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Name:

Exam Rules:

e This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

e Each problem is worth 20 points.

e Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

e Begin each solution on a new page and use additional paper, if necessary.
e Write only on one side of paper.
e Write legibly using a dark pencil or pen.

e Ask the proctor if you have any questions.

| Good luck! |
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1. Find an orthogonal basis for the space P» of quadratic polynomials with the inner
product (f,g) = f(=1)g(=1) + f(0)g(0) + f(1)g(1).
Solution

Two ways.

First way. Take a first nonzero quadratic polynomial, z(z + 1), whose value is 0 in
-1 and 0, and nonzero in 1; a second polynomial, (z — 1)(x + 1), whose value is 0
in -1 and 1, and nonzero in 0; and a third polynomial, z(z — 1), whose value is 0
in 0 and 1, and nonzero in -1. Then it is easy to see that these three polynomials
are orthogonal with respect to the given scalar product. We just need to normalize
accordingly. We find:

?m(:ﬁ+1), (x —=1)(x+1), f:p(:p—l).

Second way. We can use the Gram-Schmidt process on three linearly independent
vectors in P», for example: 1, z, and 22



2. A real n X n matrix A is an isometry if it preserves length: ||Az| = ||z|| for all
vectors z € R™. Show that the following are equivalent.

(

(

a) A is an isometry (preserves length).
b) (Ax Ay> (x,y) for all vectors z,y, so A preserves inner products.
) A

C

(
(d) The columns of A are unit vectors that are mutually orthogonal.

Solution

(b)=(a). Trivial since ||z| is defined as y/(z,x). So if an application preserves
inner products, it preserves length.

(a)=-(b). Assume that A preserves lengths. Let z and y € R"™. We have
|A(z + )12 = (@ + y)IP. Let us consider | A(z +g)|12 — ||z + y)|%. On the
one hand this quantity is zero. On the other hand we have: ||A(z +y)|* —
[+ )2 = (A +), Az +)) — (@ +y,3+) = (Az, Az) + (Az, Ay) +
<Ay7 AJ;> + <Ay7 Ay> - <3§', J;> - <$7 y> - <ya 3j> - <y7 y> We note that <A$, Ay> =
(Ay, Az) (symmetry of the inner product) and that (Ay, Ay) = ||Ay||* =
Iyl = (y,y) ( A preserves lengths). All in all, we obtain that || A(z + y)||?> —
| (z —i—y)||2 = 2(Ax, Ay) — 2(x,y). Setting this to zero implies: (Az, Ay) =
(x,y). Therefore A preserves inner products.

We proved that (a)<(b).

(c)=(b). Assume A™! = A*. Let z and y € R". (Ax, Ay) = (A*Ax,y) =
(A=1Ax,y) = (x,y). So A preserves inner products.

(b)=(d). Assume A preserves inner products. Let a; be the jth column of A.
Then (a;,a;) = (Ae;, Aej) = (e;,e;). This proves that the columns of A are
unit vectors that are mutually orthogonal.

(d)=(c). Assume that the columns of A are unit vectors that are mutually or-
thogonal. Let a;j be the jth column of A. This means that (aj,a;) =1 and
for i # j, {ai,a;) = 0. We know that A* = A7 we know that (A7 A);; =
alla; = (a;,a;), s0 A*A=ATA =1 So A* = A1

We proved that (b)<(c)<(d).



3. Let p > q. Let A be a real p X ¢ matrix with rank ¢q. Prove that the QR-
decomposition A = QR is unique if R is forced to have positive entries on its main
diagonal, Q) is p X g and R is q X q.

Solution
Assume that A = Q1 R; and A = Q2 Re with Ry, Ro upper triangular with positive
entries on the diagonal and QT Q; = I, and QIYQy = 1,.

We first note that since A is full rank, Ry and R, are invertible. We have Q1R =
Q2 Ro, multiplying by Q{ and Ry ! this gives

RiRy = QT Qo

This means that QT Q2 is upper triangular. Now multiplying by QI and Ry ! this
gives

RoR7' = Q1T Q.

This means that Q1 Q; is upper triangular. So QT Qs is lower triangular. QT Q5 is
upper and lower triangular. So it is diagonal (and invertible).

Let us call D = QTQ, (from R1R2_1 = QTQ2,) we see that Ry = DRy. From
Q1R = Q2Ry, we see that Q1 = Q2D~!. So now QTQ; = I and Q¥ Q, = I give
D? = I. D has therefore 41 on the diagonal.

We come back to the relation Ry = DRsy. Since the diagonal entry of R; are
given by (R1)i;; = D;i(R2)s and that (Ry);; and (R2); are both positive, and that
D;; = £1, we see that this implies: D;; = 1. Finally D = I and so:

Q1 =Q2 and R;=R,.



4. Let A and B be n x n complex matrices such that AB = BA. Show that if A has
n distinct eigenvalues, then A, B, and AB are all diagonalizable.

Solution

Let A1,..., A, be the n distinct eigenvalues of A with corresponding (nonzero)
eigenvectors vy, ...,v,. We know that a list of eigenvectors belonging to distinct
eigenvalues must be a linearly independent list. Hence B = (v1,...,v,) is a basis

of C™ consisting of eigenvectors of A, so that A is similar to the diagonal matrix
diag(A1,...,A\n). Then ABv; = BAv; = B(\;)v; = \i(Bv;). So Bu; belongs to the
1-dimensional eigenspace of A associated with the eigenvalue A;. This means that
Bv; = p;v;. Hence the basis B is also a basis of eigenvectors of B so that v; is
associated with the eigenvalue u; (which might be equal to 0). Then clearly AB is
similar to the matrix diag(piA1, ..., tnAn).



5. In this problem, R is the field of real numbers. Let (uy,ug,. .., uy,) be an orthonor-
mal basis for subspace W # {0} of the vector space V = R™*! (under the standard
inner product), let U be the n x m matrix defined by U = [u1, ug, ..., uy], and let
P be the n x n matrix defined by A = UUT.

(a) Prove that if v is any given member of V| then among all the vectors w in
W, the one which minimizes ||v — w|| is given by w = (v, u1) u1 + (v, u2) uz +
oo+ (v, Um) U (The vector w is called the projection of v onto W.)

(b) Prove: For any vector z € R"*!| the projection w of z onto W is given by
w = Pz.

(c) Prove: P is a projection matrix. (Recall that a matrix P € R"*" is called a
projection matriz if and only if P is symmetric and idempotent.

(d) If V.= R3>*! and W = span|(1,2,2)7,(1,0,1)7], find the projection matrix
P described above and use it to find the projection of (2,2,2)” onto W.

Solution
(a) First it is clear that w € W. Note as well that v —w L W since for all z € W,

(v—w,z) = (v —(v,u)u; — ... — (V, U )Up,) , T)

= (v,x) — (v,u1){(u1, ) — ... — (U, Um) (Um, ) = 0.

The last equality comes from the fact that since v € W, x = (zuj)u; + ...+
(@, Um ) tm.
Now consider z € W. We define

lo =2l = (v —w)+ (w—2)|?

= |l —wl* +2(v —w) o (w — ) + [Jw — x|
Since v —w L W and w —x € W, we have that (v —w) e (w —z) = 0, so that
lv—=z)* = |lv—wl*+|w—z|?

We see that the minimum for ||v — || is |[v — w||? and is realized when z = w.

w = (v,ur)ur + (v, u2)ug + ... + (U, U )Um
= uy(ulv) +ug(udv) + ...+ up (ulv)
= (wul +upud + .. 4 upul)v
= UU"v=Pu.

(c) First, PT = (UUT)T = UUT = P, second, P? = (UUT)? = U(UTU)UT =
UUT = P where we have used the fact that UTU = TI.



(d) An orthogonal basis for W is for example

1/3 2/3
(ul,uQ): ((2/3),(2/3) .
2/3 1/3

( 5/9 —2/9 4/9 )
P=vuut=1| —-2/9 8/9 2/9 |.
4/9  2/9 5/9

14/9
w=Pr=| 16/9 |.
()

We get

Finally



6. Let V = R> and let T € L(V) be defined by T'(a,b,c,d,e) = (2a,2b,2c +d,a +
2d,b + 2e).
(a) (8 points) Find the characteristic and minimal polynomial of T'.

(b) (8 points) Determine a basis of R® consisting of eigenvectors and generalized
eigenvectors of T.

(¢) (4 points) Find the Jordan form of T" with respect to your basis.

Solution

The matrix of T in the standard basis (eq, e, €3, €4, €5) is

S OO O
OO O N O
SO~ N OO
SN O O
N OO = O

We can reorder the basis in (e3, e4, €1, €5, €2), the matrix of 7" in this basis is:

21000
02100
00200
000 21
000 0 2

This answers questions (b) and (c). To answer (a), we readily see that the charac-
teristic polynomial of 7" is (z — 2)® and the minimal polynomial of T is (z — 2)3.



7. Suppose that W is finite dimensional and T' € L(V,W). Prove that T is injective
if and only if there exists S € L(W, V) such that ST is the identity map on V.

Solution

First suppose that there exists S € L(W, V') such that ST is the identity map on V.
Let « and y in V such that Tx = T'y. Multiplying by S, this means STz = STy,
but ST is the identity so STz = x and STy =y, so we get x = y, which means T
is injective.

Now suppose that 7' is injective. Consider wy, ..., w,, a basis of Range(T). (We
use the fact that W is finite dimensional.) Since wy, ..., w,, belongs to Range(T),
there exists vq,...,v, in V such that w; = Twi, we = Twve, ... Moreover since
T is injective, v1,...,v,, are linearly independent. Finally since wq,...,w,, span
Range(T'), we get that vy,..., v, span V. We conclude that v1,...,v,, is a basis
of V. (So V is itself finite dimensional.)
Now we use the incomplete basis theorem to extend wy, ..., Wy, with wpyq1, ..., wy
SO as wi,...,w, is a basis of W. Now we define S : W — V (on the basis
w1, ..., W,) such that

Swy =wv1, Sws=wv9, ..., Swy=uvn.
and

Swmt+1 = Swpqo = ... = Sw, =0.

It is clear that S € L(W, V) and that ST is the identity map on V.



8. (a)

(b)

Prove that a normal operator on a finite dimensional complex inner product
space with real eigenvalues is self-adjoint.

Let V be a finite dimensional real inner product space and let T': V' — V be
a self-adjoint operator. Is it true that 7" must have a cube root? Explain. (A
cube root of T is an operator S : V — V such that S% =T.)

Solution

(a)

Let V be a finite dimensional complex inner product space and T : V — V
be a normal operator with real eigenvalues. Let A be the matrix of 7" in an
orthonormal basis. Since T' is normal, 7" is diagonalizable in an orthonormal
basis. Therefore there exists a unitary matrix U (U#U = I) such that A =
UDUM with D diagonal. We also know that the eigenvalues of T are real,
so D is a real matrix; in particular, this implies D = D¥. In this case:
AR = (uDpUMH = y(DH)UH = UDUT = A.

T has a cube root. The proof of existence is by construction. Let A be the
matrix of 7" in an orthonormal basis. Since T is a self-adjoint operator, then
T is diagonalizable in an orthonormal basis with real eigenvalues. Therefore
there exists a unitary matrix U (U#U = I) such that A = UDU* with D
real and diagonal. Define S = UDY3UH (the cube root of D is simply the
cube root of the diagonal entries,) then it is clear that S% = T.



