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Name:

Exam Rules:

e This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

e Each problem is worth 20 points.

e Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

e Begin each solution on a new page and use additional paper, if necessary.
e Write only on one side of paper.
e Write legibly using a dark pencil or pen.

e Ask the proctor if you have any questions.

| Good luck! |
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1. Let A be a full column rank n—by—k matrix (so k < n) and b to be a column vector
of size n. We want to minimize the squared Euclidean norm L(z) := ||Az — b]|3
with respect to x.

(a)
(b)
()

(d)

Prove that, if rank(A) = k, then AT A is invertible.
Compute the gradient of L(z).

Directly derive the normal equations by minimizing L(x), and then provide
the closed-form expression for z that minimizes L(z).

We consider a QR factorization of A where @) is n-by-k and R is k-by-k. Show
that an equivalent solution for = is = R~1Q”b.

Solution

(a)

Let  such that AT Az = 0, then 27 AT Az = 0 so that ||Az||> = 0 so that
Az = 0. But, since A is full column rank, Null(A) = {0}, so that Az =0 =
x = 0. We proved that AT Az =0 = z = 0. Since AT A is square, this means
that AT A is invertible.

The gradient of L(z) = (Ax — b)T(Az — b) = 2T AT Az — 22TpATH + bT0 is
VL(z) =2AT Az — 2ATb.
Setting the gradient to zero, we get the normal equations AT Az = ATb,

by question (a), we know that AT A is invertible, the unique solution of the
normal equations is obtained as z = (AT A)~1ATb.

The QR factorization of A has the property A = QR, with QTQ = I. (We
note that R is upper triangular but this does not matter here.) Starting from
the normal equations in (a), we have RTQTQRxz = RTQTb, which simplifies
to RTRx = RTQTb since QTQ = I. We note that, since A has full column
rank, this means that R is invertible. (Proof. By contrapositive. Assume R is
not invertible, then there exists x nonzero such that Rz = 0, so that QRx = 0
so that Az = 0 (with x nonzero) so dim(Null(4) > 0 so Rank(A4) < k so A is
not full column rank.) Since R is invertible, (so is RT,) from RT Rz = RTQ™b,
we get x = R™1Q7b.



2. Let V be a real vector space.

(a) Give the definition of a real inner product (-, -) over the vector space V. (That
is the set of properties from the definition of of a real inner product.)

We define ||z| as ||z|| = v/(z, x).

(b) From these two definitions, state and prove the Cauchy-Schwarz inequality.
(¢) Now, state and prove the triangular inequality.

(d) Now, prove that ||z| is a norm.

Solution

(a) A real inner product on V is a funcion from V2 to R with the following
properties:

i. forall x in V, (z,z) >0,
ii. (x,z) =0if and only if x = 0,
iii. forall zin V|, for all y in V, (x,y) = (y, ),
iv. for all z in V| for all y in V, for all z in V, (x,y + 2) = (z,y) + (x, 2),
v. for all @ in R, for all z in V, for all y in V, (z, ay) = a(z,y).

(b) We note that by property (i) above, for all z in V, (z,x) > 0, and so ||z| =
(x,z) is well defined for z in V.

The Cauchy-Schwarz inequality states that, for all u© and all v, we have
[(w, 0)| < [fullf|o]-
Now we write that

0 < (llullv = lvllu, lullo — [|vf|w)
= [lull*(v, v) = 2llullllv]| {w, v) + oIl (u, u)
= 2flul®lfvl* = 2[[ull|v]|(u, v).

Rearranging yields

2ull o]l (u, v) < 2[|ul?[lo]|?
(u, v) < ulllo]].

We can apply the same reasonning to —u instead of u and we obtain the
Cauchy-Schwarz inequality.

(c) The triangle inequality states that, for all u and all v, we have

[ 4ol < flull + [|vfl-



Note that

Hu+vH2 =(u+v,u+v)
= [Jull?® + 2(u, v) + ||v]|”
< HuH2 + 2||ul|||v|| + H’U”2 by Cauchy-Schwarz inequality
= (lJull + [Jv[)?

and the inequality follows by taking the square root of both sides.
(d) A norm is a function from V to R with the following properties:
i forallzinV, (||z]|=0=2=0),
ii. for all z in V, for all a in R, [laz|| = |a]||z],
iii. forall zin V, for all y in V, ||z + y|| < |lz|| + [Jy]|.

Property (2.d.i) comes from property (2.a.ii). Property (2.d.ii) comes from
property (2.a.iii) and property (2.a.v). Property (2.d.iii) is the triangular
inequality which we prove in (2.c).



3. Suppose A is a positive definite symmetric real n—by—n matrix and B is a real m—
by-n matrix such that BBT is positive definite. Prove that the matrix BT (BA~'BT)~'B
is symmetric positive definite.

Solution

Since A is positive definite, A~! is positive definite. For z € R™, BTz =0 € R"
if and only if z = 0. (If B2 = 0 for 2 # 0, then BBTz = 0 which is impossible
by BB” being positive definite.) Hence, 27 BA~'BT2 = 0 if and only if = = 0,
so BA7!BT is positive definite. Therefore, (BA~'BT)~! is positive definite which
implies, as before that BT (BA~'BT)~!B is positive definite.



4. Suppose A is a positive definite symmetric square real matrix and B is a symmetric
square real matrix. Show that there exists a square real matrix C such that CT AC
is the identity matrix and C7 BC is a diagonal matrix.

Solution

Let C; = AY2. Then Cl_lACl_1 is the identity matrix and C’l_lBCl_1 is symmetric.
We can write C 1BC’; Y'— PDP”, where D is diagonal and P is orthogonal. Then
D = (PTCYHB(CMP) and (PTCTYA(CTTP) = PT(CTPACTY) P is the identity
matrix. Thus, one can take C' = CflP.



5. Let P, represent the real vector space of polynomials in x of degree less than or
equal to n defined on [0, 1]. Given a real number a, we define @),,(a) the subset of
P, of polynomials that have the real number a as a root.

(a) Let a be a real number. Show that Q,(a) is a subspace of P,,. Determine the

dimension of that subspace and exhibit a basis.

(b) Let the inner product in P,, be defined by (p, ¢) = fol p(z)q(x)dx. Determine

the orthogonal complement of the subspace Q2(1) of P .

Solution

(a)

Polynomials in @,,(a) can be written as p(x) = (z — a)q(x) where ¢(z) is a
polynomial of degree less than or equal to n — 1. The definition of a subspace
is verified routinely. Since @, (a) is isomorphic with P,,_1, its dimension is n,
{(x —a),(x —a)?,...,(z —a)"} is a basis.

We can write a polynomial in Py as ag + ay(x — 1) + az(z — 1)2. We need a
polynomial orthogonal to x — 1 and (z — 1)? | so

1
/0 (a0 +a1(z — 1) + as(w — 1)2)(z — 1)da = 0,

/Ol(ao Far(@— 1) + as(w — 12)(z — 1)2dz = 0,

which yields

B
aq al a9
v _ 2 =0
3 4 ) ’

SO

ao 3/10
al = a2 6/5
a9 1

Thus, Qa2(a)t = {3ag + 12az(x — 1) + 10az(z — 1)2, az € R}.



6. Let F be a commutative field, let (V,+,.) be a vector space over F, let A and B
be two subspaces of V, let A’ be a subspace such that A’@® (AN B) = A and let B’
be a subspace such that B’ @ (AN B) = B. Show that A+ B=(ANB)® A’ @ B'.

Solution

One can write
A+B=(A+(AnB))+ (B +(AnB))=A"+ B+ (AN B).
So the real question is not about the sum but about the direct sum of (AN B), A',

and B’.
Let x € (AN B), a € A", ¥ € B’ such that

x+d +b =0.

Then, on the one hand, ¥ € B’ but B’ C B, so ' € B, on the other hand,
bV =—x—d,but x € A (since x € (ANDB)), and a’ € A (since a’ € A" and A’ C A),
sob' € A. We see that b’ € (ANB)). However, we also have that b € B’. Therefore
Ve (ANB)NB'. But (AN B) and B’ are in direct sum so (AN B)N B’ = {0}, so
b =0.
Now we have

r+ad =0.

x € (ANB), d’ € A, but, since (ANB) and A’ are in direct sum, z = 0 and ¢’ = 0.

We prove that z = 0, @’ = 0, and ¥ = 0. Therefore (AN B), A’, and B’ are in
direct sum and
A+B=(AnB)p A @ B.



7. Let F be a commutative field, let (V,+,.) be a vector space over F, let n be a
natural number, let (ep,...,e,) be a linear independent list in V, let A1,..., A\, be
n scalars in F, let w = > " | \ie;, and let, for all i = 1,...,n, v; = u + ¢;. Show
that (v1,...vy) is linearly dependent if and only > | \; = —1.

Solution

First, let us that assume (vy, . ..v,) is linearly dependent, then there exists n scalars
Qaq, ..., Qp, not all zeros such that,

n
g a;v; = 0.
=1

Since, for alli =1,...,n, v; = u + ¢;, we have
n
Zai(u+ei) =0.
i=1

We split the ¢ sum in two sums:

(Z a;u) + (Z a;e;) = 0.
i=1 i=1

Now, we use the fact that u = >77_; Aje;:

(Z ZO‘MJE]’) + (Z aje;) = 0.
i=1

i=1 j=1

Now, we swap the ¢ and the j sum on the left term and change the dummy index
7 to a j in the right term:

O3 ey + (X agey) =o.
j=1

j=1i=1
We merge the two j sums and factor the e; term:

n

D (O i +aje; =0. (1)

j=1 =1

The latter expression reads now as a zero linear combination of the e;. Since the
e;j are linear independent, each of the coefficients in the linear combination has to

be 0, this writes:
n

(Zai)/\j—i-aj =0,forj=1,...,n
i=1



We can take the sum for j = 1 to n of these n expressions and we get:
n n
SO A +aj] =0.
j=1 =1

We break the sum in two:

n

DI an]+) aj=0.
j=1

j=1 i=1

We factor the Y " ; a; on the left term:

Qa3 M)+ aj=0.
i=1 j=1 j=1
We get
(Z Ozl') 1 + Z )\j =0. (2)
i=1 j=1

Now we come back to Equation (1), it read

n

Z((Z a;)Aj + aj)e; = 0.

j=1 i=1

We see that, if > ;L) a; = 0, then 3 7, aje; = 0, which would imply that the e;
are linearly dependent. Therefore, since the e; are linearly independent, we have
that Y | a; # 0. Now we see that >_"" | a; # 0 and Equation (2) implies

A= —1.
1

n

J

This proves that, if (vi,...v,) is linearly dependent, then Z?Zl Aj=-—1.

Now, let us assume that 3 7_; A; = —1. We want to prove that (vi, ... vy) is linearly
dependent. That is, we want to find «;, i = 1,...,n, not all zeros, such that

n
E o;0; = 0.
i=1

We will prove that a correct choice for the «; is a; = A;. First note that the \; are



not all zeros since ) ",

A; = —1. Second:

En: Aiv; = Zn: Ai(u + e;),
i=1 i—1

This proves that (vq, ...

lel

= ZZM%JFZA@
7j=11i=1

- i(ixlxej>+§:m1,
j=1 \ i=1 i=1

= Z)\ ZA6J+ZAQ
= j=1 =

[l
—
|
AN
N—
.
i M:
)

(Ajej) + Y (hied),

=1

vy,) is linearly dependent.



8. What is the rank of

St = Q-
SN = Q
—_ o =

— Q = o

1 a

The rank is a function of a and b. You need to give the values of the rank for all
values of (a,b) € R2.

Solution
We perform some Gaussian elimination steps.
Fil“St, Lo+ Lo — aLl, L3 — L3 — Ll, Ly+ Ly— bLl gives

1 a 1 b

0 1—a® b—a 1—ab
0 b—a 0 a—>
0 1—ab a—0b 1—0b

We assume a # b so that we can simplify the third row with L3 < L3/(b—a), after
this we swap second and third row L9 <> L3. This gives:

1 a 1 b
0 1 0 —1
0 1—a®> b—a 1—ab
0 1—ab a—b 1-0b°

Now, L3 + L3 — (1 —a?)Ly, Ly + Ly — (1 — ab) Ly, gives

a 1 b
1 0 —1

0 b—a 2—a’—ab
0 a—b 2—0b>—ab

o O o

Finally Ly < L4 + L3, gives

a 1 b
1 0 -1

0 b—a 2—a®>—ab
0 0 4—(a+b)?

o O O =

So we see that (1) if a # b and a + b # £2, then the rank is 4. (2) if a # b, and
a + b= +2, then the rank is 3.

Now let us see to the case when a = b. In this case, the matrix is:

1
a
1
a

e = Q
— Qe =2

a
1
a
1



It is clear that if a = 1 then the rank is 1, if a # 1, the rank is 2.

Let us repeat:

(a) If a = b =1, then the rank is 1,

(b) If a = b and a # 1, then the rank is 2,

(c) If a # b and a + b = %2, then the rank is 3,
(d) If a # b and a + b # £2, then the rank is 4.



