∩Range(B) = {0}, we get that Null(P )∩Range(B) = {0}, and so the matrix
PB is full rank.



Solution 2 (using singular value decomposition for (a) with projection for (b))

(a) As before, we observe that A has full column rank with m ≥ n. Hence, using a singular
value decomposition, we can write A = UΣV T so that ATA = V ΣTΣV T and

A(ATA)−1AT = UΣV TV
(
ΣTΣ

)−1
V TV ΣTUT

= UΣ
(
ΣTΣ

)−1
ΣTUT = ULUT

where L = Σ
(
ΣTΣ

)−1
ΣT has a unit block n-by-n. Hence, it follows that

I − ULUT = U(I − L)UT

is positive semidefinite.

(b) The range of B is disjoint from the range of A, so that no nonzero element of the range
of B is orthogonal to the nullspace of AT . Combined with the fact that B has the
trivial nullspace by BTB being invertible and that I −A(ATA)−1AT is the orthogonal
projection operator onto the nullspace of AT , it follows that (I −A(ATA)−1AT )B has
the trivial nullspace, and thus

BT (I − A(ATA)−1AT )B = ((I − A(ATA)−1AT )B)T (I − A(ATA)−1AT )B

has the trivial nullspace as well and is therefore invertible.



Problem 4

A square matrix N is called nilpotent if Nm = 0 for some positive integer m.

(a) Is the sum of two nilpotent matrices nilpotent? [5 pts]
If yes, prove it. If not, give a counterexample.

(b) Is the product of two nilpotent matrices nilpotent? [5 pts]
If yes, prove it. If not, give a counterexample.

(c) Prove that all eigenvalues of a nilpotent matrix are zero. [5 pts]

(d) Prove that the only nilpotent matrix that is diagonalizable is the zero matrix. [5 pts]

Solution

(a) No, the sum of two nilpotent matrices is not nilpotent, in general: the two matrices:

N1 =

(
0 1
0 0

)
and N2 =

(
0 0
1 0

)
are nilpotent (with m = 2), but their sum:

S = N1 +N2 =

(
0 1
1 0

)
is not nilpotent (S2m−1 = S and S2m = I for all integers m ≥ 1).

(b) No, the product of two nilpotent matrices is not nilpotent, in general: the two matrices
N1 and N2 from part (a) are nilpotent, but both of their products:

P12 = N1N2 =

(
1 0
0 0

)
and P21 = N2N1 =

(
0 0
0 1

)
are not nilpotent (Pm = P for all integers m ≥ 1).

(c) Let λ be an eigenvalue of N and x an associated nonzero eigenvector: Nx = λx.
Because N is nilpotent, we have Nm = 0 for some positive integer m ≥ 1 and thus
Nmx = λmx = 0 for x 6= 0. Hence, it follows that λm = 0 and thus λ = 0; because λ
was any eigenvalue of N , all eigenvalues of N must be zero.
Alternate way. We know that, for any polynmial p and any square matrix A, if
p(A) = 0 and if λ is an eigenvalue of A, then we have p(λ) = 0. Since N is nilpotent,
we have Nm = 0 for some positive integer m ≥ 1. Let λ be an eigenvalue of A. Then
λm = 0, so λ = 0; because λ was any eigenvalue of N , all eigenvalues of N must be zero.

(d) Let N be nilpotent and diagonalizable. Because N is diagonalizable, it follows that
there exists an invertible matrix V and a diagonal matrix D such that N = V DV −1,
where D contains the eigenvalues of N on its diagonal. Hence, since N is nilpotent and
because we proved in (c) that all the eigenvalues of N are zero, the diagonal matrix D
must be zero and thus N = V DV −1 must be zero as well.



Problem 5

In this problem, you are asked to prove that two real symmetric matrices commute if and only
if they are diagonalizable in a common orthonormal basis. We suggest the following path.

Let A and B be two real symmetric matrices and show each of the following. [5 points each]

(a) If A and B are diagonalizable in a common orthonormal basis, then A and B commute.

(b) If A and B commute, and if λ is an eigenvalue of A, then the eigenspace Eλ of A that
is associated with the eigenvalue λ is invariant under B.

(c) If A and B commute, then A and B have at least one common eigenvector.

(d) If A and B commute, then A and B are diagonalizable in a common orthonormal basis.

Solution

(a) Let A and B be two n-by-n real symmetric matrices that are diagonalizable in a
common orthonormal basis. Let V be the matrix of the vectors of this orthonormal
basis. Then V is an orthogonal n-by-n matrix V (such that V TV = I) and there exists
a diagonal matrix DA and a diagonal real matrix DB such that A = V DAV

T and
B = V DBV

T . Now, we have

AB = V DAV
TV DBV

T = V DADBV
T = V DBDAV

T = V DBV
TV DAV

T = BA,

where we have used the fact that V TV = I and the fact that two diagonal matrices
always commute (so that DADB = DBDA).

(b) Now we assume that A and B commute. Let λ be an eigenvalue of A, and Eλ, the
eigenspace of A associated with the eigenvalue λ. Let x in Eλ, then Ax = λx, so
BAx = λBx, so, (since A and B commute,) ABx = λBx, so we see that Bx is in Eλ.
So Eλ is invariant under B.

(c) We continue to assume that A and B commute. Let λ be an eigenvalue of A, and Eλ,
the eigenspace of A associated with the eigenvalue λ. Since Eλ is invariant under B
(see part(b)) and B is real symmetric, the restriction of B to Eλ is a real symmetric
linear operator from Eλ to Eλ and so it has a real eigenvalue, say µ, with eigenvector
v. (v, µ) is an eigencouple of the restriction of B to Eλ, but it is also an eigencouple of
B. So, in fine, we have (v, µ) eigencouple of B, with v in Eλ, so v is also an eigenvector
of A, associated with eigenvalue λ. We have found v a common eigenvector for A and
B.

(d) Let A and B be two n-by-n real symmetric matrices that commute.

By (c), we know that there exists a common eigenvector for A and B. We can take
this eigenvector of unit norm and we call it v1. It is associated with the eigenvalue λ1
for A and the eigenvalue µ1 for B.

Now we consider V1 = Span(v1)
⊥ and we note that V1 is invariant under A and under

B.



(Proof of this claim for A (ditto for B): let x be in V1 = Span(v1)
⊥ then vT1 (Ax) =

λ1v
T
1 x, but vT1 x = 0 since x is in v⊥1 , so vT1 (Ax) = 0 so Ax is in V1 = Span(v1)

⊥. So V1
is invariant under A.)

Since V1 is invariant under A and A is real symmetric, A1, the restriction of A to V1,
is a real symmetric linear operator from V1 to V1. Since V1 is invariant under B and
B is real symmetric, B1, the restriction of B to V1, is a real symmetric linear operator
from V1 to V1. Also note that, since A and B commute, their restrictions A1 and B1

commute.

Now, we can use (c) on A1 and B1 to prove that A1 and B1 share a common eigenvector.
We take this eigenvector of unit norm, and call it v2. v2 is a common eigenvector for
A and B. Note that v2 is orthogonal to v1 since v2 is in V1 = v⊥1 .

Then we consider V2 = Span(v1, v2)
⊥, this is an invariant subspace for A and for B, so

we consider the restrictions of A and B to V2, and so on.

This process ends when we have constructed (v1, v2, . . . , vn) n common eigenvectors of
A and B which also form an orthonormal basis. We therefore have diagonalized A and
B in a common orthonormal basis.



Problem 6

Let V be a 4-dimensional vector space over R, let L(V, V ) be the set of all linear mappings
from V to V , and let T : V → V be a linear operator with minimal polynomial µT (x) = x2+1.
Determine, with a proof, the dimension of the following subspace:

U(T ) := {S ∈ L(V, V ) | ST = TS}. [20 points]

Solution We begin with a few general comments.

• Firstly, we note that U is a subspace. The proof is trivial but it is good to observe this
to ensure that the question for the dimension of this subspace makes sense.

• Secondly, we know that the homothetic linear transformations, which are simply mul-
tiplications by a scalar λ or of the form λI, commute with any operator so that, for
all scalars λ, λI ∈ U and the dimension of U is at least 1.

• Thirdly, clearly T is in U since T commutes with itself. So Span(I, T ) is in U . Also
T is not of the form λI (otherwise, from T 2 + I = 0, we would get λ2 + 1 = 0 which
is not possible), so the list (I, T ) is linearly independent, and so the dimension of U is
at least 2.

• Fourthly, we can also observe that any polynomial of T , p(T ), commutes with T .
However since T 2 + I = 0, for all p, p(T ) is in Span(I, T ), so we do not find other
dimensions (than the two we already have) with this observation.

• Fifthly, since U is in L(V, V ), the dimension of U is at most 16.

Next, since the minimal polynomial of T is of the form µ(x) = x2 + 1, there exists a basis
such that T is of the form 

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

Henceforward, we will work in this basis. Let us use brute force. On the one hand:
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



a b c d
e f g h
i j k l
m n o p

 =


e f g h
−a −b −c −d
m n o p
−i −j −k −l

 .

On the other hand:
a b c d
e f g h
i j k l
m n o p




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 =


−b a −d c
−f e −h g
−j i −l k
−n m −p o

 .

Writing TS = ST , we get the following 16 equalities:
e = −b a = f d = −g c = h
f = a e = −b h = c g = −d
m = −j i = n l = −o k = p
i = n m = −j p = k l = −o





Hence, we see that for S to commute with T , S has to have the following matrix represen-
tation (in the basis we already have chosen):

a b c d
−b a −d c
i j k l
−j i −l k

 .

It follows that a basis for U could be:


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,


0 0 0 1
0 0 −1 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 ,


0 0 0 0
0 0 0 0
0 1 0 0
−1 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


 .

Hence, the dimension of U is 8. In particular, we see that the matrices of the form λI are in
U , which is a good thing since we knew they had to be there.

Alternate Way We forget about the real vector space and consider a complex vector
space first.
The eigenvalues of T are ±i with geometric multiplicities 2. We consider Ei, the eigenspace
associated with i, and E−i, the eigenspace associated with −i. We have V = Ei ⊕ E−i. We
consider (v1, v2, v3, v4) a basis of V such that v1 and v2 are eigenvectors of T of eigenvalue i,
and v3 and v4 are eigenvectors of T of eigenvalue −i.
We note that, if S commutes with T , then Ei is invariant under S and E−i is invariant under
S. Proof: Let v in Ei, then Tv = iv, so STv = iSv, so, TSv = iSv, so Sv in Ei.
Reciprocally, if S is such that Ei is invariant under S and E−i is invariant under S, then
S commutes with T . Proof: Let x in V . There exists x1, x2, x3, and x4 in C such that
x = x1v1 +x2v2 +x3v3 +x4v4. On the one hand, STx = iS(x1v1 +x2v2)− iS(x3v3 +x4v4). On
the other hand TSx = TS(x1v1 +x2v2) +TS(x3v3 +x4v4). Since x1v1 +x2v2 in Ei, and Ei is
invariant by S, we know that S(x1v1+x2v2) is in Ei and so TS(x1v1+x2v2) = iS(x1v1+x2v2).
Similarly for −i. All in all, we find that TSx = iS(x1v1 + x2v2) − iS(x3v3 + x4v4). And so
TS = ST .
We understand that S commutes with T if and only if Ei is invariant under S and E−i is
invariant under S.
The dimension of Ei is 2, so the dimension of L(Ei, Ei) is 4. The dimension of E−i is 2,
so the dimension of L(E−i, E−i) is 4. The dimension of the subspace of the operators that
leaves Ei and E−i invariant is therefore 8.
The reasonning above was made in a complex vector space. We find that the subspace of
the operators that commutes with T was a subspace of dimension 8. All real operators in
this subspace also commutes with T and they form a subspace in the real vector space of
dimension 8.


