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Applied Linear Algebra Ph.D. Preliminary Exam
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Name:

Exam Rules:

e This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

e FEach problem is worth 20 points.

e Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

e Begin each solution on a new page and use additional paper, if necessary.
e Write only on one side of paper.
o Write legibly using a dark pencil or pen.

e Ask the proctor if you have any questions.

Good luck!
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1. Assume the following general definition for a real positive semidefinite matrix: an
n X n real matrix A is said to be positive semidefinite if and only if, for all vector x
in R?, 27 Az > 0. In particular, this definition allows real matrices which are not
symmetric to be positive semidefinite.

(a)

(b)

Prove that if A and B are real symmetric positive semidefinite matrices and
matrix A is nonsingular, then AB has only real nonnegative eigenvalues. (10
pts)

Provide a counterexample showing that the requirement that the matrices are
symmetric cannot be dropped. (10 pts)

Solution

(a)

Since A is symmetric positive definite, A/2 and A~Y2 are well defined.
The matrix AB has the same eigenvalues as the matrix A~1/24BAY?2 =
AY2BAY?. The latter matrix is selfadjoint and positive semidefinite, so it
has real nonnegative eigenvalues.

Note: The result also holds if we remove the assumption of A to be nonsingu-
lar. In other words, A and B only need to be two n—by—n symmetric positive
semidefinite matrices. The proof gets a little trickier though.

One needs to provide positive semidefinite matrices A and B, A nonsingular,
such that AB has an eigenvalue which is not “real and nonnegative”. Given
question (a) we understand that either A or B (or both) have to be non-
symmetric. To create a positive semidefinite matrix A, one simply takes a
symmetric positive definite matrix H and then add an antisymmetric matrix
S, then A = H + S is positive semidefinite matrix.

In our case, we can take A = < _? (1) > and B = < (1) (1) >

In this case A is positive semidefinite nonsingular, B is positive semidefinite,
and AB does not have real nonnegative eigenvalues.



2. (a) Suppose A and B are real-valued symmetric n X n matrices. Show that
|trace (AB)| < y/trace (A2)y/trace (B2). What are the conditions for equal-
ity to hold? (10 pts)

(b) Let A be a real m x n matrix. Show that

trace(AAT) < trace (v AAT) .

When does equality hold 7 (10 pts)

Solution

(a) By the Cauchy-Schwarz Theorem,

[trace (AB)| =

Z aijbij

2

< /Z a; Zb?j = /trace (A2)\/trace (B2).

2%
For equality to hold, one of the matrices has to be a scalar multiple of the
other.

(b) Let AAT = PTDP, where D represents a nonnegative diagonal matrix and
P represents an orthogonal matrix. Then

trace(AAT) = trace(D) = Z)‘i < (Z V)2 = (trace(DY?))? = (trace((AAT)Y/?))2,

The fact that >, A; < (32; vV Ai)? comes from developing the square on the
right side. Equality holds if and only if D has at most one nonzero entry,
so AAT has at most one nonzero eigenvalue, so A has at most one nonzero
singular value.



3. Let
MR — My(R)
A — AT

(a) What are the eigenvalues of f? (10 pts)

(b) Is f diagonalizable? If yes, give a basis of eigenvectors. If no, give as many
linearly independent eigenvectors as possible. (10 pts)

Solution

It is clear that f2 = I, therefore p(z) = (z — 1)(z + 1) is such that p(f) = 0. This
implies that the eigenvalues of f are part of the set {1, —1}. Also p(f) = 0 implies
that f is diagonalizable since p only has single roots.

Now it is clear that any symmetric matric is eigenvector associated with eigenvalue
1, and that an eigenvector associated with eigenvalue 1 is a symmetric matrix. If we
call the subspace of symmetric matrices, S, and Fq the eigenspace of f associated
with eigenvalue 1, we have S, = Ej.

It is also clear that any antisymmetric matric is eigenvector associated with eigen-
value -1, and that an eigenvector associated with eigenvalue -1 is an antisymmet-
ric matrix. If we call the subspace of antisymmetric matrices, A,, and F_; the
eigenspace of f associated with eigenvalue —1, we have A,, = E_1.

‘We know that

Therefore we can diagonalize f by taking a basis of S,, and a basis of A,, to form
a basis of M,,.



4. Define the n x n matrix

[ a4+b b b ... b b
a a+b b b b
A, = c'z a a+b . b b
a a a .oa+b b
| a a a a a—l—b_

(a) Compute D,, = det (Ay). (10 pts)
(b) Give the value of D,, for n =10, a = 2, and b = —1. (10 pts)

Solution

We perform (in this order) L, < L, — Ly,—1, then L,y < L,—1 — Ly,_9, ... and
finally Ly <~ Lo — Ly. (These transformations do not change the value of the
determinant.) We get

a+b b b ... b b
-b a O 0 0
D, = 0 b a 0 0
0 0o . a O
0 0 O -b a

b a 0 0 a+b b b b

0 =b a . 0 —b a0 0
Dy=(=1)"" + - . . - |+a] 0 b a . 0

0 0 a

0 0 0 —b U —b a

And so, we get
D, =b"+aD, 1.

We have
Di=a+b.

(Note: We could get D; from D; = b+ aDy if we define Dy to be 1.)



So we get
Dy =b*>+aDy = b> + ab+ d>.

Quick check:

a+b b

Dy = a a+b

‘:(a+b)2—ab:b2+ab+a2.

So we get
D3 = b+ aDy = b + ab® + a®b + a®

Pursuing in an identical manner, we get

n
D,=b"4+ab" '+ ... +a" b+a" = Zakb”_k.
k=0

We can simplify by noticing that

(a—b)("+ab" P +...+a"b+a") =a — L

So, if a # b, we have

an—i—l _ bn+1
D,=—————
a—>b
And, if a = b, we get
D, = (n+1)a™.

(And we check that the latter expression for a = b is the limit of the expression for
a # b when b goes to a.)

For n =10, a = —1, and b = 2, we get

(-t —@2)'" 2049

-2 ~ 3 = 683.




5. Suppose that u and v are vectors in a real inner product space V.

(a) Prove that
(u, v)
[lull{]ol]

(b) Prove or disprove the following identity:

[{u, 0)]
[l []v]

(lull + [lol) s < flu+ofl- (10 pts)

(lull + [l s | < |lu+of[. (10 pts)

Solution

(a) Casel: (u,v) < 0. The inequality follows trivially since a norm is nonnegative.
Thus, the leftside is no more than 0 while the right side is no less than 0.

Case 2: (u,v) > 0. Squaring the left side we have

2 (u, ) (u,v)

< (w, o)[ul[|v]]
[lulPllol]>

[ul [+ [0l + 2] full [|v]]) PIREE (1)

(Ifull + [lvl))?

< V) e v) +2{w,v) (2)

Huuuuvu Pl + 2w) @

= [Ju+ ol (4)

Both (1) and (3) are obtained by applying the Cauchy-Schwarz inequality to
(u,v), while (2) and (4) are obtained by simplifying.

(b) Let u=(1,0), v = (—1,0), and use a Euclidean inner product (dot product).
Then the left side of the inequality becomes (1 4 1) =~ (1) @ = 1 while the right

side is 0. (Note: one can also use one-dimensional vector: u = (1), v = (—1).)



6. Let V be a vector space. Let f € L(V). Let p be a projection (so p € £(V') and is
such that p? = p). Prove that

Null(f o p) = Null(p) & (Null(f) N Range(p)). (20 pts)

Solution

Firstly, we would like to prove that

Null(p) @ (Null(f) N Range(p)) C Null(f o p).

Note: We recall that if A, B and C are subspaces, to prove that A+ B C C, we
just need to prove that A C C and B C C.

‘Null(p) C Null(fop)‘ Let € Null(p), then p(z) = 0, so (f op)(z) = 0, so
x € Null(f o p).

‘Null(f) N Range(p) C Null(f o p) ‘Let x € Null(f)NRange(p). Since x € Range(p),
there exists y such that x = p(y). Since x € Null(f), we have f(x) = 0. Now let
us look at (f o p)(z). (Note: we want to prove that (f o p)(z) = 0.) We have

(fop)(@) = (for)(p(y)) = f(0*(y)) = f(p(y)) = f(x) = 0, We have used the facts
that 1 — 2: 2 = p(y), 3 = 4: p> =p, 4 = 5: p(y) = 2,5 — 6: f(x) = 0. This
proves that x € Null(f o p).

We proved that

(Null(p) + (Null(f) N Range(p))) € Null(f o p).

Secondly, we would like to prove that

Null(f o p) C Null(p) & (Null(f) N Range(p)) .

Let x € Null(f o p), we can write x as
z = (z—p(z)) + p(z),

where

(a) ‘(x —px)) € Null(p).‘ Indeed, p(x — p(x)) = p(x) — p*(z), but p = p? so
p(z —p(x)) =0, so (z —p(z)) € Null(p).
(b) ‘p(x) € Null(f) N Range(p). ‘It is a fact that p(z) € Range(p). Moreover, since

x € Null(fop), we have that (fop)(x) = 0, which proves that p(z) € Null(f).
So p(x) € Null(f) N Range(p).




Therefore we have that

Null(f o p) C Null(p) + (Null(f) N Range(p)) .

At this point, we proved that

Null(f o p) = Null(p) + (Null(f) N Range(p)) .

It remains to prove that the sum is direct. Let 2 € Null(p) N (Null(f) N Range(p)),
then z € Range(p), so there exits u € V such that z = p(u), but z € Null(p),
so p(z) = 0, so p?(u) = 0, but p?> = p, so p(u) = 0, so x = 0. We proved that
Null(p) N (Null(f) N Range(p)) = {0} so the sum in the previous paragraph is
direct.

We are done and we can conclude that

Null(f o p) = Null(p) & (Null(f) N Range(p)) .



(a) Let n € N\{0,1} (son > 2) and A € M, (C) such that rank(A) = 1. Prove
that A is diagonalizable if and only if trace(A) # 0. (10 pts)

(b) Let aq,...a, € C\{0}, (so the a;’s are nonzero complex numbers,) and A such

that A = (Z—;) iier (This means that the entry (i,j) of A is Z—;) Show
<i,j<n

that A is diagonalizable. Give a basis of eigenvectors (with the associated
eigenvalues) for A. (10 pts)

Solution

(a) First we note that rank(4) = 1 < dim(Null(4)) = n — 1 (by the rank theo-
rem). So, if rank(A) = 1 and n > 2, then dim(Null(A)) > 1 and so 0 is an
eigenvalue of A. We call vy the geometric multiplicity of the eigenvalue 0, and
o the algebraic multiplicity of the eigenvalue 0. We call Ej the eigenspace
associated with the eigenvalue 0. Now, since dim(Null(A)) = n — 1, we have
that dim(Fy) = n — 1, or in other words, the geometric multiplicity of the
eigenvalue 0, vg, is n — 1. We know that, for a given eigenvalue, the algebraic
multiplicity is always greater than or equal to the geometric multiplicity. For
the eigenvalue 0, this reads: vy < pg. For a rank—1 matrix, there are therefore
only two cases: either g =pg=n—1,orvg=n—1, yop =n.

case vy = pg = n — 1|In this case, since pg = n—1, there has to exist another

eigenvalue A different from zero. (Because the sum of the algebraic multiplic-
ities of the eigenvalues has to sum to n.) For that eigenvalue A, the geometric
multiplicity, vy, is at least 1, but can be no more than 1 (because vy =n — 1
and the sum of the algebraic multiplicities of two distinct eigenvalues has to
be less than n). So vy = 1. So we have vy = 1 and 1y = n — 1, so A is
diagonalizable. We also note that, in this case, trace(A) = A, (the trace is the
sum of the eigenvalues counted with their multiplicities,) and so, in this case,
trace(A) # 0.

‘ case g = n — 1, up = n | In this case, since pg = n, A only has the eigenvalue
0. We also have that A is not diagonaliable and that trace(A) = 0.

Starting from a rank—1 matrix, we found two possibilities. Either vy = pg =
n— 1, in which case, A is diagonaliable and trace(A) #0. Or vy =n—1,ug =
n, in which case, A is not diagonaliable and trace(A) = 0.

This enables us to conclude that for a rank—1 matrix

A is diagonalizable < trace(A) # 0.



(b) We observe that the matrix is of rank 1. Indeed

ai
az

Gp—1
an

We also have trace(A) = n. So by the previous question, we see that A is
diagonalizable (since trace(A) # 0. We also see that A has eigenvalue 0 with
geometric multiplicity n — 1 and eigenvalue n with geometric multiplicity 1.

To find n — 1 linearly independent eigenvectors associated with
eigenvalue 0, we want to find a basis for the null space of A, which is same as

null space of
i 1 1 1
ar a2 77 a4n-1 an :

We have (for example) that x; is a leading variable, and that zo, x3 ,..., =,
are free variables. This gives for a general solution:

_Gl G,  _ _a& __a _a _a a1
a2 T ag T3 T T g -1 T az as an—1
To 1 0 0
xs3 0 1 0
= X9 . +x3 . +.. o FTh1
Tn—1 0 0 1
Tn, 0 0
So a basis for Ej is for example
—aq —a —aq —a1
as 0 0 0
0 as 0 0
U1 = ) U2 = . ) Un—2 = . ) Un—-1 =
0 0 Gn—1 0
0 0 0 an
We see that an eigenvector for eigenvalue n is for example
ay
a2
Up =
Gp—1
Qn

Answer: The above given (vq, ...

A.

,Up) is a basis of C™ made of eigenvectors of



