University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam January 13, 2014

Name:

Exam Rules:

- This is a closed book exam. Once the exam begins, you have 4 hours to do your best. Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your <u>six best solutions</u>.
- Each problem is worth 20 points.
- Justify your solutions: **cite theorems that you use**, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write only on one side of paper.
- Write legibly using a dark pencil or pen.
- Ask the proctor if you have any questions.

	Goo	od luck!	
1 2 3 4		5. 6. 7. 8.	
		Total	

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:

Joshua French, Julien Langou (Chair), Anatolii Puhalskii.

- 1. Let A be a full column rank n-by-k matrix (so $k \le n$) and b to be a column vector of size n. We want to minimize the squared Euclidean norm $L(x) := ||Ax b||_2^2$ with respect to x.
 - (a) Prove that, if rank(A) = k, then $A^T A$ is invertible.
 - (b) Compute the gradient of L(x).
 - (c) Directly derive the normal equations by minimizing L(x), and then provide the closed-form expression for x that minimizes L(x).
 - (d) We consider a QR factorization of A where Q is n-by-k and R is k-by-k. Show that an equivalent solution for x is $x = R^{-1}Q^T b$.

- 2. Let V be a real vector space.
 - (a) Give the definition of a real inner product $\langle \cdot, \cdot \rangle$ over the vector space V. (That is the set of properties from the definition of a real inner product.)

We define ||x|| as $||x|| = \sqrt{\langle x, x \rangle}$.

- (b) From these two definitions, state and prove the Cauchy-Schwarz inequality.
- (c) Now, state and prove the triangular inequality.
- (d) Now, prove that ||x|| is a norm.

3. Suppose A is a positive definite symmetric real n-by-n matrix and B is a real m-by-n matrix such that BB^T is positive definite. Prove that the matrix $B^T(BA^{-1}B^T)^{-1}B$ is symmetric positive definite.

4. Suppose A is a positive definite symmetric square real matrix and B is a symmetric square real matrix. Show that there exists a square real matrix C such that $C^T A C$ is the identity matrix and $C^T B C$ is a diagonal matrix.

- 5. Let \mathcal{P}_n represent the real vector space of polynomials in x of degree less than or equal to n defined on [0, 1]. Given a real number a, we define $Q_n(a)$ the subset of \mathcal{P}_n of polynomials that have the real number a as a root.
 - (a) Let a be a real number. Show that $Q_n(a)$ is a subspace of \mathcal{P}_n . Determine the dimension of that subspace and exhibit a basis.
 - (b) Let the inner product in \mathcal{P}_n be defined by $\langle p,q \rangle = \int_0^1 p(x)q(x)dx$. Determine the orthogonal complement of the subspace $Q_2(1)$ of \mathcal{P}_2 .

6. Let \mathbb{F} be a commutative field, let (V, +, .) be a vector space over \mathbb{F} , let A and B be two subspaces of V, let A' be a subspace such that $A' \oplus (A \cap B) = A$ and let B' be a subspace such that $B' \oplus (A \cap B) = B$. Show that $A + B = (A \cap B) \oplus A' \oplus B'$.

7. Let \mathbb{F} be a commutative field, let (V, +, .) be a vector space over \mathbb{F} , let n be a natural number, let (e_1, \ldots, e_n) be a linear independent list in V, let $\lambda_1, \ldots, \lambda_n$ be n scalars in \mathbb{F} , let $u = \sum_{i=1}^n \lambda_i e_i$, and let, for all $i = 1, \ldots, n$, $v_i = u + e_i$. Show that (v_1, \ldots, v_n) is linearly dependent if and only $\sum_{i=1}^n \lambda_i = -1$.

8. What is the rank of

The rank is a function of a and b. You need to give the values of the rank for all values of $(a, b) \in \mathbb{R}^2$.