University of Colorado Denver
Department of Mathematical and Statistical Sciences
Applied Linear Algebra Ph.D. Preliminary Exam
June 14, 2013

Name:

Exam Rules:

e This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

e Each problem is worth 20 points.

e Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

e Begin each solution on a new page and use additional paper, if necessary.
e Write only on one side of paper.
e Write legibly using a dark pencil or pen.

e Ask the proctor if you have any questions.

| Good luck! |
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1. Find the least squares solution of Ax = b where

1 -2 3

-1 2 1

A= 0 3 and b= 4
2 5 2

Solution

The linear least squares solution z is given by x = (AT A)~1ATb.
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2. Let F be a field. Let P; denote the standard vector space of polynomials f(t)
with coefficients in the field F and having degree at most 1. Let S = {1,¢} be the
standard ordered basis of P;.

(a) Define T € L(P1) by
T:p(t)=a+bt = q(t) =5a —2b+ (4a — b)t.

Construct the matrix A = [T']s that represents T with respect to the basis S.
Is there an ordered basis B for P; such that [T]5 is diagonal? If so, give such
a basis and the corresponding matrix representation. If not, explain why not.

(b) Replace T of part (a) by S € L(P;) defined by
S:p(t)=a+bt—q(t)=—a+b—10t,
and repeat question (a).

Solution

(a) Since T'(1) = 5 + 4t, the first column of [T]s is Similarly, T'(t) =

5

4
o : -2 5 —2

—2 — t implies the second column is { 1) So A =1[T]s = A 1|
. . : . 1 1

A has eigenvalues 3 and 1 with corresponding eigenvectors 1 and L

respectively. Since T has 2 = dim (P;) distinct eigenvalues, T is diagonalizable

with diagonalization

Ao . |11 130
S AS—D,WlthS—[l 2],andD—[O 1].

Thus, the desired basis is B = {1 +¢,1 + 2t}, for which [T|p = D.
-1 1

0 -1
Jordan block that is not diagonal. Hence A is not diagonalizable. Therefore,
there is no basis for which the corresponding matrix representation is diagonal.

(b) A=[Ts=

. This matrix is in Jordan form and is an elementary



3. Let A be a real matrix. A generalized inverse of a matrix A is any matrix G such
that AGA = A. Prove each of the following:

(a) If A is invertible, the unique generalized inverse of A is A~
(b) If G is a generalized inverse of (X7 X), then

XGxTx =X.
(c¢) For any real symmetric matrix A, there exists a generalized inverse of A.

Solution

(a) AA7'A = TA = A, so A™! is a generalized inverse. If AATA = A, then
AAT = AATAA = AA™! =11, so At is the inverse of A.

(b) For arbitrary vector v, we can write v = u + w, where u € null X7 and
w = XA. Then

VI XGXTX = (wf +ATXTYXGXTX = NTXTXGXTX = NXTX =wl'X =0T X,
Since v is arbitrary, XGXTX = X.

(c) Since A is real symmetric, it is diagonalizable; so A = PAP”, where P is
orthogonal and A is diagonal real, with the eigenvalues A = (A1,...,\,) on
the diagonal. Let v = (71, ...,7,) where

[ % ifAF#O
TV 0 if N =0

Let T be the diagonal matrix with ~ along the diagonal. Let G = PTPT.
Since P is orthogonal, PT P = I. Thus,

AGA = PAPTpPrPTpPAPT
= PATAPT
= PAPT =4

Thus G is a generalized inverse of A.



4. Let A be a real symmetric n-by-n matrix which is not just a scalar multiple of the
identity matrix. Let f(z) = (z — 1)(z + 6)3 and suppose that f(A) = 0 and the
trace of A is 0.

(
(

a) Determine the minimal polynomial of A.

)
b) Determine the trace of A% as a function of n.
(c) Show that n is a multiple of 7.

)

(d) Determine the characteristic polynomial of A as a function of n.

Solution

Since A is real symmetric, its minimal polynomial has no repeated factors, and

since f(A) = 0 the minimal polynomial divides f(z). Since A is not a scalar times

the identity, the minimal polynomial of A has to be exactly p(x) = (z—1)(x+6) =
2

z* 4 5z — 6.

Since p(A) = 0, we have that A2 = —5A+61. So the trace of A? is —5(trace(A))+
6n = 6n.

As eigenvalues of A, suppose 1 has multiplicity u and —6 has multiplicity v. (Since
A is real symmetric, algebraic and geometric multiplicities are the same.)

On the one hand, we have u+v = n. (Le., for any matrix, the sum of the algebraic
multiplicities is always n or, since A is real symmetric, A is diagonalizable, and so
the sum of the geometric multiplicities is n.) On the other hand, we know that
trace(A) = 0 and we know that trace(A) is the sum of the eigenvalues counting
(algebraic — in the general case) multiplicities, therefore u — 6v = 0.

Solving u +v = n and u — 6v = 0, a system of two linear equations in the two

unknowns u and v, we find u = 67” and v = 7, both of which are positive integers.
So there is some positive integer k for which n = 7k, u = 6k, v = k. n is a multiple

of 7.

The characteristic polynomial is

ca(z) = (x — 1)¥(z + 6)7".

N3

ca(z) = (27 — 212° + 702" — 1052% + 8427 — 352 +6) 7.



5. Let U and W be subspaces of the finite-dimensional inner product space V.
(a) Prove that Ut N W+ = (U + W)L

(b) Prove that

dim(W) — dim(U N W) = dim(U~) — dim(U+ nW).

Solution
Let z € UXNW+. Then for any u € U and w € W, (z,u + w) = (z,u)+(z,w) = 0.
Thus, z € (U + W)L, soUtNnW+ c (U + W)+

For any y € (U+ W)+, and any v € U and w € W, we have u = u+0 € U+ W, so
(y,u) = 0. Similarly, (y,w) = 0. Thus, y € UtNW=. Thus, (U+W)+ c UtnW+.
It follows that (U + W)+ = UL N W, proving part (a).

Keep in mind that for finite-dimensional inner product spaces we know that dim(U+) =
dim(V) — dim(U). Then for the proof of (b) consider the following:

dim(UY) — dimU* N W) = (dim(V) - dim(U)) — dim ((U + W)L)

U) — (dim(V) — dim(U + W))
W) —dim(UNW) —dim(U)

—_—



6. Let B be an n-by-n Hermitian matrix. Then B has real eigenvalues which we
may order as Ay > Ao > --- > \,. For 0 # x € C", and using the usual 2-norm
|x|l = ||x]|2, define the Rayleigh Quotient pp(x) for B by

(Bx,x) x*Bx
pB(X) = = :
(x,x) x|

Prove the following;:

(i) If B is an n-by-n Hermitian with eigenvalues as above, prove that \; =
max{pp(x):x € C" and ||x|| = 1}.

(ii) Let A be any n x n complex matrix with largest singular value . If ||A]j2 =
max{||Ax|| : x € C" and ||x|| = 1}, show that

|All2 = o1

Solution
First note that if 0 # k € C and 0 # x € C", then pp(kx) = pp(x). If we put
O ={xeC":|x|| =1}, then

sup{pp(x): 0 # x € C"} = sup{pp(x) : x € O}.

Second, since B is hermitian, there is an orthonormal basis B = (v1,...,v,) of
eigenvectors so that Bv; = Ajv;, for j = 1,2,...,n. If we put v; in as the jth
column of the n x n matrix P, then P is unitary (P* = P~!) and P*BP = A =
diag(A1,...,An). Since y — Py = x maps O to O in a one-to-one and onto
manner, we have

sup{pp(x) : x € O} = sup{x"Bx:x € O}

=sup{(Py)*B(Py):y € O} = sup{y"Ay:y € O}

= sup{>_Nlyil*: (1, yn)" € O}
j=1

n n
< sup{h Dyl ) il =1 = A
j=1 j=1

So to prove part (i), we just need to find an x € O for which pp(x) = A;. Clearly
x = v will work (with y = P~'x = (1,0,...,0)T).

For part (ii), we note that B = A*A is hermitian, and we can adapt the notation
of part (i) and use the fact that the largest eigenvalue of A*A is \; = o7 to obtain
|All2 = max{||Ax| :x € C" and ||x|| =1}

= max{Vx*A*Ax :x € O}

— \/:% = 01.(By part (i))



7. Let T be a normal operator on a finite-dimensional complex inner product space
V.

(a) Prove that T is self-adjoint if and only if its eigenvalues are all real.

(b) Prove that T is positive (i.e., positive semidefinite) if and only if all its eigen-
values are nonnegative.

Solution

Since T' is normal, by the complex spectral theorem, there is an orthonormal basis
{e1,...,en} of V consisting of eigenvectors of T, with corresponding eigenvalues
ALy ... Ap. The matrix of 7" with respect to the basis {ej,...,e,} is the diagonal
matrix D = diag{A1,..., \n}.

(a) T is self-adjoint if and only if D = D* if and only if \; = A; (i.e., A; is real)
for all j.

(b) First suppose T is positive, so (T'v,v) > 0 for all v € V. Then, for each eigen-
pair (A\j,e;), (Tej,ej) = (Ajej,ej) = Aj(ej,e5) = Aj > 0. So all eigenvalues
are nonnegative.

Conversely, suppose all eigenvalues are nonnegative. For any v € V', we can
write v = vie; + - - - vpey,. Then

n

(Tv,v) = <Z T(Ujej)7v> =X (wej,v) =Y\ (vjej,vi¢5) > 0,
j=1 j=1

Jj=1

so T is positive.



8.

(a)

(b)

(Frobenius inequality) If A, B, and C are rectangular matrices such that the
product ABC' is defined, then

rank(AB) + rank(BC) < rank(B) + rank(ABC)

In particular, prove that

rank(AB) < min {rank(A),rank(B)} .

Solution

(a)

Let A be m-by-n, B be n-by-p, and C' be p-by-q.
We consider Alg,,.q(p), the restriction of A to the subspace Range(B). We
apply the rank theorem to A]Range(B) and get
Rank(B) = dim Null ((Algange(s) ) + Rk (Alganges) ) -
Note that
Range (A|Range(3)> = Range(AB).
Therefore

Rank(B) = dim Null ( Alg,y.(s) ) + Rank (AB). (1)

We now consider A|g,4e(pc)- the restriction of A to the subspace Range(BC).
We apply the rank theorem and follow the same process as above and get:

Rank(BC) = dim Null (A]Range( BC)) + Rank (ABC) . 2)

Note that
Range(BC') C Range(B),

therefore
dim Null ( Algange(sey ) < dim Null (Algpges ) - (3)

Combining Equations 1, 2, and 3 gives the Frobenius inequality.

Let A be m-by-n, B be n-by-p. We set C to be the zero p-by-p matrix. Then
the Frobenius inequality applied to the product ABC gives

rank(AB) < rank(B).

Now we set C' to be the zero m-by-m matrix. Then the Frobenius inequality
applied to the product CAB gives

rank(AB) < rank(A).

In summary,

rank(AB) < min {rank(A), rank(B)} .



