University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam June 14, 2013

Name:

Exam Rules:

- This is a closed book exam. Once the exam begins, you have 4 hours to do your best. Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your <u>six best solutions</u>.
- Each problem is worth 20 points.
- Justify your solutions: **cite theorems that you use**, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write only on one side of paper.
- Write legibly using a dark pencil or pen.
- Ask the proctor if you have any questions.

	Good luck!	
1 2 3 4.	5. 6. 7. 8.	
	Total	

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:

Steve Billups, Julien Langou (Chair), Weldon Lodwick.

1. Find the least squares solution of Ax = b where

$$A = \begin{pmatrix} 1 & -2 \\ -1 & 2 \\ 0 & 3 \\ 2 & 5 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 3 \\ 1 \\ -4 \\ 2 \end{pmatrix}.$$

- 2. Let \mathbb{F} be a field. Let \mathcal{P}_1 denote the standard vector space of polynomials f(t) with coefficients in the field \mathbb{F} and having degree at most 1. Let $\mathcal{S} = \{1, t\}$ be the standard ordered basis of \mathcal{P}_1 .
 - (a) Define $T \in \mathcal{L}(\mathcal{P}_1)$ by

$$T: p(t) = a + bt \mapsto q(t) = 5a - 2b + (4a - b)t.$$

Construct the matrix $A = [T]_{\mathcal{S}}$ that represents T with respect to the basis \mathcal{S} . Is there an ordered basis \mathcal{B} for \mathcal{P}_1 such that $[T]_{\mathcal{B}}$ is diagonal? If so, give such a basis and the corresponding matrix representation. If not, explain why not.

(b) Replace T of part (a) by $S \in \mathcal{L}(\mathcal{P}_1)$ defined by

$$S: p(t) = a + bt \mapsto q(t) = -a + b - bt,$$

and repeat question (a).

- 3. Let A be a real matrix. A generalized inverse of a matrix A is any matrix G such that AGA = A. Prove each of the following:
 - (a) If A is invertible, the unique generalized inverse of A is A^{-1} .
 - (b) If G is a generalized inverse of $(X^T X)$, then

$$XGX^TX = X \ .$$

(c) For any real symmetric matrix A, there exists a generalized inverse of A.

- 4. Let A be a real symmetric n-by-n matrix which is not just a scalar multiple of the identity matrix. Let $f(x) = (x 1)(x + 6)^3$ and suppose that f(A) = 0 and the trace of A is 0.
 - (a) Determine the minimal polynomial of A.
 - (b) Determine the trace of A^2 as a function of n.
 - (c) Show that n is a multiple of 7.
 - (d) Determine the characteristic polynomial of A as a function of n.

- 5. Let U and W be subspaces of the finite-dimensional inner product space V.
 - (a) Prove that $U^{\perp} \cap W^{\perp} = (U+W)^{\perp}$.
 - (b) Prove that

$$\dim(W) - \dim(U \cap W) = \dim(U^{\perp}) - \dim(U^{\perp} \cap W^{\perp}).$$

6. Let *B* be an *n*-by-*n* Hermitian matrix. Then *B* has real eigenvalues which we may order as $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. For $\overline{0} \neq \mathbf{x} \in \mathbb{C}^n$, and using the usual 2-norm $\|\mathbf{x}\| = \|\mathbf{x}\|_2$, define the Rayleigh Quotient $\rho_B(\mathbf{x})$ for *B* by

$$\rho_B(\mathbf{x}) = \frac{\langle B\mathbf{x}, \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle} = \frac{\mathbf{x}^* B\mathbf{x}}{\|\mathbf{x}\|^2}.$$

Prove the following:

- (i) If B is an n-by-n Hermitian with eigenvalues as above, prove that $\lambda_1 = \max\{\rho_B(\mathbf{x}) : \mathbf{x} \in \mathbb{C}^n \text{ and } \|\mathbf{x}\| = 1\}.$
- (ii) Let A be any $n \times n$ complex matrix with largest singular value σ_1 . If $||A||_2 = \max\{||A\mathbf{x}|| : \mathbf{x} \in \mathbb{C}^n \text{ and } ||\mathbf{x}|| = 1\}$, show that

$$||A||_2 = \sigma_1.$$

- 7. Let T be a normal operator on a finite-dimensional complex inner product space V.
 - (a) Prove that T is self-adjoint if and only if its eigenvalues are all real.
 - (b) Prove that T is positive (i.e., positive semidefinite) if and only if all its eigenvalues are nonnegative.

8. (a) (Frobenius inequality) If A, B, and C are rectangular matrices such that the product ABC is defined, then

 $\operatorname{rank}(AB) + \operatorname{rank}(BC) \leq \operatorname{rank}(B) + \operatorname{rank}(ABC)$

(b) In particular, prove that

 $\operatorname{rank}(AB) \le \min\left\{\operatorname{rank}(A), \operatorname{rank}(B)\right\}.$