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Name:

Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!
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1. Find the least squares solution of Ax = b where

A =


1 −2
−1 2

0 3
2 5

 and b =


3
1
−4

2

 .



2. Let F be a field. Let P1 denote the standard vector space of polynomials f(t)
with coefficients in the field F and having degree at most 1. Let S = {1, t} be the
standard ordered basis of P1.

(a) Define T ∈ L(P1) by

T : p(t) = a+ bt 7→ q(t) = 5a− 2b+ (4a− b)t.

Construct the matrix A = [T ]S that represents T with respect to the basis S.
Is there an ordered basis B for P1 such that [T ]B is diagonal? If so, give such
a basis and the corresponding matrix representation. If not, explain why not.

(b) Replace T of part (a) by S ∈ L(P1) defined by

S : p(t) = a+ bt 7→ q(t) = −a+ b− bt,

and repeat question (a).



3. Let A be a real matrix. A generalized inverse of a matrix A is any matrix G such
that AGA = A. Prove each of the following:

(a) If A is invertible, the unique generalized inverse of A is A−1.

(b) If G is a generalized inverse of (XTX), then

XGXTX = X .

(c) For any real symmetric matrix A, there exists a generalized inverse of A.



4. Let A be a real symmetric n-by-n matrix which is not just a scalar multiple of the
identity matrix. Let f(x) = (x − 1)(x + 6)3 and suppose that f(A) = 0 and the
trace of A is 0.

(a) Determine the minimal polynomial of A.

(b) Determine the trace of A2 as a function of n.

(c) Show that n is a multiple of 7.

(d) Determine the characteristic polynomial of A as a function of n.



5. Let U and W be subspaces of the finite-dimensional inner product space V .

(a) Prove that U⊥ ∩W⊥ = (U +W )⊥.

(b) Prove that

dim(W )− dim(U ∩W ) = dim(U⊥)− dim(U⊥ ∩W⊥).



6. Let B be an n-by-n Hermitian matrix. Then B has real eigenvalues which we
may order as λ1 ≥ λ2 ≥ · · · ≥ λn. For 0 6= x ∈ Cn, and using the usual 2-norm
‖x‖ = ‖x‖2, define the Rayleigh Quotient ρB(x) for B by

ρB(x) =
〈Bx,x〉
〈x,x〉

=
x∗Bx

‖x‖2
.

Prove the following:

(i) If B is an n-by-n Hermitian with eigenvalues as above, prove that λ1 =
max{ρB(x) : x ∈ Cn and ‖x‖ = 1}.

(ii) Let A be any n× n complex matrix with largest singular value σ1. If ‖A‖2 =
max{‖Ax‖ : x ∈ Cn and ‖x‖ = 1}, show that

‖A‖2 = σ1.



7. Let T be a normal operator on a finite-dimensional complex inner product space
V .

(a) Prove that T is self-adjoint if and only if its eigenvalues are all real.

(b) Prove that T is positive (i.e., positive semidefinite) if and only if all its eigen-
values are nonnegative.



8. (a) (Frobenius inequality) If A, B, and C are rectangular matrices such that the
product ABC is defined, then

rank(AB) + rank(BC) ≤ rank(B) + rank(ABC)

(b) In particular, prove that

rank(AB) ≤ min {rank(A), rank(B)} .


