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• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.
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1. Find the least squares solution of Ax = b where

A =


1 −2
−1 2

0 3
2 5

 and b =


3
1
−4

2

 .

Solution

The linear least squares solution x is given by x = (ATA)−1AT b.

AT b =

(
1 −1 0 2
−2 2 3 5

)
3
1
−4

2

 =

(
6
−6

)

ATA =

(
1 −1 0 2
−2 2 3 5

)
1 −2
−1 2

0 3
2 5

 =

(
6 6
6 42

)
= 6

(
1 1
1 7

)

(ATA)−1 =
1

36

(
7 −1
−1 1

)
x = (ATA)−1(AT b) =

1

36

(
7 −1
−1 1

)(
6
−6

)
=

1

6

(
7 −1
−1 1

)(
1
−1

)
=

1

6

(
8
−2

)
=

(
4/3
−1/3

)
.



2. Let F be a field. Let P1 denote the standard vector space of polynomials f(t)
with coefficients in the field F and having degree at most 1. Let S = {1, t} be the
standard ordered basis of P1.

(a) Define T ∈ L(P1) by

T : p(t) = a+ bt 7→ q(t) = 5a− 2b+ (4a− b)t.

Construct the matrix A = [T ]S that represents T with respect to the basis S.
Is there an ordered basis B for P1 such that [T ]B is diagonal? If so, give such
a basis and the corresponding matrix representation. If not, explain why not.

(b) Replace T of part (a) by S ∈ L(P1) defined by

S : p(t) = a+ bt 7→ q(t) = −a+ b− bt,

and repeat question (a).

Solution

(a) Since T (1) = 5 + 4t, the first column of [T ]S is

(
5
4

)
. Similarly, T (t) =

−2 − t implies the second column is

(
−2
−1

)
. So A = [T ]S =

[
5 −2
4 −1

]
.

A has eigenvalues 3 and 1 with corresponding eigenvectors

[
1
1

]
and

[
1
2

]
,

respectively. Since T has 2 = dim (P1) distinct eigenvalues, T is diagonalizable
with diagonalization

S−1AS = D,with S =

[
1 1
1 2

]
, and D =

[
3 0
0 1

]
.

Thus, the desired basis is B = {1 + t, 1 + 2t}, for which [T ]B = D.

(b) A = [T ]S =

[
−1 1

0 −1

]
. This matrix is in Jordan form and is an elementary

Jordan block that is not diagonal. Hence A is not diagonalizable. Therefore,
there is no basis for which the corresponding matrix representation is diagonal.



3. Let A be a real matrix. A generalized inverse of a matrix A is any matrix G such
that AGA = A. Prove each of the following:

(a) If A is invertible, the unique generalized inverse of A is A−1.

(b) If G is a generalized inverse of (XTX), then

XGXTX = X .

(c) For any real symmetric matrix A, there exists a generalized inverse of A.

Solution

(a) AA−1A = IA = A, so A−1 is a generalized inverse. If AA+A = A, then
AA+ = AA+AA−1 = AA−1 = I, so A+ is the inverse of A.

(b) For arbitrary vector v, we can write v = u + w, where u ∈ nullXT and
w = Xλ. Then

vTXGXTX = (uT+λTXT )XGXTX = λTXTXGXTX = λTXTX = wTX = vTX.

Since v is arbitrary, XGXTX = X.

(c) Since A is real symmetric, it is diagonalizable; so A = PΛP T , where P is
orthogonal and Λ is diagonal real, with the eigenvalues λ = (λ1, . . . , λn) on
the diagonal. Let γ = (γ1, . . . , γn) where

γi =

{ 1
λi

if λi 6= 0

0 if λi = 0.

Let Γ be the diagonal matrix with γ along the diagonal. Let G = PΓP T .
Since P is orthogonal, P TP = I. Thus,

AGA = PΛP TPΓP TPΛP T

= PΛΓΛP T

= PΛP T = A

Thus G is a generalized inverse of A.



4. Let A be a real symmetric n-by-n matrix which is not just a scalar multiple of the
identity matrix. Let f(x) = (x − 1)(x + 6)3 and suppose that f(A) = 0 and the
trace of A is 0.

(a) Determine the minimal polynomial of A.

(b) Determine the trace of A2 as a function of n.

(c) Show that n is a multiple of 7.

(d) Determine the characteristic polynomial of A as a function of n.

Solution

Since A is real symmetric, its minimal polynomial has no repeated factors, and
since f(A) = 0 the minimal polynomial divides f(x). Since A is not a scalar times
the identity, the minimal polynomial of A has to be exactly p(x) = (x−1)(x+6) =
x2 + 5x− 6.

Since p(A) = 0, we have that A2 = −5A+6I. So the trace of A2 is −5(trace(A))+
6n = 6n.

As eigenvalues of A, suppose 1 has multiplicity u and −6 has multiplicity v. (Since
A is real symmetric, algebraic and geometric multiplicities are the same.)

On the one hand, we have u+v = n. (I.e., for any matrix, the sum of the algebraic
multiplicities is always n or, since A is real symmetric, A is diagonalizable, and so
the sum of the geometric multiplicities is n.) On the other hand, we know that
trace(A) = 0 and we know that trace(A) is the sum of the eigenvalues counting
(algebraic – in the general case) multiplicities, therefore u− 6v = 0.

Solving u + v = n and u − 6v = 0, a system of two linear equations in the two
unknowns u and v, we find u = 6n

7 and v = n
7 , both of which are positive integers.

So there is some positive integer k for which n = 7k, u = 6k, v = k. n is a multiple
of 7.

The characteristic polynomial is

cA(x) = (x− 1)
6
7
n(x+ 6)

1
7
n.

cA(x) =
(
x7 − 21x5 + 70x4 − 105x3 + 84x2 − 35x+ 6

)n
7 .



5. Let U and W be subspaces of the finite-dimensional inner product space V .

(a) Prove that U⊥ ∩W⊥ = (U +W )⊥.

(b) Prove that

dim(W )− dim(U ∩W ) = dim(U⊥)− dim(U⊥ ∩W⊥).

Solution

Let x ∈ U⊥∩W⊥. Then for any u ∈ U and w ∈W , 〈x, u+ w〉 = 〈x, u〉+〈x,w〉 = 0.
Thus, x ∈ (U +W )⊥, so U⊥ ∩W⊥ ⊂ (U +W )⊥.

For any y ∈ (U +W )⊥, and any u ∈ U and w ∈W , we have u = u+0 ∈ U +W , so
〈y, u〉 = 0. Similarly, 〈y, w〉 = 0. Thus, y ∈ U⊥∩W⊥. Thus, (U+W )⊥ ⊂ U⊥∩W⊥.
It follows that (U +W )⊥ = U⊥ ∩W⊥, proving part (a).

Keep in mind that for finite-dimensional inner product spaces we know that dim(U⊥) =
dim(V )− dim(U). Then for the proof of (b) consider the following:

dim(U⊥) − dim(U⊥ ∩W⊥) = (dim(V )− dim(U))− dim
(

(U +W )⊥
)

= dim(V )− dim(U)− (dim(V )− dim(U +W ))

= dim(U) + dim(W )− dim(U ∩W )− dim(U)

= dim(W )− dim(U ∩W ), as desired.



6. Let B be an n-by-n Hermitian matrix. Then B has real eigenvalues which we
may order as λ1 ≥ λ2 ≥ · · · ≥ λn. For 0 6= x ∈ Cn, and using the usual 2-norm
‖x‖ = ‖x‖2, define the Rayleigh Quotient ρB(x) for B by

ρB(x) =
〈Bx,x〉
〈x,x〉

=
x∗Bx

‖x‖2
.

Prove the following:

(i) If B is an n-by-n Hermitian with eigenvalues as above, prove that λ1 =
max{ρB(x) : x ∈ Cn and ‖x‖ = 1}.

(ii) Let A be any n× n complex matrix with largest singular value σ1. If ‖A‖2 =
max{‖Ax‖ : x ∈ Cn and ‖x‖ = 1}, show that

‖A‖2 = σ1.

Solution

First note that if 0 6= k ∈ C and 0 6= x ∈ Cn, then ρB(kx) = ρB(x). If we put
O = {x ∈ Cn : ‖x‖ = 1}, then

sup{ρB(x) : 0 6= x ∈ Cn} = sup{ρB(x) : x ∈ O}.

Second, since B is hermitian, there is an orthonormal basis B = (v1, . . . , vn) of
eigenvectors so that Bvj = λjvj , for j = 1, 2, . . . , n. If we put vj in as the jth
column of the n × n matrix P , then P is unitary (P ∗ = P−1) and P ∗BP = Λ =
diag(λ1, . . . , λn). Since y 7→ Py = x maps O to O in a one-to-one and onto
manner, we have

sup{ρB(x) : x ∈ O} = sup{x∗Bx : x ∈ O}
= sup{(Py)∗B(Py) : y ∈ O} = sup{y∗Λy : y ∈ O}

= sup{
n∑
j=1

λj |yj |2 : (y1, . . . , yn)T ∈ O}

≤ sup{λ1
n∑
j=1

|yj |2 :
n∑
j=1

|yj |2 = 1} = λ1.

So to prove part (i), we just need to find an x ∈ O for which ρB(x) = λ1. Clearly
x = v1 will work (with y = P−1x = (1, 0, . . . , 0)T ).

For part (ii), we note that B = A∗A is hermitian, and we can adapt the notation
of part (i) and use the fact that the largest eigenvalue of A∗A is λ1 = σ21 to obtain

‖A‖2 = max{‖Ax‖ : x ∈ Cn and ‖x‖ = 1}
= max{

√
x∗A∗Ax : x ∈ O}

=
√
σ21 = σ1.(By part (i))



7. Let T be a normal operator on a finite-dimensional complex inner product space
V .

(a) Prove that T is self-adjoint if and only if its eigenvalues are all real.

(b) Prove that T is positive (i.e., positive semidefinite) if and only if all its eigen-
values are nonnegative.

Solution

Since T is normal, by the complex spectral theorem, there is an orthonormal basis
{e1, . . . , en} of V consisting of eigenvectors of T , with corresponding eigenvalues
λ1, . . . λn. The matrix of T with respect to the basis {e1, . . . , en} is the diagonal
matrix D = diag{λ1, . . . , λn}.

(a) T is self-adjoint if and only if D = D∗ if and only if λj = λ̄j (i.e., λj is real)
for all j.

(b) First suppose T is positive, so 〈Tv, v〉 ≥ 0 for all v ∈ V . Then, for each eigen-
pair (λj , ej), 〈Tej , ej〉 = 〈λjej , ej〉 = λj 〈ej , ej〉 = λj ≥ 0. So all eigenvalues
are nonnegative.

Conversely, suppose all eigenvalues are nonnegative. For any v ∈ V , we can
write v = v1e1 + · · · vnen. Then

〈Tv, v〉 =

〈
n∑
j=1

T (vjej), v

〉
=

n∑
j=1

λj 〈vjej , v〉 =
n∑
j=1

λj 〈vjej , vjej〉 ≥ 0,

so T is positive.



8. (a) (Frobenius inequality) If A, B, and C are rectangular matrices such that the
product ABC is defined, then

rank(AB) + rank(BC) ≤ rank(B) + rank(ABC)

(b) In particular, prove that

rank(AB) ≤ min {rank(A), rank(B)} .

Solution

(a) Let A be m-by-n, B be n-by-p, and C be p-by-q.

We consider A|Range(B), the restriction of A to the subspace Range(B). We
apply the rank theorem to A|Range(B) and get

Rank(B) = dim Null
(
A|Range(B)

)
+ Rank

(
A|Range(B)

)
.

Note that
Range

(
A|Range(B)

)
= Range(AB).

Therefore

Rank(B) = dim Null
(
A|Range(B)

)
+ Rank (AB) . (1)

We now consider A|Range(BC), the restriction of A to the subspace Range(BC).
We apply the rank theorem and follow the same process as above and get:

Rank(BC) = dim Null
(
A|Range(BC)

)
+ Rank (ABC) . (2)

Note that
Range(BC) ⊂ Range(B),

therefore

dim Null
(
A|Range(BC)

)
≤ dim Null

(
A|Range(B)

)
. (3)

Combining Equations 1, 2, and 3 gives the Frobenius inequality.

(b) Let A be m-by-n, B be n-by-p. We set C to be the zero p-by-p matrix. Then
the Frobenius inequality applied to the product ABC gives

rank(AB) ≤ rank(B).

Now we set C to be the zero m-by-m matrix. Then the Frobenius inequality
applied to the product CAB gives

rank(AB) ≤ rank(A).

In summary,
rank(AB) ≤ min {rank(A), rank(B)} .


