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Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!
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1. Find an orthogonal basis for the space P2 of quadratic polynomials with the inner
product 〈f, g〉 = f(−1)g(−1) + f(0)g(0) + f(1)g(1).



2. A real n × n matrix A is an isometry if it preserves length: ‖Ax‖ = ‖x‖ for all
vectors x ∈ Rn. Show that the following are equivalent.

(a) A is an isometry (preserves length).

(b) 〈Ax,Ay〉 = 〈x, y〉 for all vectors x, y, so A preserves inner products.

(c) A−1 = A∗.

(d) The columns of A are unit vectors that are mutually orthogonal.



3. Let p ≥ q. Let A be a real p × q matrix with rank q. Prove that the QR-
decomposition A = QR is unique if R is forced to have positive entries on its main
diagonal, Q is p× q and R is q × q.



4. Let A and B be n× n complex matrices such that AB = BA. Show that if A has
n distinct eigenvalues, then A, B, and AB are all diagonalizable.



5. In this problem, R is the field of real numbers. Let (u1, u2, . . . , um) be an orthonor-
mal basis for subspace W 6= {0} of the vector space V = Rn×1 (under the standard
inner product), let U be the n×m matrix defined by U = [u1, u2, . . . , um], and let
P be the n× n matrix defined by A = UUT .

(a) Prove that if v is any given member of V , then among all the vectors w in
W , the one which minimizes ‖v − w‖ is given by w = 〈v, u1〉u1 + 〈v, u2〉u2 +
. . . + 〈v, um〉um. (The vector w is called the projection of v onto W .)

(b) Prove: For any vector x ∈ Rn×1, the projection w of x onto W is given by
w = Px.

(c) Prove: P is a projection matrix. (Recall that a matrix P ∈ Rn×n is called a
projection matrix if and only if P is symmetric and idempotent.

(d) If V = R3×1, and W = span [(1, 2, 2)T , (1, 0, 1)T ], find the projection matrix
P described above and use it to find the projection of (2, 2, 2)T onto W .



6. Let V = R5 and let T ∈ L(V ) be defined by T (a, b, c, d, e) = (2a, 2b, 2c + d, a +
2d, b + 2e).

(a) (8 points) Find the characteristic and minimal polynomial of T .

(b) (8 points) Determine a basis of R5 consisting of eigenvectors and generalized
eigenvectors of T .

(c) (4 points) Find the Jordan form of T with respect to your basis.



7. Suppose that W is finite dimensional and T ∈ L(V,W ). Prove that T is injective
if and only if there exists S ∈ L(W,V ) such that ST is the identity map on V .



8. (a) Prove that a normal operator on a finite dimensional complex inner product
space with real eigenvalues is self-adjoint.

(b) Let V be a finite dimensional real inner product space and let T : V → V be
a self-adjoint operator. Is it true that T must have a cube root? Explain. (A
cube root of T is an operator S : V → V such that S3 = T .)

(a) Let V be a finite dimensional complex inner product space and T : V → V
be a normal operator with real eigenvalues. Let A be the matrix of T in an
orthonormal basis. Since T is normal, T is diagonalizable in an orthonormal
basis. Therefore there exists a unitary matrix U (UHU = I) such that A =
UDUH with D diagonal. We also know that the eigenvalues of T are real,
so D is a real matrix; in particular, this implies D = DH . In this case:
AH = (UDUH)H = U(DH)UH = UDUH = A.

(b) T has a cube root. The proof of existence is by construction. Let A be the
matrix of T in an orthonormal basis. Since T is a self-adjoint operator, then
T is diagonalizable in an orthonormal basis with real eigenvalues. Therefore
there exists a unitary matrix U (UHU = I) such that A = UDUH with D
real and diagonal. Define S = UD1/3UH , (the cube root of D is simply the
cube root of the diagonal entries,) then it is clear that S3 = T .


