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• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!
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1. Find an orthogonal basis for the space P2 of quadratic polynomials with the inner
product 〈f, g〉 = f(−1)g(−1) + f(0)g(0) + f(1)g(1).

Solution

Two ways.

First way. Take a first nonzero quadratic polynomial, x(x+ 1), whose value is 0 in
-1 and 0, and nonzero in 1; a second polynomial, (x − 1)(x + 1), whose value is 0
in -1 and 1, and nonzero in 0; and a third polynomial, x(x − 1), whose value is 0
in 0 and 1, and nonzero in -1. Then it is easy to see that these three polynomials
are orthogonal with respect to the given scalar product. We just need to normalize
accordingly. We find:

√
2

2
x(x+ 1), (x− 1)(x+ 1),

√
2

2
x(x− 1).

Second way. We can use the Gram-Schmidt process on three linearly independent
vectors in P2, for example: 1, x, and x2.



2. A real n × n matrix A is an isometry if it preserves length: ‖Ax‖ = ‖x‖ for all
vectors x ∈ Rn. Show that the following are equivalent.

(a) A is an isometry (preserves length).

(b) 〈Ax,Ay〉 = 〈x, y〉 for all vectors x, y, so A preserves inner products.

(c) A−1 = A∗.

(d) The columns of A are unit vectors that are mutually orthogonal.

Solution

(b)⇒(a). Trivial since ‖x‖ is defined as
√
〈x, x〉. So if an application preserves

inner products, it preserves length.

(a)⇒(b). Assume that A preserves lengths. Let x and y ∈ Rn. We have
‖A(x+ y)‖2 = ‖(x+ y)‖2. Let us consider ‖A(x+ y)‖2 − ‖(x+ y)‖2. On the
one hand this quantity is zero. On the other hand we have: ‖A(x+ y)‖2 −
‖(x+ y)‖2 = 〈A(x + y), A(x + y)〉 − 〈x + y, x + y〉 = 〈Ax,Ax〉 + 〈Ax,Ay〉 +
〈Ay,Ax〉+ 〈Ay,Ay〉−〈x, x〉−〈x, y〉−〈y, x〉−〈y, y〉. We note that 〈Ax,Ay〉 =
〈Ay,Ax〉 (symmetry of the inner product) and that 〈Ay,Ay〉 = ‖Ay‖2 =
‖y‖2 = 〈y, y〉 ( A preserves lengths). All in all, we obtain that ‖A(x+ y)‖2 −
‖(x+ y)‖2 = 2〈Ax,Ay〉 − 2〈x, y〉. Setting this to zero implies: 〈Ax,Ay〉 =
〈x, y〉. Therefore A preserves inner products.

We proved that (a)⇔(b).

(c)⇒(b). Assume A−1 = A∗. Let x and y ∈ Rn. 〈Ax,Ay〉 = 〈A∗Ax, y〉 =
〈A−1Ax, y〉 = 〈x, y〉. So A preserves inner products.

(b)⇒(d). Assume A preserves inner products. Let aj be the jth column of A.
Then 〈ai, aj〉 = 〈Aei, Aej〉 = 〈ei, ej〉. This proves that the columns of A are
unit vectors that are mutually orthogonal.

(d)⇒(c). Assume that the columns of A are unit vectors that are mutually or-
thogonal. Let aj be the jth column of A. This means that 〈aj , aj〉 = 1 and
for i 6= j, 〈ai, aj〉 = 0. We know that A∗ = AH , we know that (AHA)ij =
aHi aj = 〈ai, aj〉, so A∗A = AHA = I. So A∗ = A−1.

We proved that (b)⇔(c)⇔(d).



3. Let p ≥ q. Let A be a real p × q matrix with rank q. Prove that the QR-
decomposition A = QR is unique if R is forced to have positive entries on its main
diagonal, Q is p× q and R is q × q.
Solution

Assume that A = Q1R1 and A = Q2R2 with R1, R2 upper triangular with positive
entries on the diagonal and QT

1Q1 = Iq and QT
2Q2 = Iq.

We first note that since A is full rank, R1 and R2 are invertible. We have Q1R1 =
Q2R2, multiplying by QT

1 and R−1
2 , this gives

R1R
−1
2 = QT

1Q2.

This means that QT
1Q2 is upper triangular. Now multiplying by QT

2 and R−1
1 , this

gives
R2R

−1
1 = QT

2Q1.

This means that QT
2Q1 is upper triangular. So QT

1Q2 is lower triangular. QT
1Q2 is

upper and lower triangular. So it is diagonal (and invertible).

Let us call D = QT
1Q2, (from R1R

−1
2 = QT

1Q2,) we see that R1 = DR2. From
Q1R1 = Q2R2, we see that Q1 = Q2D

−1. So now QT
1Q1 = I and QT

2Q2 = I give
D2 = I. D has therefore ±1 on the diagonal.

We come back to the relation R1 = DR2. Since the diagonal entry of R1 are
given by (R1)ii = Dii(R2)ii and that (R1)ii and (R2)ii are both positive, and that
Dii = ±1, we see that this implies: Dii = 1. Finally D = I and so:

Q1 = Q2 and R1 = R2.



4. Let A and B be n× n complex matrices such that AB = BA. Show that if A has
n distinct eigenvalues, then A, B, and AB are all diagonalizable.

Solution

Let λ1, . . . , λn be the n distinct eigenvalues of A with corresponding (nonzero)
eigenvectors v1, . . . , vn. We know that a list of eigenvectors belonging to distinct
eigenvalues must be a linearly independent list. Hence B = (v1, . . . , vn) is a basis
of Cn consisting of eigenvectors of A, so that A is similar to the diagonal matrix
diag(λ1, . . . , λn). Then ABvi = BAvi = B(λi)vi = λi(Bvi). So Bvi belongs to the
1-dimensional eigenspace of A associated with the eigenvalue λi. This means that
Bvi = µivi. Hence the basis B is also a basis of eigenvectors of B so that vi is
associated with the eigenvalue µi (which might be equal to 0). Then clearly AB is
similar to the matrix diag(µ1λ1, . . . , µnλn).



5. In this problem, R is the field of real numbers. Let (u1, u2, . . . , um) be an orthonor-
mal basis for subspace W 6= {0} of the vector space V = Rn×1 (under the standard
inner product), let U be the n×m matrix defined by U = [u1, u2, . . . , um], and let
P be the n× n matrix defined by A = UUT .

(a) Prove that if v is any given member of V , then among all the vectors w in
W , the one which minimizes ‖v − w‖ is given by w = 〈v, u1〉u1 + 〈v, u2〉u2 +
. . .+ 〈v, um〉um. (The vector w is called the projection of v onto W .)

(b) Prove: For any vector x ∈ Rn×1, the projection w of x onto W is given by
w = Px.

(c) Prove: P is a projection matrix. (Recall that a matrix P ∈ Rn×n is called a
projection matrix if and only if P is symmetric and idempotent.

(d) If V = R3×1, and W = span [(1, 2, 2)T , (1, 0, 1)T ], find the projection matrix
P described above and use it to find the projection of (2, 2, 2)T onto W .

Solution

(a) First it is clear that w ∈W . Note as well that v−w ⊥W since for all x ∈W ,

〈v − w, x〉 = 〈(v − 〈v, u1〉u1 − . . .− 〈v, um〉um) , x〉
= 〈v, x〉 − 〈v, u1〉〈u1, x〉 − . . .− 〈v, um〉〈um, x〉 = 0.

The last equality comes from the fact that since x ∈W , x = 〈xu1〉u1 + . . .+
〈x, um〉um.
Now consider x ∈W . We define

‖v − x‖2 = ‖(v − w) + (w − x)‖2

= ‖v − w‖2 + 2(v − w) • (w − x) + ‖w − x‖2

Since v−w ⊥W and w− x ∈W , we have that (v−w) • (w− x) = 0, so that

‖v − x‖2 = ‖v − w‖2 + ‖w − x‖2

We see that the minimum for ‖v−x‖ is ‖v−w‖2 and is realized when x = w.

(b)

w = 〈v, u1〉u1 + 〈v, u2〉u2 + . . .+ 〈v, um〉um
= u1(u

T
1 v) + u2(u

T
2 v) + . . .+ um(uTmv)

= (u1u
T
1 + u2u

T
2 + . . .+ umu

T
m)v

= UUT v = Pv.

(c) First, P T = (UUT )T = UUT = P , second, P 2 = (UUT )2 = U(UTU)UT =
UUT = P where we have used the fact that UTU = I.



(d) An orthogonal basis for W is for example

(u1, u2) =

 1/3
2/3
2/3

 ,

 2/3
−2/3

1/3

 .

We get

P = UUT =

 5/9 −2/9 4/9
−2/9 8/9 2/9

4/9 2/9 5/9

 .

Finally

w = Px =

 14/9
16/9
22/9

 .



6. Let V = R5 and let T ∈ L(V ) be defined by T (a, b, c, d, e) = (2a, 2b, 2c + d, a +
2d, b+ 2e).

(a) (8 points) Find the characteristic and minimal polynomial of T .

(b) (8 points) Determine a basis of R5 consisting of eigenvectors and generalized
eigenvectors of T .

(c) (4 points) Find the Jordan form of T with respect to your basis.

Solution

The matrix of T in the standard basis (e1, e2, e3, e4, e5) is
2 0 0 1 0
0 2 0 0 1
0 0 2 0 0
0 0 1 2 0
0 0 0 0 2

 .

We can reorder the basis in (e3, e4, e1, e5, e2), the matrix of T in this basis is:
2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

 .

This answers questions (b) and (c). To answer (a), we readily see that the charac-
teristic polynomial of T is (x− 2)5 and the minimal polynomial of T is (x− 2)3.



7. Suppose that W is finite dimensional and T ∈ L(V,W ). Prove that T is injective
if and only if there exists S ∈ L(W,V ) such that ST is the identity map on V .

Solution

First suppose that there exists S ∈ L(W,V ) such that ST is the identity map on V .
Let x and y in V such that Tx = Ty. Multiplying by S, this means STx = STy,
but ST is the identity so STx = x and STy = y, so we get x = y, which means T
is injective.

Now suppose that T is injective. Consider w1, . . . , wm a basis of Range(T ). (We
use the fact that W is finite dimensional.) Since w1, . . . , wm belongs to Range(T ),
there exists v1, . . . , vm in V such that w1 = Tv1, w2 = Tv2, ... Moreover since
T is injective, v1, . . . , vm are linearly independent. Finally since w1, . . . , wm span
Range(T ), we get that v1, . . . , vm span V . We conclude that v1, . . . , vm is a basis
of V . (So V is itself finite dimensional.)

Now we use the incomplete basis theorem to extend w1, . . . , wm with wm+1, . . . , wn

so as w1, . . . , wn is a basis of W . Now we define S : W → V (on the basis
w1, . . . , wn) such that

Sw1 = v1, Sw2 = v2, . . . , Swm = vm.

and
Swm+1 = Swm+2 = . . . = Swn = 0.

It is clear that S ∈ L(W,V ) and that ST is the identity map on V .



8. (a) Prove that a normal operator on a finite dimensional complex inner product
space with real eigenvalues is self-adjoint.

(b) Let V be a finite dimensional real inner product space and let T : V → V be
a self-adjoint operator. Is it true that T must have a cube root? Explain. (A
cube root of T is an operator S : V → V such that S3 = T .)

Solution

(a) Let V be a finite dimensional complex inner product space and T : V → V
be a normal operator with real eigenvalues. Let A be the matrix of T in an
orthonormal basis. Since T is normal, T is diagonalizable in an orthonormal
basis. Therefore there exists a unitary matrix U (UHU = I) such that A =
UDUH with D diagonal. We also know that the eigenvalues of T are real,
so D is a real matrix; in particular, this implies D = DH . In this case:
AH = (UDUH)H = U(DH)UH = UDUH = A.

(b) T has a cube root. The proof of existence is by construction. Let A be the
matrix of T in an orthonormal basis. Since T is a self-adjoint operator, then
T is diagonalizable in an orthonormal basis with real eigenvalues. Therefore
there exists a unitary matrix U (UHU = I) such that A = UDUH with D
real and diagonal. Define S = UD1/3UH , (the cube root of D is simply the
cube root of the diagonal entries,) then it is clear that S3 = T .


