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1. Let V be a finite-dimensional real vector space. Let W1 and W2 be subspaces of
V . We define the following operations:

(w1, w2) + (w′1, w
′
2) := (w1 + w′1, w2 + w′2)

and
α ∗ (w1, w2) := (αw1, αw2)

for all (w1, w2) ∈W1×W2 and (w′1, w
′
2) ∈W1×W2 and all α ∈ R. The set W1×W2

is a vector space with respect to these operations.

(a) Let U := {(u,−u) : u ∈ W1 ∩W2}. Prove that U is a subspace of W1 ×W2.
Also prove that U is isomorphic to W1 ∩W2.

(b) Define the map T : W1×W2 →W1 +W2 by T (w1, w2) = w1 +w2. Prove that
T is a linear transformation.

(c) Use the above to prove that dim(W1+W2)+dim(W1∩W2) = dimW1+dimW2.

Solution

(a) Let a and b be two vectors in the subset U . Let α and β be two scalars in R.
We want to show that αa+ βb is in U . This will prove that U is a subspace
of W1 ×W2.

Since a is in U , there exists u ∈W1 ∩W2 such that a = (u,−u). Since b is in
U , there exists v ∈W1 ∩W2 such that b = (v,−v). Now

αa+ βb = α(u,−u) + β(v,−v)

= ((αu+ βv),−(αu+ βv))

= (w,−w)

where we defined w to be w = (αu+ βv).

We know that (1) u and v are both in W1 ∩W2 and (2), since W1 and W2 are
subspaces, W1 ∩W2 is a subspace as well (standard theorem); from this, we
get that w is in W1 ∩W2 since w is a linear combination of u and v.

As a consequence, αa+ βb is (w,−w) with w ∈W1 ∩W2, so αa+ βb is in U .
U is a subspace of W1 ×W2.

We now want to prove that U is isomorphic to W1 ∩W2. We consider the
map, S : W1 ∩W2 → U defined by S(u) = (u,−u). We prove below that
S is an isomorphism by proving that S is (1) linear, (2) surjective and (3)
injective.

Firstly, S is a linear map. Proof: Let u and v be two vectors in the subset
W1 ∩W2. Let α and β be two scalars in R. Now

S(αu+ βv) = (αu+ βv,−αu− βv)

= α(u,−u) + β(v,−v)

= αS(u) + βS(v).

(1)



So S is linear.

Secondly, S is surjective. Proof: Let a in U , there exists u ∈ W1 ∩W2 such
that a = (u,−u). Now S(u) = (u,−u) (by definition of S). So S(u) = a. We
proved that for all a in U , there exists u ∈ W1 ∩W2 (see construction) such
that S(u) = a.

Finally, S is injective. Proof: Let u ∈W1 ∩W2 such that S(u) = (0, 0). This
implies u = 0. (Since, by definition of S, S(u) = (u,−u).)

The existence of the isomorphism S between W1∩W2 and U proves that these
two spaces are isomorphic.

A consequence of the isomorphism between U and W1 ∩W2 is that

dim(U) = dim(W1 ∩W2).

(b) Let a and b be two vectors in the vector space W1 ×W2. Let α and β be two
scalars in R. Since a is in W1 ×W2, there exists a1 ∈ W1 and a2 ∈ W2 such
that a = (a1, a2). Since b is in W1 ×W2, there exists b1 ∈ W1 and b2 ∈ W2

such that b = (b1, b2). Now

T (αa+ βb) = T (α(a1, a2) + β(b1, b2))

= T ((αa1 + βb1, αa2 + βb2))

= (αa1 + βb1) + (αa2 + βb2)

= α(a1 + a2) + β(b1 + b2)

= αT ((a1, a2)) + βT ((b1, b2))

= αT (a) + βT (b)

This proves that T is linear.

(c) We use the rank theorem on T . We have

dim(W1 ×W2) = dim(Null(T )) + Rank(T ).

Now, we know that

dim(W1 ×W2) = dim(W1) + dim(W2).

We can also easily prove that

Null(T ) = U,

so that
dim(Null(T )) = dim(U) = dim(W1 ∩W2).

(The last equality comes from part 1.) Finally

Range(T ) = W1 +W2.



This is because T is (clearly) surjective in W1 +W2. This implies that

Rank(T ) = dim(W1 +W2).

Putting all this together, we get

dim(W1 +W2) + dim(W1 ∩W2) = dimW1 + dimW2.



2. Let Eij ∈ Rn×n denote the matrix with 1 in entry (i, j) and 0 everywhere else.

(a) Prove that Eii and Ejj are similar for all 1 ≤ i, j ≤ n.

(b) Given A,B ∈ Rn×n, define [A,B] := AB −BA. A matrix C ∈ Rn×n is called
a commutator in Rn×n if and only if C = [A,B] for some A,B ∈ Rn×n. Show
that Eii − Ejj and Eij are commutators in Rn×n for all 1 ≤ i, j ≤ n with
i 6= j.

Solution

(a) We define the permutation matrix Pij as the identity matrix with row i and
row j swapped. (In the i = j case, Pij is the identity matrix.) Now we claim
that

Ejj = PijEiiPij .

We also know that Pij is invertible and is its own inverse. (P 2
ij = I.) So the

last relation can actually be rewritten:

Ejj = PijEiiP
−1
ij .

This shows that Eii is similar to Ejj .

(Another way to answer this question is to note that Eii and Ejj are diago-
nalizable with the same spectrum.)

(b) First,

Eii − Ejj = Eii − PijEiiPij

= (P 2
ij)Eii − PijEiiPij

= (Pij)(PijEii)− (PijEii)(Pij)

= [Pij , PijEii].

This proves that Eii−Ejj is a commutator. (It is the commutator [Pij , PijEii]).
(Note we can have i = j here.)

Another way is to prove that Eii−Ejj is a commutator is to write Eii−Ejj =
EijEji − EjiEij = [Eij , Eji].

Second, for i 6= j, we note that EiiEij = Eij and that EijEii = 0, (the first
equality is true for any i and j, the second requires i 6= j,) so that

Eij = EiiEij − EijEii = [Eii, Eij ]

This proves that Eij is a commutator. (It is the commutator [Eii, Eij ]).



3. We consider a real linear space V of polynomials on [a, b] of degree no larger than

2012 with the scalar product 〈f, g〉 :=
∫ b
a f(t)g(t)dt. Let a real-valued function

k(s, t) be continuous for s ∈ [a, b] and t ∈ [a, b]. Let us define the linear map
F : V −→ V by

f 7−→ F (f) = g such that g(t) :=

∫ b

a
k(s, t)f(s)ds for all t ∈ [a, b].

In other words, we have

F (f)(t) =

∫ b

a
k(s, t)f(s)ds, for all t ∈ [a, b].

(a) Determine an explicit expression for F ∗, the adjoint of F .

(b) Let n be a positive integer. Show that F is normal if k(s, t) = (s − t)n and
determine for which n the linear map F is self-adjoint.

Solution

(a) First of all, we note that the space V is finite dimensional.

Let f in V and let g in V .

Under the assumption that n is a postive integer, all functions involved in the
integration are continuous, and thus Riemann integrable.

〈g, F (f)〉 =

∫ b

a
g(t)

(∫ b

a
k(s, t)f(s)ds

)
dt =

∫ b

a

∫ b

a
k(s, t)f(s)g(t)dsdt =

∫ b

a

(∫ b

a
k(s, t)g(t)dt

)
f(s)ds.

(The integration switch is valid by Fubini’s theorem.)

If we define F ∗ : V −→ V by

g 7−→ F ∗(g) = h such that h(s) :=

∫ b

a
k(s, t)g(t)dt for all t ∈ [a, b],

we see that for all f in V and for all g in V ,

〈g, F (f)〉 = 〈F ∗(g), f〉.

Therefore F ∗ is the adjoint of F .

(b) Let f in V , then

(FF ∗(f)) (r) =

∫ b

a

(∫ b

a
(t− s)nf(s)ds

)
(r − t)ndt

=

∫ b

a

(∫ b

a
(s− t)nf(s)ds

)
(t− r)ndt

= (F ∗F (f)) (r).



This proves that F is normal.

Now, for n even, (s− t)n = (t− s)n, so

F (f)(t) =

∫ b

a
(s− t)nf(s)ds =

∫ b

a
(t− s)nf(s)ds = F ∗(f)(t).

So, for n even, F is self-adjoint.

For n odd, (s− t)n = −(t− s)n, so

F (f)(t) =

∫ b

a
(s− t)nf(s)ds = −

∫ b

a
(t− s)nf(s)ds = −F ∗(f)(t).

F is anti-self-adjoint.

Note: for any value of n, F is not the zero operator, so F can not be both
self-adjoint and anti-self-adjoint.

Answer: for n even, F is self-adjoint, otherwise it is not self-adjoint.



4. We consider two real valued n-by-n matrices A and B such that A is symmetric
positive definite and B is anti-symmetric. Prove that A+B is invertible.

Solution

Since B is anti-symmetric, (which means, by definition, BT = −B,) for all vector x
of size n, we have xTBx = (xTBx)T = (Bx)Tx = xTBTx = xT (−B)x = −xTBx,
this implies that xTBx = 0.

Now let x be a n-by-1 vector such that

(A+B)x = 0.

Then, multiplying on the left by xT , this implies

xT (A+B)x = xTAx+ xTBx = xTAx = 0.

Since A is positive definite, xTAx = 0 implies x = 0.

We conclude that A+B is invertible.



5. Let a and b ∈ R such that a 6= b. Let A a 6-by-6 real valued matrix such that
the characteristic polynomial of A is χA(X) = (X − a)4(X − b)2 and the minimal
polynomial of A is πA(X) = (X−a)2(X−b). Describe all different possible Jordan
forms for A.

Solution

The matrix A has exactly two distinct eigenvalues: a and b. (No more.)

Since the minimal polynomial of A has a term in (X − a)2, we deduce that all
Jordan blocks associated with the eigenvalue a are either 1-by-1 or 2-by-2. At
least one of them is 2-by-2. Since the characteristic polynomial of A has a term in
(X − a)4, the total size of all the Jordan blocks associated with the eigenvalue a
needs to be 4. We can therefore have

either one 2-by-2 block and two 1-by-1 blocks

or two 2-by-2 blocks

Since the minimal polynomial of A has a term in (X − b), we deduce that all
Jordan blocks associated with the eigenvalue b are 1-by-1. Since the characteristic
polynomial of A has a term in (X − b)2, the total size of all the Jordan blocks
associated with the eigenvalue b needs to be 2. We therefore need to have

two 1-by-1 blocks

We get
one 2-by-2 block and two 1-by-1 blocks for a,
two 1-by-1 blocks for b

a 1 0 0 0 0
0 a 0 0 0 0
0 0 a 0 0 0
0 0 0 a 0 0
0 0 0 0 b 0
0 0 0 0 0 b



two 2-by-2 blocks for a,
two 1-by-1 blocks for b

a 1 0 0 0 0
0 a 0 0 0 0
0 0 a 1 0 0
0 0 0 a 0 0
0 0 0 0 b 0
0 0 0 0 0 b


Of course the Jordan blocks can appear in any order on the diagonal of the Jordan
form. (In which case, we would still consider the Jordan form to be the same.)



6. Let A and B be two square matrices such that

AB = A2 +A+ I.

Show that A and B commute. (Hint: First show that A is invertible.)

Solution

Since
AB = A2 +A+ I,

we get that
A(B −A− I) = I. (2)

This means that A is invertible and that (B −A− I) is A−1.

For square matrices, the left-inverse is the right inverse, so that we also have

(B −A− I)A = I. (3)

We develop Eq.(??) and get

AB −A2 −A− I = 0. (4)

We develop Eq.(??) and get

BA−A2 −A− I = 0. (5)

From Eq.(??) and Eq.(??), we immediately get

AB = BA.

So A and B commute.



7. (a) Let A be a complex Hermitian matrix. Prove that A is positive definite if and
only if all the eigenvalues of A are positive.

(b) Let A =

2 0 0
0 3 −1
0 −1 3

. Let V = R3. We define the map ∗ : V × V → R by

u ∗ v = uTAv for all u, v ∈ V . Prove that ∗ is an inner product on V .

(c) Use the inner product from above and the Gram-Schmidt orthogonalization
process to find an orthonormal basis for V .

Solution

(a) i. Let A be Hermitian positive definite. This means that, for all x 6= 0,
xHAx is real positive. Let λ be eigenvalue of A. Let v be an eigenvector
of A associated with the eigenvalue λ such that vHv = 1.. Now we see
that vHAv = vH(λv) = λ(vHv) = λ. So λ is real positive.

ii. Let A be Hermitian with all eigenvalues positive. Then, since A is Her-
mitian, A is diagonalizable with an orthonormal basis. So there exists V
such that A = V DV H . Let x be a nonzero vector of size n.

xHAx = xH(V DV H)x = xHV D1/2D1/2V Hx = (D1/2V Hx)H(D1/2V Hx) = ‖D1/2V Hx‖2 > 0.

(b) A is symmetric and the eigenvalues of A are 2, 2, and 4 (trivial computation),
so the eigenvalues of A are all positive, so A is symmetric positive definite.
Therefore uTAv defines an inner product. (Theorem used: uTAv defines an
inner product if and only if A is symmetric positive definite.)

(c) We apply the Gram-Schmidt process (with the inner product from (b)) to the
basis e1, e2, e3 in order to obtain an orthonormal basis for V . (Orthonormal
with respect to the inner product from (b).)

i. eT1Ae1 = 2 so ‖e1‖ =
√

2 so q1 = [
√

2/2, 0, 0].

ii. We note that qT1 Ae2 = 0 and that qT1 Ae3 = 0

iii. eT2Ae2 = 3 so ‖e2‖ =
√

3 so q2 = [0,
√

3/3, 0].

iv. qT2 Ae3 =
√

3 so w = e3 −
√

3q2 = [0, 1/3, 1].

v. wTAw = 8/3 so ‖w‖ = 2
√

6/3, so q3 = [0,
√

6/12,
√

6/4].

An orthonormal basis for V is for example

q1 =

 √2/2
0
0

 , q2 =

 0√
3/3
0

 , q3 =

 0√
6/12√
6/4

 .



8. For a complex vector x = [x1 x2], we define the function f(x) = |x1|+ 2|x2|.

(a) Is f(x) a vector norm?

(b) Is there some scalar product (x, y) such that (x, x) = f2(x)? (Hint: Use the
parallelogram identity.)

Solution

(a) Yes, f(x) is a vector norm. We can check that f satisfies the three properties
of a vector norm.

i. Let x in C2, let λ ∈ C, then

f(λx) = f([λx1 λx2]) = |λx1|+ 2|λx2| = |λ|(|x1|+ 2|x2|) = |λ|f(x).

ii. Let x in C2, let y in C2, then

f(x+y) = f([x1+y1, x2+y2]) = |x1+y1|+2|x2+y2| ≤ |x1|+|y1|+2|x2|+2|y2| = f(x)+f(y).

iii. Let x in C2, such that f(x) = 0, then |x1|+ 2|x2| = 0, since |x1| ≥ 0 and
|x2| ≥ 0, this implies |x1| = 0 and |x2| = 0, so x1 = 0 and x2 = 0 which
means x = 0.

(b) If we consider the vectors x = [1 0] and y = [0 1], we can check that, on
the one hand,

f(x− y)2 + f(x+ y)2 = (3)2 + (3)2 = 18,

and, on the other,

2(f(x)2 + f(y)2) = 2((1)2 + (2)2) = 10.

Therefore
f(x− y)2 + f(x+ y)2 6= 2(f(x)2 + f(y)2).

We have checked that the parallelogram equality is not true for the vector
norm f . As a consequence, this vector norm does not come from a scalar
product. There is no scalar product (x, y) such that (x, x) = f2(x).

We remind that the validity of the parallelogram identity is a necessary and
sufficient condition of the existence of a scalar product associated with the
given vector norm.


