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1. Assume the following general definition for a real positive semidefinite matrix: an
n×n real matrix A is said to be positive semidefinite if and only if, for all vector x
in R

n, xTAx ≥ 0. In particular, this definition allows real matrices which are not

symmetric to be positive semidefinite.

(a) Prove that if A and B are real symmetric positive semidefinite matrices and
matrix A is nonsingular, then AB has only real nonnegative eigenvalues. (10
pts)

(b) Provide a counterexample showing that the requirement that the matrices are
symmetric cannot be dropped. (10 pts)

Solution

(a) Since A is symmetric positive definite, A1/2 and A−1/2 are well defined.
The matrix AB has the same eigenvalues as the matrix A−1/2ABA1/2 =
A1/2BA1/2. The latter matrix is selfadjoint and positive semidefinite, so it
has real nonnegative eigenvalues.

Note: The result also holds if we remove the assumption of A to be nonsingu-
lar. In other words, A and B only need to be two n–by–n symmetric positive
semidefinite matrices. The proof gets a little trickier though.

(b) One needs to provide positive semidefinite matrices A and B, A nonsingular,
such that AB has an eigenvalue which is not “real and nonnegative”. Given
question (a) we understand that either A or B (or both) have to be non-
symmetric. To create a positive semidefinite matrix A, one simply takes a
symmetric positive definite matrix H and then add an antisymmetric matrix
S, then A = H + S is positive semidefinite matrix.

In our case, we can take A =

(

0 1
−1 0

)

and B =

(

1 0
0 1

)

.

In this case A is positive semidefinite nonsingular, B is positive semidefinite,
and AB does not have real nonnegative eigenvalues.



2. (a) Suppose A and B are real-valued symmetric n × n matrices. Show that
|trace (AB)| ≤

√

trace (A2)
√

trace (B2) . What are the conditions for equal-
ity to hold? (10 pts)

(b) Let A be a real m× n matrix. Show that

√

trace(AAT ) ≤ trace
(√

AAT
)

.

When does equality hold ? (10 pts)

Solution

(a) By the Cauchy-Schwarz Theorem,

|trace (AB)| =
∣

∣

∣

∣

∑

i,j

aijbij

∣

∣

∣

∣

≤
√

∑

i,j

a2ij

√

∑

i,j

b2ij =
√

trace (A2)
√

trace (B2) .

For equality to hold, one of the matrices has to be a scalar multiple of the
other.

(b) Let AAT = P TDP , where D represents a nonnegative diagonal matrix and
P represents an orthogonal matrix. Then

trace(AAT ) = trace(D) =
∑

i

λi ≤ (
∑

i

√

λi)
2 = (trace(D1/2))2 = (trace((AAT )1/2))2.

The fact that
∑

i λi ≤ (
∑

i

√
λi)

2 comes from developing the square on the
right side. Equality holds if and only if D has at most one nonzero entry,
so AAT has at most one nonzero eigenvalue, so A has at most one nonzero
singular value.



3. Let
f :Mn(R) −→ Mn(R)

A 7−→ AT

(a) What are the eigenvalues of f? (10 pts)

(b) Is f diagonalizable? If yes, give a basis of eigenvectors. If no, give as many
linearly independent eigenvectors as possible. (10 pts)

Solution

It is clear that f2 = I, therefore p(x) = (x− 1)(x+ 1) is such that p(f) = 0. This
implies that the eigenvalues of f are part of the set {1,−1}. Also p(f) = 0 implies
that f is diagonalizable since p only has single roots.

Now it is clear that any symmetric matric is eigenvector associated with eigenvalue
1, and that an eigenvector associated with eigenvalue 1 is a symmetric matrix. If we
call the subspace of symmetric matrices, Sn, and E1 the eigenspace of f associated
with eigenvalue 1, we have Sn = E1.

It is also clear that any antisymmetric matric is eigenvector associated with eigen-
value -1, and that an eigenvector associated with eigenvalue -1 is an antisymmet-
ric matrix. If we call the subspace of antisymmetric matrices, An, and E−1 the
eigenspace of f associated with eigenvalue −1, we have An = E−1.

We know that
Mn = Sn ⊕An.

Therefore we can diagonalize f by taking a basis of Sn and a basis of An to form
a basis ofMn.



4. Define the n× n matrix

An =

























a+ b b b . . . b b

a a+ b b
. . . b b

a a a+ b
. . . b b

...
. . .

. . .
. . .

. . .
...

a a a
. . . a+ b b

a a a . . . a a+ b

























(a) Compute Dn = det (An). (10 pts)

(b) Give the value of Dn for n = 10, a = 2, and b = −1. (10 pts)

Solution

We perform (in this order) Ln ← Ln − Ln−1, then Ln−1 ← Ln−1 − Ln−2, ... and
finally L2 ← L2 − L1. (These transformations do not change the value of the
determinant.) We get

Dn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a+ b b b . . . b b

−b a 0
. . . 0 0

0 −b a
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0
. . .

. . . a 0
0 0 0 . . . −b a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We develop with respect to last column and get

Dn = (−1)n−1b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−b a 0
. . . 0

0 −b a
. . . 0

...
. . .

. . .
. . .

. . .

0 0
. . .

. . . a

0 0 0 . . . −b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a+ b b b . . . b

−b a 0
. . . 0

0 −b a
. . . 0

...
. . .

. . .
. . .

...
0 0 . . . −b a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

And so, we get
Dn = bn + aDn−1.

We have
D1 = a+ b.

(Note: We could get D1 from D1 = b+ aD0 if we define D0 to be 1.)



So we get
D2 = b2 + aD1 = b2 + ab+ a2.

Quick check:

D2 =

∣

∣

∣

∣

a+ b b

a a+ b

∣

∣

∣

∣

= (a+ b)2 − ab = b2 + ab+ a2.

So we get
D3 = b3 + aD2 = b3 + ab2 + a2b+ a3

Pursuing in an identical manner, we get

Dn = bn + abn−1 + . . . + an−1b+ an =

n
∑

k=0

akbn−k.

We can simplify by noticing that

(a− b)(bn + abn−1 + . . .+ an−1b+ an) = an+1 − bn+1.

So, if a 6= b, we have

Dn =
an+1 − bn+1

a− b
.

And, if a = b, we get
Dn = (n+ 1)an.

(And we check that the latter expression for a = b is the limit of the expression for
a 6= b when b goes to a.)

For n = 10, a = −1, and b = 2, we get

(−1)11 − (2)11

(−1)− 2
=

2049

3
= 683.



5. Suppose that u and v are vectors in a real inner product space V .

(a) Prove that

(||u||+ ||v||) 〈u, v〉||u|| ||v|| ≤ ||u+ v||. (10 pts)

(b) Prove or disprove the following identity:

(||u||+ ||v||) |〈u, v〉|||u|| ||v|| ≤ ||u+ v||. (10 pts)

Solution

(a) Case 1: 〈u, v〉 ≤ 0. The inequality follows trivially since a norm is nonnegative.
Thus, the leftside is no more than 0 while the right side is no less than 0.

Case 2: 〈u, v〉 > 0. Squaring the left side we have

(||u|| + ||v||)2 〈u, v〉〈u, v〉||u||2||v||2 ≤ (||u||2 + ||v||2 + 2||u|| ||v||)〈u, v〉||u|| ||v||||u||2 ||v||2 (1)

=
||u||
||v|| 〈u, v〉 +

||v||
||u|| 〈u, v〉 + 2〈u, v〉 (2)

=
||u||
||v|| ||u|| ||v|| +

||v||
||u|| ||u|| ||v|| + 2〈u, v〉 (3)

= ||u+ v||2. (4)

Both (1) and (3) are obtained by applying the Cauchy-Schwarz inequality to
〈u, v〉, while (2) and (4) are obtained by simplifying.

(b) Let u = (1, 0), v = (−1, 0), and use a Euclidean inner product (dot product).
Then the left side of the inequality becomes (1 + 1) 1

(1)(1) = 1 while the right

side is 0. (Note: one can also use one-dimensional vector: u = (1), v = (−1).)



6. Let V be a vector space. Let f ∈ L(V ). Let p be a projection (so p ∈ L(V ) and is
such that p2 = p). Prove that

Null(f ◦ p) = Null(p)⊕ (Null(f) ∩ Range(p)) . (20 pts)

Solution

Firstly, we would like to prove that

Null(p)⊕ (Null(f) ∩ Range(p)) ⊂ Null(f ◦ p).

Note: We recall that if A, B and C are subspaces, to prove that A + B ⊂ C, we
just need to prove that A ⊂ C and B ⊂ C.

Null(p) ⊂ Null(f ◦ p) Let x ∈ Null(p), then p(x) = 0, so (f ◦ p)(x) = 0, so

x ∈ Null(f ◦ p).
Null(f) ∩ Range(p) ⊂ Null(f ◦ p) Let x ∈ Null(f)∩Range(p). Since x ∈ Range(p),

there exists y such that x = p(y). Since x ∈ Null(f), we have f(x) = 0. Now let
us look at (f ◦ p)(x). (Note: we want to prove that (f ◦ p)(x) = 0.) We have
(f ◦ p)(x) = (f ◦ p)(p(y)) = f(p2(y)) = f(p(y)) = f(x) = 0, We have used the facts
that 1 → 2: x = p(y), 3 → 4: p2 = p, 4 → 5: p(y) = x, 5 → 6: f(x) = 0. This
proves that x ∈ Null(f ◦ p).
We proved that

(Null(p) + (Null(f) ∩ Range(p))) ⊂ Null(f ◦ p).

Secondly, we would like to prove that

Null(f ◦ p) ⊂ Null(p)⊕ (Null(f) ∩Range(p)) .

Let x ∈ Null(f ◦ p), we can write x as

x = (x− p(x)) + p(x),

where

(a) (x− p(x)) ∈ Null(p). Indeed, p(x − p(x)) = p(x) − p2(x), but p = p2 so

p(x− p(x)) = 0, so (x− p(x)) ∈ Null(p).

(b) p(x) ∈ Null(f) ∩ Range(p). It is a fact that p(x) ∈ Range(p). Moreover, since

x ∈ Null(f ◦p), we have that (f ◦p)(x) = 0, which proves that p(x) ∈ Null(f).
So p(x) ∈ Null(f) ∩ Range(p).



Therefore we have that

Null(f ◦ p) ⊂ Null(p) + (Null(f) ∩Range(p)) .

At this point, we proved that

Null(f ◦ p) = Null(p) + (Null(f) ∩Range(p)) .

It remains to prove that the sum is direct. Let x ∈ Null(p)∩ (Null(f) ∩ Range(p)),
then x ∈ Range(p), so there exits u ∈ V such that x = p(u), but x ∈ Null(p),
so p(x) = 0, so p2(u) = 0, but p2 = p, so p(u) = 0, so x = 0. We proved that
Null(p) ∩ (Null(f) ∩ Range(p)) = {0} so the sum in the previous paragraph is
direct.

We are done and we can conclude that

Null(f ◦ p) = Null(p)⊕ (Null(f) ∩Range(p)) .



7. (a) Let n ∈ N\{0, 1} (so n ≥ 2) and A ∈ Mn(C) such that rank(A) = 1. Prove
that A is diagonalizable if and only if trace(A) 6= 0. (10 pts)

(b) Let a1, . . . an ∈ C\{0}, (so the ai’s are nonzero complex numbers,) and A such

that A =
(

ai
aj

)

1≤i,j≤n
. (This means that the entry (i, j) of A is ai

aj
.) Show

that A is diagonalizable. Give a basis of eigenvectors (with the associated
eigenvalues) for A. (10 pts)

Solution

(a) First we note that rank(A) = 1 ⇔ dim(Null(A)) = n − 1 (by the rank theo-
rem). So, if rank(A) = 1 and n ≥ 2, then dim(Null(A)) ≥ 1 and so 0 is an
eigenvalue of A. We call ν0 the geometric multiplicity of the eigenvalue 0, and
µ0 the algebraic multiplicity of the eigenvalue 0. We call E0 the eigenspace
associated with the eigenvalue 0. Now, since dim(Null(A)) = n − 1, we have
that dim(E0) = n − 1, or in other words, the geometric multiplicity of the
eigenvalue 0, ν0, is n− 1. We know that, for a given eigenvalue, the algebraic
multiplicity is always greater than or equal to the geometric multiplicity. For
the eigenvalue 0, this reads: ν0 ≤ µ0. For a rank–1 matrix, there are therefore
only two cases: either ν0 = µ0 = n− 1, or ν0 = n− 1, µ0 = n.

case ν0 = µ0 = n− 1 In this case, since µ0 = n−1, there has to exist another

eigenvalue λ different from zero. (Because the sum of the algebraic multiplic-
ities of the eigenvalues has to sum to n.) For that eigenvalue λ, the geometric
multiplicity, νλ, is at least 1, but can be no more than 1 (because ν0 = n− 1
and the sum of the algebraic multiplicities of two distinct eigenvalues has to
be less than n). So νλ = 1. So we have νλ = 1 and ν0 = n − 1, so A is
diagonalizable. We also note that, in this case, trace(A) = λ, (the trace is the
sum of the eigenvalues counted with their multiplicities,) and so, in this case,
trace(A) 6= 0.

case ν0 = n− 1, µ0 = n In this case, since µ0 = n, A only has the eigenvalue

0. We also have that A is not diagonaliable and that trace(A) = 0.

Starting from a rank–1 matrix, we found two possibilities. Either ν0 = µ0 =
n−1, in which case, A is diagonaliable and trace(A) 6= 0. Or ν0 = n−1, µ0 =
n, in which case, A is not diagonaliable and trace(A) = 0.

This enables us to conclude that for a rank–1 matrix

A is diagonalizable ⇔ trace(A) 6= 0.



(b) We observe that the matrix is of rank 1. Indeed

A =















a1
a2
...

an−1

an















(

1
a1

1
a2

. . . 1
an−1

1
an

)

.

We also have trace(A) = n. So by the previous question, we see that A is
diagonalizable (since trace(A) 6= 0. We also see that A has eigenvalue 0 with
geometric multiplicity n− 1 and eigenvalue n with geometric multiplicity 1.

eigenvalue 0 To find n− 1 linearly independent eigenvectors associated with
eigenvalue 0, we want to find a basis for the null space of A, which is same as
null space of

(

1
a1

1
a2

. . . 1
an−1

1
an

)

.

We have (for example) that x1 is a leading variable, and that x2, x3 ,. . ., xn
are free variables. This gives for a general solution:



















−a1
a2
x2 − a1

a3
x3 − . . .− a1

an−1
xn−1 − a1

anxn

x2
x3
...

xn−1

xn



















= x2



















−a1
a2
1
0
...
0
0



















+x3



















−a1
a3
0
1
...
0
0



















+. . .+xn−1



















− a1
an−1

0
0
...
1
0



















+xn



















− a1
an
0
0
...
0
1



















.

So a basis for E0 is for example

v1 =



















−a1
a2
0
...
0
0



















, v2 =



















−a1
0
a3
...
0
0



















, . . . vn−2 =



















−a1
0
0
...

an−1

0



















, vn−1 =



















−a1
0
0
...
0
an



















.

eigenvalue n We see that an eigenvector for eigenvalue n is for example

vn =















a1
a2
...

an−1

an















.

Answer: The above given (v1, . . . , vn) is a basis of Cn made of eigenvectors of
A.


