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1. Let A ∈Mn(C), and λ be an eigenvalue of A.

(a) Show that λr is eigenvalue of Ar.

(b) Provide an example showing that the geometric multiplicity of λr as eigenvalue
of Ar may be strictly higher than the geometric multiplicity of λ as eigenvalue
of A.

(c) Show that AT has the same eigenvalues as A.

(d) Show: If A is orthogonal, then 1
λ is also an eigenvalue of A.

Solution

(a) Let x be an eigenvector of A associated with the eigenvalue λ. (In other
words, we have Ax = λx with x 6= 0.)

Arx = Ar−1(Ax) = Ar−1(λx) = λAr−1x = ... = λrx

This shows that x is an eigenvector of Ar associated with the eigenvalue λr.
(Note that x 6= 0.) So λr is an eigenvalue of Ar.

(b) Consider

A =

(
0 1
0 0

)
.

The geometric multiplicity of the eigenvalue 0 is 1 for A, while the geometric
multiplicity of the eigenvalue 0 is 2 for A2.

(c) That A and AT have identical eigenvalues follows from the fact that the
determinant of a matrix is the determinant of its transpose. (In other words,
for any matrix A, det(A) = det(AT ).) The characteristic polynomial of A is

det(A− λI) = det
(
(A− λI)T

)
= det(AT − λI),

so A and AT have the same characteristic polynomial, so A and AT have
the same eigenvalues. Note: Clearly the algebraic multiplicities are the same.
One can prove that the geometric multiplicities are the same. However, in
general, A and AT do not have the same eigenvectors.

(d) A is orthogonal means that A is (square) real such that ATA = AAT = I.
First we prove that all eigenvalues of an orthogonal matrix have modulus one.
Let λ be an eigenvalue of A. Let x be an eigenvector of A associated with the
eigenvalue λ. We have Ax = λx. If we transpose-conjugate, we get xHAH =
λ̄xH . Multiplying these last two relations, we get: xHAHAx = λλ̄xHx Using
the fact that A is real, we get AH = AT , now AHA = ATA = I. So we get
xHx = λλ̄xHx, since xHx 6= 0, (since x 6= 0,) we have λλ̄ = 1. In other words,
|λ| = 1. We proved that all eigenvalues of an orthogonal matrix have modulus
1.



We note that, if a complex number have modulus 1, then the inverse and
complex conjugate of this number are the same (, since “λλ̄ = 1”).

Coming back to our problem, since A is real, if λ is an eigenvalue of A, then
λ̄ is also an eigenvalue of A, Since A is orthogonal, if λ is an eigenvalue of A,
then |λ| = 1, so λ̄ = 1

λ . We see that if A is orthogonal, if λ is an eigenvalue
of A, then 1

λ is also an eigenvalue of A.



2. Let P be the vector space of polynomials over R with degree at most 2 with inner
product

φ(s, t) :=

∫ 1

−1
s(x) · t(x) dx.

Let
F : P −→ P,

ax2 + bx+ c 7−→ 2ax+ b

be a linear map (the differential operator). Determine the matrices AF and AF∗

with respect to the basis

(a) B := {1, x, x2},
(b) B′ := {12x

2 − 1
2x, x

2 − 1, 12x
2 + 1

2x}.

Solution

(a-1)
We have F(1) = 0, F(x) = 1, and F(x2) = 2x, therefore we have

AF ,B =

 0 1 0
0 0 2
0 0 0


(a-2)
The Gram matrix associated with the basis B and the inner product φ is

GB =

 2 0 2
3

0 2
3 0

2
3 0 2

5

 .

The matrix of F∗, the adjoint of F in the basis B, AF∗,B, is given by the formula:

AF∗,B = G−1B ATF ,BGB.

This gives

AF∗,B =

 2 0 2
3

0 2
3 0

2
3 0 2

5

−1 0 1 0
0 0 2
0 0 0

T  2 0 2
3

0 2
3 0

2
3 0 2

5



AF∗,B =
3

8

 3 0 −5
0 4 0
−5 0 15

 0 0 0
1 0 0
0 2 0

 2 0 2
3

0 2
3 0

2
3 0 2

5

 ,

AF∗,B =

 0 −5
2 0

3 0 1
0 15

2 0

 .



(b-1)
Note: it is clear that B′ := {12x

2 − 1
2x, x

2 − 1, 12x
2 + 1

2x} is a basis of P.

The matrix of B′ in B, MB′,B, is

MB′,B =

 0 −1 0
−1

2 0 1
2

1
2 1 1

2

 .

The matrix of B in B′, MB,B′ , is the inverse of MB′,B and is

MB,B′ = M−1B,B′ =

 1 −1 1
−1 0 0

1 1 1

 .

Now the matrix of F in B′, AF ,B′ , is given by the formula

AF ,B′ = MB,B′ ∗AF ,B ∗MB′,B,

AF ,B′ =

 1 −1 1
−1 0 0

1 1 1

 0 1 0
0 0 2
0 0 0

 0 −1 0
−1

2 0 1
2

1
2 1 1

2

 .

Therefore

AF ,B′ =

 −3
2 −2 −1

2
1
2 0 −1

2
1
2 2 3

2

 .

(b-2)
The matrix of F∗, the adjoint of F in the basis B′, AF∗,B′ , is given by the formula:

AF∗,B′ = MB,B′ ∗AF∗,B ∗MB′,B

AF∗,B′ =

 1 −1 1
−1 0 0

1 1 1

 0 −5
2 0

3 0 1
0 15

2 0

 0 −1 0
−1

2 0 1
2

1
2 1 1

2

 .

Therefore

AF∗,B′ =

 −3 2 2
−5

4 0 5
4

−2 −2 3

 .



3. Let A be an n-by-n real symmetric positive semidefinite matrix. Let B be an
n-by-n real symmetric positive definite matrix.

(a) Prove that AB have real nonnegative eigenvalues. (Hint: First prove that AB
is similar to a symmetric matrix.)

(b) Prove that

det(A) det(B) ≤
(

trace(AB)

n

)n
Solution

(a) Since B is symmetric positive definite matrix, it has a Cholesky factorization
B = CCT , where C is lower triangular with positive elements on the diagonal.
(So C is an invertible matrix.) Now, we hvae

AB = (C−TCT )A(CCT ) = (CT )−1(CTAC)CT .

Therefore AB is similar to CTAC, therefore AB and CTAC have the same
eigenvalues.

Since A is symmetric, CTAC is symmetric as well, so CTAC has real eigen-
values. Moreover, since C is invertible and A is positive semidefinite, CTAC
is positive semidefinite as well. Therefore CTAC is real symmetric positive
semidefinite, so it has real nonnegative eigenvalues.

We conclude that AB has real nonnegative eigenvalues.

(b) Let λi, i = 1, . . . , n, be the n eigenvalues of AB. (Where we repeat eigenvalues
according to their algebraic multiplicities.) On the one hand, we note that

det(A) det(B) = det(AB) =

n∏
i=1

λi.

On the other hand,

trace(AB) =
n∑
i=1

λi.

In part (a), we proved that all eigenvalues λi, i = 1, . . . , n, of AB are real non-
negative, therefore we can apply the arithmetic-geometric-mean inequality.
The arithmetic-geometric-mean inequality states that the arithmetic mean of
a list of nonnegative real numbers is greater than or equal to the geometric
mean of the same list. In our context, this gives:(

n∏
i=1

λi

) 1
n

≤
∑n

i=1 λi
n

.



Using our previous remarks, we get

(det(A) det(B))
1
n ≤ trace(AB)

n
.

Note: Result in (a) is also true if matrix B is symmetric positive semidefinite
matrix. ( This can be proved by a continuity argument working on B + εI.)
In other words, a more general result for (a) is Given two n-by-n symmetric
positive semidefinite matrices, A and B, their product AB has real nonnega-
tive eigenvalues. So actually result (b) is true when A and B are two n-by-n
symmetric positive semidefinite matrices. In other words, we do not need B
to be definite.



4. Let A be a symmetric positive semidefinite matrix. Prove that

(a)
ρ(A) = sup

‖x‖2≤1
‖Ax‖2 = sup

‖x‖2≤1
xTAx,

(b)
‖A‖2 ≤ trace(A).

Solution

(a) • ρ(A) is the spectral radius of A and is by definition the largest eigenvalue
of A in modulus. Since A is symmetric positive semidefinite, all eigenvalues
of A are real nonnegative, and so there is no need for “moduli” or “absolute
values” and we can say in a meanningful manner that ρ(A) is the largest
eigenvalue of A.

• We call λ1 the largest eigenvalue of A (so that λ1 = ρ(A)) and consider v1
an eigenvector of A associated with λ1 such that ‖v1‖2 = 1. We then use the
spectral decomposition theorem to write:

A = V DV T ,

where V is an orthogonal matrix made of an orthogonal basis of eigenvectors
of A with v1 as its first column and D is a real nonnegative diagonal matrix
made of the respective eigenvalues of A with λ1 as entry (1,1).

• Let x be any vector such that ‖x‖2 ≤ 1, then

‖Ax‖22 = xTATAx = xT (V DV T )(V DV T )x = (V Tx)TD2(V Tx).

Let us call y = V Tx, we then get

‖Ax‖22 = yTD2y =
n∑
i=1

λ2i y
2
i .

Since λ1 ≥ λi for all i = 1 to n, we can bound with

‖Ax‖22 ≤ λ21
n∑
i=1

y2i = λ1‖y‖22.

Finally, since V is orthogonal matrix (so that V TV = V V T = I) and y = V Tx,
we have that ‖y‖2 = ‖x‖2 and so since ‖x‖2 ≤ 1 and we have that ‖y‖2 ≤ 1
and so

‖Ax‖2 ≤ λ1.

Since x was taken as any vector such that ‖x‖2 ≤ 1, we can conclude that

sup
‖x‖2≤1

‖Ax‖2 ≤ λ1.



Now, consider v1, since ‖Av1‖2 = λ1 and ‖v1‖ = 1, we can conclude that

sup
‖x‖2≤1

‖Ax‖2 ≥ λ1.

In fine
sup
‖x‖2≤1

‖Ax‖2 = λ1.

• Let x be any vector such that ‖x‖2 ≤ 1, then

xTAx = xTAx = xT (V DV T )x = (V Tx)TD(V Tx).

Let us call y = V Tx, we then get

xTAx = yTDy =

n∑
i=1

λiy
2
i .

Since λ1 ≥ λi for all i = 1 to n, we can bound with

xTAx ≤ λ1‖y‖22.

Finally, since V is orthogonal matrix (so that V TV = V V T = I) and y = V Tx,
we have that ‖y‖2 = ‖x‖2 and so since ‖x‖2 ≤ 1 and we have that ‖y‖2 ≤ 1
and so

xTAx ≤ λ1.

Since x was taken as any vector such that ‖x‖2 ≤ 1, we can conclude that

sup
‖x‖2≤1

xTAx ≤ λ1.

Now, consider v1, since vT1 Av1 = λ1 and ‖v1‖ = 1, we can conclude that

sup
‖x‖2≤1

xTAx ≥ λ1.

In fine
sup
‖x‖2≤1

xTAx = λ1.

(b) The trace of A, trace(A), is by definition the sum of the diagonal elements of
A but we know, by theorem, that this is also the sum of the eigenvalues of A:

trace(A) =

n∑
i=1

λi.

For a symmetric positive semi-definite matrix, we know that the 2-norm,
‖A‖2, is the largest eigenvalue in absolue value.

‖A‖2 = λ1.



This latter result is actually what part (a) is about. The definition of the
2-norm of a matrix is

‖A‖2 = sup
‖x‖2≤1

‖Ax‖2.

In part (a), we proved that, for a symmetric positive semidefinite matrix,

ρ(A) = sup
‖x‖2≤1

‖Ax‖2

so, in part (a), we proved that, for a symmetric positive semidefinite matrix,

ρ(A) = ‖A‖2.

Anyway, since all eigenvalues of A are nonnegative, (since A is symmetric
positive semi-definite matrix,) we have that

λ1 ≤
n∑
i=1

λi.

All this sums up to
‖A‖2 ≤ trace(A).



5. Let A be an n-by-m matrix and let (AAT )† be the pseudoinverse of AAT .

(a) Prove that the nullspace of A is orthogonal to the range of AT .

(b) Prove that the expression

x = AT (AAT )†Ax+ (x−AT (AAT )†Ax)

produces the orthogonal decomposition of x ∈ Rm into the sum of a vector
from the range of AT and a vector from the nullspace of A.

Solution

(a) Let x be in Null(A) and y be in Range(AT ), we want to prove that xT y = 0.
Since y be in Range(AT ), there exists z ∈ Rn such that y = AT z. Now:

xT y = xT (AT z) = (Ax)T z,

And, since x is in Null(A), we have that Ax = 0, and so

xT y = 0.

(b) Let us call

y = AT (AAT )†Ax and z = (x−AT (AAT )†Ax).

We want to prove that the decomposition

x = y + z

produces the orthogonal decomposition of x ∈ Rm into the sum of a vector
(y) from the range of AT and a vector (z) from the nullspace of A.
For this, there are four statements to prove/check.
(1) The fact that x = y + z is obvioulsy correct by construction.
(2) The fact that y is in the range of AT is clear by construction.
(3) We need to prove that z is in the nullspace of A.
(4) If we prove (3), then we can conclude by part (a), that y and z are or-
thogonal since, in part (a), we proved that the nullspace of A is orthogonal
to the range of AT .

So our question sums up into proving that the vector z = (x−AT (AAT )†Ax)
is in the nullspace of A. Then we are done.

Let us consider Az, we see that Az = (A − (AAT )(AAT )†A)x. This leads us
to consider the operator (A− (AAT )(AAT )†A).

We consider the full SVD decomposition of A: A = UΣV T where U is n-by-n
orthogonal, V is m-by-m orthogonal, and Σ is n-by-m diagonal with singular



values on the diagonal. We assume that Σ has r nonzero singular values on
the diagonal. Clearly, r is less than min(m,n) and there are min(m,n) − r
additional zero singular values on the diagonal. Here what Σ looks like:

Σ =


σ1

. . .

σr

0r,m−r

0n−r,r 0n−r,m−r

 .

In the algebra below, we use the following relations:
(R-1) V TV = Im and UTU = In, (this is the orthogonality of U and V ),
(R-2) (U(ΣΣT )UT )† = U(ΣΣT )†UT , this is the standard singular value based
formulation of the pseudo-inverse, (that is, for any n-by-m matrix A, we have
that if A = UΣV T singular value decomposition of A, then A† = V Σ†UT ,)

(R-3) (ΣΣT )(ΣΣT )† =

(
Ir 0r,n−r

0n−r,r 0n−r

)
. This comes from the fact that

(ΣΣT ) is a square n-by-n diagonal matrix which looks like

ΣΣT =


σ21

. . .

σ2r

0r,n−r

0n−r,r 0n−r,n−r

 ,

and so

(ΣΣT )† =


σ−21

. . .

σ−2r

0r,n−r

0n−r,r 0n−r,n−r

 ,

and so

(ΣΣT )(ΣΣT )† =


1

. . .

1

0r,n−r

0n−r,r 0n−r,n−r

 =

(
Ir 0r,n−r

0n−r,r 0n−r

)
.



Back with A− (AAT )(AAT )†A:

(A− (AAT )(AAT )†A) = (UΣV T )− (UΣV T )(UΣV T )T ((UΣV T )(UΣV T )T )†(UΣV T ),

= (UΣV T )− (UΣV T )(V ΣTUT )((UΣV T )(V ΣTUT ))†(UΣV T ),

= (UΣV T )− (U(ΣΣT )UT )((U(ΣΣT )UT ))†(UΣV T ),

= (UΣV T )− (U(ΣΣT )UT )(U(ΣΣT )†UT )(UΣV T ),

= (UΣV T )− (U(ΣΣT )(ΣΣT )†ΣV T ),

= (UΣV T )− (U(

(
Ir 0r,n−r

0n−r,r 0n−r

)
Σ)V T ),

= (UΣV T )− (UΣV T ),

= 0.

So we see that A− (AAT )(AAT )†A = 0. Therefore Az = 0 and so z is in the
nullspace of A.



6. Let

A =


1
2 0 1

2 0
0 0 1 0
1
3 0 2

3 0
0 0 0 1

 .

(a) Find all subspaces of R4 which are invariant under the action of A.

(b) Find the spectral radius of A.

Solution

(a)
• We first look for the eigenvalues of A.

det(A− λI) =

∣∣∣∣∣∣∣∣
1
2 − λ 0 1

2 0
0 −λ 1 0
1
3 0 2

3 − λ 0
0 0 0 1− λ

∣∣∣∣∣∣∣∣ =
1

6

∣∣∣∣∣∣∣∣
1− 2λ 0 1 0

0 −λ 1 0
1 0 2− 3λ 0
0 0 0 1− λ

∣∣∣∣∣∣∣∣
=

1

6
(1− λ)

∣∣∣∣∣∣
1− 2λ 0 1

0 −λ 1
1 0 2− 3λ

∣∣∣∣∣∣ =
1

6
(1− λ)(−λ)

∣∣∣∣ 1− 2λ 1
1 2− 3λ

∣∣∣∣
=

1

6
(1− λ)(−λ) ((1− 2λ)(2− 3λ)− 1) =

1

6
(1− λ)(−λ)(6λ2 − 7λ+ 1)

=
1

6
λ(6λ− 1)(λ− 1)2

The eigenvalues of A are 0, 1
6 and 1.

• Second, we look for eigenspaces of A.
λ1 = 0

A =


1
2 0 1

2 0
0 0 1 0
1
3 0 2

3 0
0 0 0 1

 


1 0 1 0
0 0 1 0
1 0 2 0
0 0 0 1

 
 1 0 0 0

0 0 1 0
0 0 0 1

 v1 =


0
1
0
0

 .

λ2 = 1
6

A−1

6
I =


1
3 0 1

2 0
0 −1

6 1 0
1
3 0 1

2 0
0 0 0 5

6

 


2 0 3 0
0 −1 6 0
2 0 3 0
0 0 0 1

 
 1 0 3

2 0
0 1 −6 0
0 0 0 1

 v2 =


−3
12
2
0

 .

λ3 = 1

A−I =


−1

2 0 1
2 0

0 −1 1 0
1
3 0 −1

3 0
0 0 0 0

 (
1 0 −1 0
0 1 −1 0

)
 v3 =


1
1
1
0

 and v4 =


0
0
0
1

 .



• We see that A is diagonalizable and it has two eigenvalues with multiplicty one
(λ1 = 0 and λ2 = 1

6) and one eigenvalues with multiplicty two (λ3 = 1). (Since
A is diagonalizable, the algebraic and geometric multiplicities are the same so we
just used the word “multiplicity” without specifying which one.)

• A good idea is to classify the invariant subspaces by dimension.

0. There is of course the invariant subspace of dimension 0 which is simply:

{0}.

It is invariant under the action of any 4-by-4 matrix.

1. The invariant subspaces of dimension 1 of A are:

E1 = span(v1),

E2 = span(v2), and

span(αv3 + βv4), for any “non two zeros” α and β.

(Here, αv3 + βv4 represents any eigenvector associated with the eigenvalue 1.)

2. The invariant subspaces of dimension 2 of A are:

span(v1)⊕ span(v2),

span(v1)⊕ span(αv3 + βv4), for any “non two zeros” α and β.

span(v2)⊕ span(αv3 + βv4), for any “non two zeros” α and β.

E3 = span({v3, v4})

3. The invariant subspaces of dimension 3 of A are:

span(v1)⊕ span(v2)⊕ span(αv3 + βv4), for any “non two zeros” α and β.

span(v1)⊕ span({v3, v4})
span(v2)⊕ span({v3, v4})

4. There is of course the invariant subspace of dimension 4 which is simply:

R4.

It is invariant under the action of any 4-by-4 matrix.

And that is that.

(b)
The spectral radius of A, ρ(A), and is by definition the largest eigenvalue of A in
modulus, therefore, for this particular matrix, we have

ρ(A) = 1.



7. Let

A =

 1 1 1
1 1 1
1 1 1

 .

Argue that
√
A is well defined and evaluate it.

Solution

•We note that A is symmetric. We also can see that A has eigenvalue λ1 = 0 with
geometric multiplicity 2. A (non-orthogonal) basis for the eigenspace associated
with the eigenvalue 0 is for example:

{w1 =

 1
0
−1

 , w2 =

 0
1
−1

}.
The second eigenvalue of A is λ2 = 3. An eigenvector associated with the eigenvalue
3 is for example:

w3 =

 1
1
1

 .

Since the eigenvalues of A are nonnegative, we see that A is symmetric positive
semi-definite.

• We know that a symmetric positive semi-definite matrix has a unique square
root. Therefore

√
A is well defined. This theorem needs to be known by students.

The proof is slightly on the hard side but should be known as well. The proof
was not asked in this question. For reference, the theorem is given, for example,
in Horn and Johnson’s “Matrix Analysis” p.405 Theorem 7.2.6, you can also find
it in Axler “Linear Algebra Done Right”, 2nd Edition, p. 146, Theorem 7.28. We
note that we (and Horn and Johnson) call “symmetric positive semi-definite” is
what Axler calls “positive”.

•We can obtain
√
A by “eye-balling” it and writing something along the following

lines. We see that  1 1 1
1 1 1
1 1 1

2

=

 3 3 3
3 3 3
3 3 3

 ,

so 
√

3/3
√

3/3
√

3/3√
3/3

√
3/3

√
3/3√

3/3
√

3/3
√

3/3

2

=

 1 1 1
1 1 1
1 1 1


and so

√
A =


√

3/3
√

3/3
√

3/3√
3/3

√
3/3

√
3/3√

3/3
√

3/3
√

3/3

 .



• For more complicated symmetric positive semi-definite matrices, it is not possible
(for the standard human being) to eye-ball the square root as we did. So it is
good to know a method. Since A is symmetric positive semi-definite, we can
diagonalize A in orthonormal basis V and we have A = V DV T , with D diagonal
with nonnegative entries on the diagonal and V orthogonal. The square root is
then given by A = V D1/2V T .



8. A, B, C subpsaces. Prove that

( (A ∩B = A+ C) .and. (B ∩ C = A+B) )⇒ (A = B = C) .

Solution

It is clear that, (for any subspaces A, B and C,) on the one hand, we have C ⊂ A+C
and, on the other hand, A∩B ⊂ A. Now, adding to our problem assumption that
A+ C = A ∩B, we get:

C ⊂ A+ C = A ∩B ⊂ A.

Therefore
C ⊂ A.

It is clear that, (for any subspaces A, B and C,) on the one hand, we have A ⊂ A+B
and, on the other hand, B ∩C ⊂ C. Now, adding to our problem assumption that
A+B = B ∩ C, we get:

A ⊂ A+B = B ∩ C ⊂ C.

Therefore
A ⊂ C.

So, C ⊂ A and A ⊂ C, so
A = C.

It is clear that, (for any subspacesA, B and C,) on the one hand, we haveB ⊂ A+B
and, on the other hand, B ∩C ⊂ C. Now, adding to our problem assumption that
A+B = B ∩ C, we get:

B ⊂ A+B = B ∩ C ⊂ C.

Therefore
B ⊂ C.

It is clear that, (for any subspaces A, B and C,) on the one hand, we have C ⊂ A+C
and, on the other hand, A∩B ⊂ B. Now, adding to our problem assumption that
A+ C = A ∩B, we get:

C ⊂ A+ C = A ∩B ⊂ B.

Therefore
A ⊂ C.

So, B ⊂ C and C ⊂ B, so
B = C.


