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• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.
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• Write legibly using a dark pencil or pen.
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Good luck!
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1. Let A be a full column rank n–by–k matrix (so k ≤ n) and b to be a column vector
of size n. We want to minimize the squared Euclidean norm L(x) := ||Ax − b||22
with respect to x.

(a) Prove that, if rank(A) = k, then ATA is invertible.

(b) Compute the gradient of L(x).

(c) Directly derive the normal equations by minimizing L(x), and then provide
the closed-form expression for x that minimizes L(x).

(d) We consider a QR factorization of A where Q is n-by-k and R is k-by-k. Show
that an equivalent solution for x is x = R−1QT b.

Solution

(a) Let x such that ATAx = 0, then xTATAx = 0 so that ‖Ax‖2 = 0 so that
Ax = 0. But, since A is full column rank, Null(A) = {0}, so that Ax = 0 ⇒
x = 0. We proved that ATAx = 0⇒ x = 0. Since ATA is square, this means
that ATA is invertible.

(b) The gradient of L(x) = (Ax − b)T (Ax − b) = xTATAx − 2xT bAT b + bT b is
∇L(x) = 2ATAx− 2AT b.

(c) Setting the gradient to zero, we get the normal equations ATAx = AT b,
by question (a), we know that ATA is invertible, the unique solution of the
normal equations is obtained as x = (ATA)−1AT b.

(d) The QR factorization of A has the property A = QR, with QTQ = I. (We
note that R is upper triangular but this does not matter here.) Starting from
the normal equations in (a), we have RTQTQRx = RTQT b, which simplifies
to RTRx = RTQT b since QTQ = I. We note that, since A has full column
rank, this means that R is invertible. (Proof. By contrapositive. Assume R is
not invertible, then there exists x nonzero such that Rx = 0, so that QRx = 0
so that Ax = 0 (with x nonzero) so dim(Null(A) > 0 so Rank(A) < k so A is
not full column rank.) Since R is invertible, (so is RT ,) from RTRx = RTQT b,
we get x = R−1QT b.



2. Let V be a real vector space.

(a) Give the definition of a real inner product 〈·, ·〉 over the vector space V . (That
is the set of properties from the definition of of a real inner product.)

We define ‖x‖ as ‖x‖ =
√
〈x, x〉.

(b) From these two definitions, state and prove the Cauchy-Schwarz inequality.

(c) Now, state and prove the triangular inequality.

(d) Now, prove that ‖x‖ is a norm.

Solution

(a) A real inner product on V is a funcion from V 2 to R with the following
properties:

i. for all x in V , 〈x, x〉 ≥ 0,

ii. 〈x, x〉 = 0 if and only if x = 0,

iii. for all x in V , for all y in V , 〈x, y〉 = 〈y, x〉,
iv. for all x in V , for all y in V , for all z in V , 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉,
v. for all α in R, for all x in V , for all y in V , 〈x, αy〉 = α〈x, y〉.

(b) We note that by property (i) above, for all x in V , 〈x, x〉 ≥ 0, and so ‖x‖ =√
〈x, x〉 is well defined for x in V .

The Cauchy-Schwarz inequality states that, for all u and all v, we have

|〈u, v〉| ≤ ‖u‖‖v‖.

Now we write that

0 ≤ 〈‖u‖v − ‖v‖u, ‖u‖v − ‖v‖u〉
= ‖u‖2〈v, v〉 − 2‖u‖‖v‖〈u, v〉+ ‖v‖2〈u, u〉
= 2‖u‖2‖v‖2 − 2‖u‖‖v‖〈u, v〉.

Rearranging yields

2‖u‖‖v‖〈u, v〉 ≤ 2‖u‖2‖v‖2

〈u, v〉 ≤ ‖u‖‖v‖.

We can apply the same reasonning to −u instead of u and we obtain the
Cauchy-Schwarz inequality.

(c) The triangle inequality states that, for all u and all v, we have

‖u+ v‖ ≤ ‖u‖+ ‖v‖.



Note that

‖u+ v‖2 = 〈u+ v, u+ v〉
= ‖u‖2 + 2〈u, v〉+ ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 by Cauchy-Schwarz inequality

= (‖u‖+ ‖v‖)2

and the inequality follows by taking the square root of both sides.

(d) A norm is a function from V to R with the following properties:

i. for all x in V , ( ‖x‖ = 0⇒ x = 0 ),

ii. for all x in V , for all α in R, ‖αx‖ = |α|‖x‖,
iii. for all x in V , for all y in V , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Property (2.d.i) comes from property (2.a.ii). Property (2.d.ii) comes from
property (2.a.iii) and property (2.a.v). Property (2.d.iii) is the triangular
inequality which we prove in (2.c).



3. Suppose A is a positive definite symmetric real n–by–n matrix and B is a real m–
by–nmatrix such thatBBT is positive definite. Prove that the matrixBT (BA−1BT )−1B
is symmetric positive definite.

Solution

Since A is positive definite, A−1 is positive definite. For x ∈ Rm, BTx = 0 ∈ Rn

if and only if x = 0. (If BTx = 0 for x 6= 0, then BBTx = 0 which is impossible
by BBT being positive definite.) Hence, xTBA−1BTx = 0 if and only if x = 0,
so BA−1BT is positive definite. Therefore, (BA−1BT )−1 is positive definite which
implies, as before that BT (BA−1BT )−1B is positive definite.



4. Suppose A is a positive definite symmetric square real matrix and B is a symmetric
square real matrix. Show that there exists a square real matrix C such that CTAC
is the identity matrix and CTBC is a diagonal matrix.

Solution

Let C1 = A1/2. Then C−11 AC−11 is the identity matrix and C−11 BC−11 is symmetric.
We can write C−11 BC−11 = PDP T , where D is diagonal and P is orthogonal. Then
D = (P TC−11 )B(C−11 P ) and (P TC−11 )A(C−11 P ) = P T (C−11 AC−11 )P is the identity
matrix. Thus, one can take C = C−11 P .



5. Let Pn represent the real vector space of polynomials in x of degree less than or
equal to n defined on [0, 1]. Given a real number a, we define Qn(a) the subset of
Pn of polynomials that have the real number a as a root.

(a) Let a be a real number. Show that Qn(a) is a subspace of Pn. Determine the
dimension of that subspace and exhibit a basis.

(b) Let the inner product in Pn be defined by 〈p, q〉 =
∫ 1
0 p(x)q(x)dx. Determine

the orthogonal complement of the subspace Q2(1) of P2 .

Solution

(a) Polynomials in Qn(a) can be written as p(x) = (x − a)q(x) where q(x) is a
polynomial of degree less than or equal to n− 1. The definition of a subspace
is verified routinely. Since Qn(a) is isomorphic with Pn−1, its dimension is n,
{(x− a), (x− a)2, . . . , (x− a)n} is a basis.

(b) We can write a polynomial in P2 as a0 + a1(x − 1) + a2(x − 1)2. We need a
polynomial orthogonal to x− 1 and (x− 1)2 , so∫ 1

0
(a0 + a1(x− 1) + a2(x− 1)2)(x− 1)dx = 0,

∫ 1

0
(a0 + a1(x− 1) + a2(x− 1)2)(x− 1)2dx = 0,

which yields

−a0
2

+
a1
3
− a2

4
= 0,

a0
3
− a1

4
+
a2
5

= 0,

so  a0
a1
a2

 = a2

 3/10
6/5
1


Thus, Q2(a)⊥ = {3a2 + 12a2(x− 1) + 10a2(x− 1)2, a2 ∈ R}.



6. Let F be a commutative field, let (V,+, .) be a vector space over F, let A and B
be two subspaces of V , let A′ be a subspace such that A′⊕ (A∩B) = A and let B′

be a subspace such that B′⊕ (A∩B) = B. Show that A+B = (A∩B)⊕A′⊕B′.
Solution

One can write

A+B = (A′ + (A ∩B)) + (B′ + (A ∩B)) = A′ +B′ + (A ∩B).

So the real question is not about the sum but about the direct sum of (A∩B), A′,
and B′.

Let x ∈ (A ∩B), a′ ∈ A′, b′ ∈ B′ such that

x+ a′ + b′ = 0.

Then, on the one hand, b′ ∈ B′ but B′ ⊂ B, so b′ ∈ B, on the other hand,
b′ = −x−a′, but x ∈ A (since x ∈ (A∩B)), and a′ ∈ A (since a′ ∈ A′ and A′ ⊂ A),
so b′ ∈ A. We see that b′ ∈ (A∩B)). However, we also have that b′ ∈ B′. Therefore
b′ ∈ (A∩B)∩B′. But (A∩B) and B′ are in direct sum so (A∩B)∩B′ = {0}, so
b′ = 0.

Now we have
x+ a′ = 0.

x ∈ (A∩B), a′ ∈ A′, but, since (A∩B) and A′ are in direct sum, x = 0 and a′ = 0.

We prove that x = 0, a′ = 0, and b′ = 0. Therefore (A ∩ B), A′, and B′ are in
direct sum and

A+B = (A ∩B)⊕A′ ⊕B′.



7. Let F be a commutative field, let (V,+, .) be a vector space over F, let n be a
natural number, let (e1, . . . , en) be a linear independent list in V , let λ1, . . . , λn be
n scalars in F, let u =

∑n
i=1 λiei, and let, for all i = 1, . . . , n, vi = u + ei. Show

that (v1, . . . vn) is linearly dependent if and only
∑n

i=1 λi = −1.

Solution

First, let us that assume (v1, . . . vn) is linearly dependent, then there exists n scalars
α1, ..., αn, not all zeros such that,

n∑
i=1

αivi = 0.

Since, for all i = 1, . . . , n, vi = u+ ei, we have

n∑
i=1

αi(u+ ei) = 0.

We split the i sum in two sums:

(
n∑

i=1

αiu) + (
n∑

i=1

αiei) = 0.

Now, we use the fact that u =
∑n

j=1 λjej :

(
n∑

i=1

n∑
j=1

αiλjej) + (
n∑

i=1

αiei) = 0.

Now, we swap the i and the j sum on the left term and change the dummy index
i to a j in the right term:

(

n∑
j=1

n∑
i=1

αiλjej) + (

n∑
j=1

αjej) = 0.

We merge the two j sums and factor the ej term:

n∑
j=1

((

n∑
i=1

αi)λj + αj)ej = 0. (1)

The latter expression reads now as a zero linear combination of the ej . Since the
ej are linear independent, each of the coefficients in the linear combination has to
be 0, this writes:

(
n∑

i=1

αi)λj + αj = 0, for j = 1, . . . , n



We can take the sum for j = 1 to n of these n expressions and we get:

n∑
j=1

[(
n∑

i=1

αi)λj + αj ] = 0.

We break the sum in two:

n∑
j=1

[(
n∑

i=1

αi)λj ] +
n∑

j=1

αj = 0.

We factor the
∑n

i=1 αi on the left term:

(
n∑

i=1

αi)(
n∑

j=1

λj) +
n∑

j=1

αj = 0.

We get

(
n∑

i=1

αi)

1 +
n∑

j=1

λj

 = 0. (2)

Now we come back to Equation (1), it read

n∑
j=1

((
n∑

i=1

αi)λj + αj)ej = 0.

We see that, if
∑n

i=1 αi = 0, then
∑n

j=1 αjej = 0, which would imply that the ej
are linearly dependent. Therefore, since the ej are linearly independent, we have
that

∑n
i=1 αi 6= 0. Now we see that

∑n
i=1 αi 6= 0 and Equation (2) implies

n∑
j=1

λj = −1.

This proves that, if (v1, . . . vn) is linearly dependent, then
∑n

j=1 λj = −1.

Now, let us assume that
∑n

j=1 λj = −1. We want to prove that (v1, . . . vn) is linearly
dependent. That is, we want to find αi, i = 1, . . . , n, not all zeros, such that

n∑
i=1

αivi = 0.

We will prove that a correct choice for the αi is αi = λi. First note that the λi are



not all zeros since
∑n

i=1 λi = −1. Second:

n∑
i=1

λivi =
n∑

i=1

λi(u+ ei),

=
n∑

i=1

(λiu) +
n∑

i=1

(λiei),

=

n∑
i=1

(λi(

n∑
j=1

λjej)) +

n∑
i=1

(λiei),

=
n∑

i=1

n∑
j=1

(λiλjej) +
n∑

i=1

(λiei),

=
n∑

j=1

n∑
i=1

(λiλjej) +

n∑
i=1

(λiei),

=
n∑

j=1

(
(

n∑
i=1

λi)λjej

)
+

n∑
i=1

(λiei),

= (

n∑
i=1

λi)

n∑
j=1

(λjej) +

n∑
i=1

(λiei),

= (−1)

n∑
j=1

(λjej) +

n∑
i=1

(λiei),

= 0.

This proves that (v1, . . . vn) is linearly dependent.



8. What is the rank of 
1 a 1 b
a 1 b 1
1 b 1 a
b 1 a 1

?

The rank is a function of a and b. You need to give the values of the rank for all
values of (a, b) ∈ R2.

Solution

We perform some Gaussian elimination steps.

First, L2 ← L2 − aL1, L3 ← L3 − L1, L4 ← L4 − bL1 gives
1 a 1 b
0 1− a2 b− a 1− ab
0 b− a 0 a− b
0 1− ab a− b 1− b2


We assume a 6= b so that we can simplify the third row with L3 ← L3/(b−a), after
this we swap second and third row L2 ↔ L3. This gives:

1 a 1 b
0 1 0 −1
0 1− a2 b− a 1− ab
0 1− ab a− b 1− b2


Now, L3 ← L3 − (1− a2)L1, L4 ← L4 − (1− ab)L1, gives

1 a 1 b
0 1 0 −1
0 0 b− a 2− a2 − ab
0 0 a− b 2− b2 − ab


Finally L4 ← L4 + L3, gives

1 a 1 b
0 1 0 −1
0 0 b− a 2− a2 − ab
0 0 0 4− (a+ b)2


So we see that (1) if a 6= b and a + b 6= ±2, then the rank is 4. (2) if a 6= b, and
a+ b = ±2, then the rank is 3.

Now let us see to the case when a = b. In this case, the matrix is:
1 a 1 a
a 1 a 1
1 a 1 a
a 1 a 1

 .



It is clear that if a = 1 then the rank is 1, if a 6= 1, the rank is 2.

Let us repeat:

(a) If a = b = 1, then the rank is 1,

(b) If a = b and a 6= 1, then the rank is 2,

(c) If a 6= b and a+ b = ±2, then the rank is 3,

(d) If a 6= b and a+ b 6= ±2, then the rank is 4.


