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Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!
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1. Let A be a full column rank n–by–k matrix (so k ≤ n) and b to be a column vector
of size n. We want to minimize the squared Euclidean norm L(x) := ||Ax − b||22
with respect to x.

(a) Prove that, if rank(A) = k, then ATA is invertible.

(b) Compute the gradient of L(x).

(c) Directly derive the normal equations by minimizing L(x), and then provide
the closed-form expression for x that minimizes L(x).

(d) We consider a QR factorization of A where Q is n-by-k and R is k-by-k. Show
that an equivalent solution for x is x = R−1QT b.



2. Let V be a real vector space.

(a) Give the definition of a real inner product 〈·, ·〉 over the vector space V . (That
is the set of properties from the definition of of a real inner product.)

We define ‖x‖ as ‖x‖ =
√
〈x, x〉.

(b) From these two definitions, state and prove the Cauchy-Schwarz inequality.

(c) Now, state and prove the triangular inequality.

(d) Now, prove that ‖x‖ is a norm.



3. Suppose A is a positive definite symmetric real n–by–n matrix and B is a real m–
by–nmatrix such thatBBT is positive definite. Prove that the matrixBT (BA−1BT )−1B
is symmetric positive definite.



4. Suppose A is a positive definite symmetric square real matrix and B is a symmetric
square real matrix. Show that there exists a square real matrix C such that CTAC
is the identity matrix and CTBC is a diagonal matrix.



5. Let Pn represent the real vector space of polynomials in x of degree less than or
equal to n defined on [0, 1]. Given a real number a, we define Qn(a) the subset of
Pn of polynomials that have the real number a as a root.

(a) Let a be a real number. Show that Qn(a) is a subspace of Pn. Determine the
dimension of that subspace and exhibit a basis.

(b) Let the inner product in Pn be defined by 〈p, q〉 =
∫ 1
0 p(x)q(x)dx. Determine

the orthogonal complement of the subspace Q2(1) of P2 .



6. Let F be a commutative field, let (V,+, .) be a vector space over F, let A and B
be two subspaces of V , let A′ be a subspace such that A′⊕ (A∩B) = A and let B′

be a subspace such that B′⊕ (A∩B) = B. Show that A+B = (A∩B)⊕A′⊕B′.



7. Let F be a commutative field, let (V,+, .) be a vector space over F, let n be a
natural number, let (e1, . . . , en) be a linear independent list in V , let λ1, . . . , λn be
n scalars in F, let u =

∑n
i=1 λiei, and let, for all i = 1, . . . , n, vi = u + ei. Show

that (v1, . . . vn) is linearly dependent if and only
∑n

i=1 λi = −1.



8. What is the rank of 
1 a 1 b
a 1 b 1
1 b 1 a
b 1 a 1

?

The rank is a function of a and b. You need to give the values of the rank for all
values of (a, b) ∈ R2.


