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Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!
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1. Assume the following general definition for a real positive semidefinite matrix: an
n×n real matrix A is said to be positive semidefinite if and only if, for all vector x
in R

n, xTAx ≥ 0. In particular, this definition allows real matrices which are not

symmetric to be positive semidefinite.

(a) Prove that if A and B are real symmetric positive semidefinite matrices and
matrix A is nonsingular, then AB has only real nonnegative eigenvalues. (10
pts)

(b) Provide a counterexample showing that the requirement that the matrices are
symmetric cannot be dropped. (10 pts)



2. (a) Suppose A and B are real-valued symmetric n × n matrices. Show that
|trace (AB)| ≤

√

trace (A2)
√

trace (B2) . What are the conditions for equal-
ity to hold? (10 pts)

(b) Let A be a real m× n matrix. Show that

√

trace(AAT ) ≤ trace
(√

AAT

)

.

When does equality hold ? (10 pts)



3. Let
f : Mn(R) −→ Mn(R)

A 7−→ AT

(a) What are the eigenvalues of f? (10 pts)

(b) Is f diagonalizable? If yes, give a basis of eigenvectors. If no, give as many
linearly independent eigenvectors as possible. (10 pts)



4. Define the n× n matrix

An =
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(a) Compute Dn = det (An). (10 pts)

(b) Give the value of Dn for n = 10, a = 2, and b = −1. (10 pts)



5. Suppose that u and v are vectors in a real inner product space V .

(a) Prove that

(||u||+ ||v||) 〈u, v〉
||u|| ||v|| ≤ ||u+ v||. (10 pts)

(b) Prove or disprove the following identity:

(||u||+ ||v||) |〈u, v〉|
||u|| ||v|| ≤ ||u+ v||. (10 pts)



6. Let V be a vector space. Let f ∈ L(V ). Let p be a projection (so p ∈ L(V ) and is
such that p2 = p). Prove that

Null(f ◦ p) = Null(p)⊕ (Null(f) ∩ Range(p)) . (20 pts)



7. (a) Let n ∈ N\{0, 1} (so n ≥ 2) and A ∈ Mn(C) such that rank(A) = 1. Prove
that A is diagonalizable if and only if trace(A) 6= 0. (10 pts)

(b) Let a1, . . . an ∈ C\{0}, (so the ai’s are nonzero complex numbers,) and A such

that A =
(

ai
aj

)

1≤i,j≤n
. (This means that the entry (i, j) of A is ai

aj
.) Show

that A is diagonalizable. Give a basis of eigenvectors (with the associated
eigenvalues) for A. (10 pts)


