University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam January 13, 2014

Name:

Exam Rules:

- This is a closed book exam. Once the exam begins, you have 4 hours to do your best. Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your <u>six best solutions</u>.
- Each problem is worth 20 points.
- Justify your solutions: **cite theorems that you use**, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write only on one side of paper.
- Write legibly using a dark pencil or pen.
- Ask the proctor if you have any questions.

	Goo	od luck!	
1. 2. 3. 4.		5. 6. 7. 8.	
		Total	

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:

Joshua French, Julien Langou (Chair), Anatolii Puhalskii.

- 1. Let A be a full column rank n-by-k matrix (so $k \le n$) and b to be a column vector of size n. We want to minimize the squared Euclidean norm $L(x) := ||Ax b||_2^2$ with respect to x.
 - (a) Prove that, if rank(A) = k, then $A^T A$ is invertible.
 - (b) Compute the gradient of L(x).
 - (c) Directly derive the normal equations by minimizing L(x), and then provide the closed-form expression for x that minimizes L(x).
 - (d) We consider a QR factorization of A where Q is n-by-k and R is k-by-k. Show that an equivalent solution for x is $x = R^{-1}Q^{T}b$.

Solution

- (a) Let x such that $A^T A x = 0$, then $x^T A^T A x = 0$ so that $||Ax||^2 = 0$ so that Ax = 0. But, since A is full column rank, Null $(A) = \{0\}$, so that $Ax = 0 \Rightarrow x = 0$. We proved that $A^T A x = 0 \Rightarrow x = 0$. Since $A^T A$ is square, this means that $A^T A$ is invertible.
- (b) The gradient of $L(x) = (Ax b)^T (Ax b) = x^T A^T Ax 2x^T b A^T b + b^T b$ is $\nabla L(x) = 2A^T Ax 2A^T b.$
- (c) Setting the gradient to zero, we get the normal equations $A^T A x = A^T b$, by question (a), we know that $A^T A$ is invertible, the unique solution of the normal equations is obtained as $x = (A^T A)^{-1} A^T b$.
- (d) The QR factorization of A has the property A = QR, with $Q^TQ = I$. (We note that R is upper triangular but this does not matter here.) Starting from the normal equations in (a), we have $R^TQ^TQRx = R^TQ^Tb$, which simplifies to $R^TRx = R^TQ^Tb$ since $Q^TQ = I$. We note that, since A has full column rank, this means that R is invertible. (Proof. By contrapositive. Assume R is not invertible, then there exists x nonzero such that Rx = 0, so that QRx = 0 so that Ax = 0 (with x nonzero) so dim(Null(A) > 0 so Rank(A) < k so A is not full column rank.) Since R is invertible, (so is R^T ,) from $R^TRx = R^TQ^Tb$, we get $x = R^{-1}Q^Tb$.

- 2. Let V be a real vector space.
 - (a) Give the definition of a real inner product $\langle \cdot, \cdot \rangle$ over the vector space V. (That is the set of properties from the definition of a real inner product.)

We define ||x|| as $||x|| = \sqrt{\langle x, x \rangle}$.

- (b) From these two definitions, state and prove the Cauchy-Schwarz inequality.
- (c) Now, state and prove the triangular inequality.
- (d) Now, prove that ||x|| is a norm.

Solution

- (a) A real inner product on V is a function from V^2 to $\mathbb R$ with the following properties:
 - i. for all x in V, $\langle x, x \rangle \ge 0$,
 - ii. $\langle x, x \rangle = 0$ if and only if x = 0,
 - iii. for all x in V, for all y in V, $\langle x, y \rangle = \langle y, x \rangle$,
 - iv. for all x in V, for all y in V, for all z in V, $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$,
 - v. for all α in \mathbb{R} , for all x in V, for all y in V, $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$.
- (b) We note that by property (i) above, for all x in V, $\langle x, x \rangle \ge 0$, and so $||x|| = \sqrt{\langle x, x \rangle}$ is well defined for x in V.

The Cauchy-Schwarz inequality states that, for all u and all v, we have

$$|\langle u, v \rangle| \le ||u|| ||v||.$$

Now we write that

$$0 \le \langle ||u||v - ||v||u, ||u||v - ||v||u \rangle$$

= $||u||^2 \langle v, v \rangle - 2||u|| ||v|| \langle u, v \rangle + ||v||^2 \langle u, u \rangle$
= $2||u||^2 ||v||^2 - 2||u|| ||v|| \langle u, v \rangle.$

Rearranging yields

$$2\|u\|\|v\|\langle u,v\rangle \le 2\|u\|^2\|v\|^2 \\ \langle u,v\rangle \le \|u\|\|v\|.$$

We can apply the same reasonning to -u instead of u and we obtain the Cauchy-Schwarz inequality.

(c) The triangle inequality states that, for all u and all v, we have

$$||u + v|| \le ||u|| + ||v||.$$

Note that

$$\begin{aligned} |u+v||^2 &= \langle u+v, u+v \rangle \\ &= \|u\|^2 + 2\langle u, v \rangle + \|v\|^2 \\ &\leq \|u\|^2 + 2\|u\|\|v\| + \|v\|^2 \text{ by Cauchy-Schwarz inequality} \\ &= (\|u\| + \|v\|)^2 \end{aligned}$$

and the inequality follows by taking the square root of both sides.

- (d) A norm is a function from V to \mathbb{R} with the following properties:
 - i. for all x in V, $(||x|| = 0 \Rightarrow x = 0)$,
 - ii. for all x in V, for all α in \mathbb{R} , $\|\alpha x\| = |\alpha| \|x\|$,
 - iii. for all x in V, for all y in V, $||x + y|| \le ||x|| + ||y||$.

Property (2.d.i) comes from property (2.a.ii). Property (2.d.ii) comes from property (2.a.iii) and property (2.a.v). Property (2.d.iii) is the triangular inequality which we prove in (2.c).

3. Suppose A is a positive definite symmetric real n-by-n matrix and B is a real m-by-n matrix such that BB^T is positive definite. Prove that the matrix $B^T(BA^{-1}B^T)^{-1}B$ is symmetric positive definite.

Solution

Since A is positive definite, A^{-1} is positive definite. For $x \in \mathbb{R}^m$, $B^T x = 0 \in \mathbb{R}^n$ if and only if x = 0. (If $B^T x = 0$ for $x \neq 0$, then $BB^T x = 0$ which is impossible by BB^T being positive definite.) Hence, $x^T B A^{-1} B^T x = 0$ if and only if x = 0, so $BA^{-1}B^T$ is positive definite. Therefore, $(BA^{-1}B^T)^{-1}$ is positive definite which implies, as before that $B^T (BA^{-1}B^T)^{-1} B$ is positive definite. 4. Suppose A is a positive definite symmetric square real matrix and B is a symmetric square real matrix. Show that there exists a square real matrix C such that $C^T A C$ is the identity matrix and $C^T B C$ is a diagonal matrix.

Solution

Let $C_1 = A^{1/2}$. Then $C_1^{-1}AC_1^{-1}$ is the identity matrix and $C_1^{-1}BC_1^{-1}$ is symmetric. We can write $C_1^{-1}BC_1^{-1} = PDP^T$, where D is diagonal and P is orthogonal. Then $D = (P^T C_1^{-1})B(C_1^{-1}P)$ and $(P^T C_1^{-1})A(C_1^{-1}P) = P^T(C_1^{-1}AC_1^{-1})P$ is the identity matrix. Thus, one can take $C = C_1^{-1}P$.

- 5. Let \mathcal{P}_n represent the real vector space of polynomials in x of degree less than or equal to n defined on [0, 1]. Given a real number a, we define $Q_n(a)$ the subset of \mathcal{P}_n of polynomials that have the real number a as a root.
 - (a) Let a be a real number. Show that $Q_n(a)$ is a subspace of \mathcal{P}_n . Determine the dimension of that subspace and exhibit a basis.
 - (b) Let the inner product in \mathcal{P}_n be defined by $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$. Determine the orthogonal complement of the subspace $Q_2(1)$ of \mathcal{P}_2 .

Solution

- (a) Polynomials in $Q_n(a)$ can be written as p(x) = (x a)q(x) where q(x) is a polynomial of degree less than or equal to n 1. The definition of a subspace is verified routinely. Since $Q_n(a)$ is isomorphic with \mathcal{P}_{n-1} , its dimension is n, $\{(x a), (x a)^2, \ldots, (x a)^n\}$ is a basis.
- (b) We can write a polynomial in \mathcal{P}_2 as $a_0 + a_1(x-1) + a_2(x-1)^2$. We need a polynomial orthogonal to x 1 and $(x 1)^2$, so

$$\int_0^1 (a_0 + a_1(x-1) + a_2(x-1)^2)(x-1)dx = 0,$$
$$\int_0^1 (a_0 + a_1(x-1) + a_2(x-1)^2)(x-1)^2dx = 0,$$

which yields

$$-\frac{a_0}{2} + \frac{a_1}{3} - \frac{a_2}{4} = 0,$$
$$\frac{a_0}{3} - \frac{a_1}{4} + \frac{a_2}{5} = 0,$$

 \mathbf{SO}

$$\left(\begin{array}{c}a_0\\a_1\\a_2\end{array}\right) = a_2 \left(\begin{array}{c}3/10\\6/5\\1\end{array}\right)$$

Thus, $Q_2(a)^{\perp} = \{3a_2 + 12a_2(x-1) + 10a_2(x-1)^2, a_2 \in \mathbb{R}\}.$

6. Let \mathbb{F} be a commutative field, let (V, +, .) be a vector space over \mathbb{F} , let A and B be two subspaces of V, let A' be a subspace such that $A' \oplus (A \cap B) = A$ and let B' be a subspace such that $B' \oplus (A \cap B) = B$. Show that $A + B = (A \cap B) \oplus A' \oplus B'$.

Solution

One can write

$$A + B = (A' + (A \cap B)) + (B' + (A \cap B)) = A' + B' + (A \cap B).$$

So the real question is not about the sum but about the direct sum of $(A \cap B)$, A', and B'.

Let $x \in (A \cap B)$, $a' \in A'$, $b' \in B'$ such that

$$x + a' + b' = 0.$$

Then, on the one hand, $b' \in B'$ but $B' \subset B$, so $b' \in B$, on the other hand, b' = -x - a', but $x \in A$ (since $x \in (A \cap B)$), and $a' \in A$ (since $a' \in A'$ and $A' \subset A$), so $b' \in A$. We see that $b' \in (A \cap B)$). However, we also have that $b' \in B'$. Therefore $b' \in (A \cap B) \cap B'$. But $(A \cap B)$ and B' are in direct sum so $(A \cap B) \cap B' = \{0\}$, so b' = 0.

Now we have

$$x + a' = 0.$$

 $x \in (A \cap B), a' \in A'$, but, since $(A \cap B)$ and A' are in direct sum, x = 0 and a' = 0. We prove that x = 0, a' = 0, and b' = 0. Therefore $(A \cap B), A'$, and B' are in direct sum and

$$A + B = (A \cap B) \oplus A' \oplus B'.$$

7. Let \mathbb{F} be a commutative field, let (V, +, .) be a vector space over \mathbb{F} , let n be a natural number, let (e_1, \ldots, e_n) be a linear independent list in V, let $\lambda_1, \ldots, \lambda_n$ be n scalars in \mathbb{F} , let $u = \sum_{i=1}^n \lambda_i e_i$, and let, for all $i = 1, \ldots, n$, $v_i = u + e_i$. Show that (v_1, \ldots, v_n) is linearly dependent if and only $\sum_{i=1}^n \lambda_i = -1$.

Solution

First, let us that assume (v_1, \ldots, v_n) is linearly dependent, then there exists *n* scalars $\alpha_1, \ldots, \alpha_n$, not all zeros such that,

$$\sum_{i=1}^{n} \alpha_i v_i = 0.$$

Since, for all i = 1, ..., n, $v_i = u + e_i$, we have

$$\sum_{i=1}^{n} \alpha_i (u+e_i) = 0.$$

We split the i sum in two sums:

$$(\sum_{i=1}^{n} \alpha_i u) + (\sum_{i=1}^{n} \alpha_i e_i) = 0.$$

Now, we use the fact that $u = \sum_{j=1}^{n} \lambda_j e_j$:

$$\left(\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\lambda_{j}e_{j}\right)+\left(\sum_{i=1}^{n}\alpha_{i}e_{i}\right)=0.$$

Now, we swap the i and the j sum on the left term and change the dummy index i to a j in the right term:

$$(\sum_{j=1}^n \sum_{i=1}^n \alpha_i \lambda_j e_j) + (\sum_{j=1}^n \alpha_j e_j) = 0.$$

We merge the two j sums and factor the e_j term:

$$\sum_{j=1}^{n} \left(\left(\sum_{i=1}^{n} \alpha_i \right) \lambda_j + \alpha_j \right) e_j = 0.$$
(1)

The latter expression reads now as a zero linear combination of the e_j . Since the e_j are linear independent, each of the coefficients in the linear combination has to be 0, this writes:

$$(\sum_{i=1}^{n} \alpha_i)\lambda_j + \alpha_j = 0, \text{ for } j = 1, \dots, n$$

We can take the sum for j = 1 to n of these n expressions and we get:

$$\sum_{j=1}^{n} [(\sum_{i=1}^{n} \alpha_i)\lambda_j + \alpha_j] = 0.$$

We break the sum in two:

$$\sum_{j=1}^{n} \left[\left(\sum_{i=1}^{n} \alpha_i \right) \lambda_j \right] + \sum_{j=1}^{n} \alpha_j = 0$$

We factor the $\sum_{i=1}^{n} \alpha_i$ on the left term:

$$(\sum_{i=1}^{n} \alpha_i)(\sum_{j=1}^{n} \lambda_j) + \sum_{j=1}^{n} \alpha_j = 0$$

We get

$$\left(\sum_{i=1}^{n} \alpha_i\right) \left(1 + \sum_{j=1}^{n} \lambda_j\right) = 0.$$
(2)

Now we come back to Equation (1), it read

$$\sum_{j=1}^{n} ((\sum_{i=1}^{n} \alpha_i)\lambda_j + \alpha_j)e_j = 0$$

We see that, if $\sum_{i=1}^{n} \alpha_i = 0$, then $\sum_{j=1}^{n} \alpha_j e_j = 0$, which would imply that the e_j are linearly dependent. Therefore, since the e_j are linearly independent, we have that $\sum_{i=1}^{n} \alpha_i \neq 0$. Now we see that $\sum_{i=1}^{n} \alpha_i \neq 0$ and Equation (2) implies

$$\sum_{j=1}^{n} \lambda_j = -1$$

This proves that, if $(v_1, \ldots v_n)$ is linearly dependent, then $\sum_{j=1}^n \lambda_j = -1$. Now, let us assume that $\sum_{j=1}^n \lambda_j = -1$. We want to prove that $(v_1, \ldots v_n)$ is linearly dependent. That is, we want to find α_i , $i = 1, \ldots, n$, not all zeros, such that

$$\sum_{i=1}^{n} \alpha_i v_i = 0.$$

We will prove that a correct choice for the α_i is $\alpha_i = \lambda_i$. First note that the λ_i are

not all zeros since $\sum_{i=1}^{n} \lambda_i = -1$. Second:

$$\sum_{i=1}^{n} \lambda_i v_i = \sum_{i=1}^{n} \lambda_i (u+e_i),$$

$$= \sum_{i=1}^{n} (\lambda_i u) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= \sum_{i=1}^{n} (\lambda_i (\sum_{j=1}^{n} \lambda_j e_j)) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (\lambda_i \lambda_j e_j) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} (\lambda_i \lambda_j e_j) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= (\sum_{i=1}^{n} \lambda_i) \sum_{j=1}^{n} (\lambda_j e_j) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= (-1) \sum_{j=1}^{n} (\lambda_j e_j) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= 0.$$

This proves that $(v_1, \ldots v_n)$ is linearly dependent.

8. What is the rank of

The rank is a function of a and b. You need to give the values of the rank for all values of $(a, b) \in \mathbb{R}^2$.

Solution

We perform some Gaussian elimination steps.

First, $L_2 \leftarrow L_2 - aL_1$, $L_3 \leftarrow L_3 - L_1$, $L_4 \leftarrow L_4 - bL_1$ gives

$$\begin{pmatrix} 1 & a & 1 & b \\ 0 & 1-a^2 & b-a & 1-ab \\ 0 & b-a & 0 & a-b \\ 0 & 1-ab & a-b & 1-b^2 \end{pmatrix}$$

We assume $a \neq b$ so that we can simplify the third row with $L_3 \leftarrow L_3/(b-a)$, after this we swap second and third row $L_2 \leftrightarrow L_3$. This gives:

$$\begin{pmatrix} 1 & a & 1 & b \\ 0 & 1 & 0 & -1 \\ 0 & 1-a^2 & b-a & 1-ab \\ 0 & 1-ab & a-b & 1-b^2 \end{pmatrix}$$

Now, $L_3 \leftarrow L_3 - (1 - a^2)L_1$, $L_4 \leftarrow L_4 - (1 - ab)L_1$, gives

Finally $L_4 \leftarrow L_4 + L_3$, gives

$$\left(\begin{array}{cccccc} 1 & a & 1 & b \\ 0 & 1 & 0 & -1 \\ 0 & 0 & b-a & 2-a^2-ab \\ 0 & 0 & 0 & 4-(a+b)^2 \end{array}\right)$$

So we see that (1) if $a \neq b$ and $a + b \neq \pm 2$, then the rank is 4. (2) if $a \neq b$, and $a + b = \pm 2$, then the rank is 3.

Now let us see to the case when a = b. In this case, the matrix is:

$$\left(\begin{array}{rrrrr} 1 & a & 1 & a \\ a & 1 & a & 1 \\ 1 & a & 1 & a \\ a & 1 & a & 1 \end{array}\right)$$

It is clear that if a = 1 then the rank is 1, if $a \neq 1$, the rank is 2. Let us repeat:

- (a) If a = b = 1, then the rank is 1,
- (b) If a = b and $a \neq 1$, then the rank is 2,
- (c) If $a \neq b$ and $a + b = \pm 2$, then the rank is 3,
- (d) If $a \neq b$ and $a + b \neq \pm 2$, then the rank is 4.