
University of Colorado Denver
Department of Mathematical and Statistical Sciences
Applied Linear Algebra Ph.D. Preliminary Exam

January 9, 2012

Name:

Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!
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1. Let V be a finite-dimensional real vector space. Let W1 and W2 be subspaces of
V . We define the following operations:

(w1, w2) + (w′1, w
′
2) := (w1 + w′1, w2 + w′2)

and
α ∗ (w1, w2) := (αw1, αw2)

for all (w1, w2) ∈W1×W2 and (w′1, w
′
2) ∈W1×W2 and all α ∈ R. The set W1×W2

is a vector space with respect to these operations.

(a) Let U := {(u,−u) : u ∈ W1 ∩W2}. Prove that U is a subspace of W1 ×W2.
Also prove that U is isomorphic to W1 ∩W2.

(b) Define the map T : W1×W2 →W1 +W2 by T (w1, w2) = w1 +w2. Prove that
T is a linear transformation.

(c) Use the above to prove that dim(W1+W2)+dim(W1∩W2) = dimW1+dimW2.



2. Let Eij ∈ Rn×n denote the matrix with 1 in entry (i, j) and 0 everywhere else.

(a) Prove that Eii and Ejj are similar for all 1 ≤ i, j ≤ n.

(b) Given A,B ∈ Rn×n, define [A,B] := AB −BA. A matrix C ∈ Rn×n is called
a commutator in Rn×n if and only if C = [A,B] for some A,B ∈ Rn×n. Show
that Eii − Ejj and Eij are commutators in Rn×n for all 1 ≤ i, j ≤ n with
i 6= j.



3. We consider a real linear space V of polynomials on [a, b] of degree no larger than

2012 with the scalar product 〈f, g〉 :=
∫ b
a f(t)g(t)dt. Let a real-valued function

k(s, t) be continuous for s ∈ [a, b] and t ∈ [a, b]. Let us define the linear map
F : V −→ V by

f 7−→ F (f) = g such that g(t) :=

∫ b

a
k(s, t)f(s)ds for all t ∈ [a, b].

In other words, we have

F (f)(t) =

∫ b

a
k(s, t)f(s)ds, for all t ∈ [a, b].

(a) Determine an explicit expression for F ∗, the adjoint of F .

(b) Let n be a positive integer. Show that F is normal if k(s, t) = (s − t)n and
determine for which n the linear map F is self-adjoint.



4. We consider two real valued n-by-n matrices A and B such that A is symmetric
positive definite and B is anti-symmetric. Prove that A+B is invertible.



5. Let a and b ∈ R such that a 6= b. Let A a 6-by-6 real valued matrix such that
the characteristic polynomial of A is χA(X) = (X − a)4(X − b)2 and the minimal
polynomial of A is πA(X) = (X−a)2(X−b). Describe all different possible Jordan
forms for A.



6. Let A and B be two square matrices such that

AB = A2 +A+ I.

Show that A and B commute. (Hint: First show that A is invertible.)



7. (a) Let A be a complex Hermitian matrix. Prove that A is positive definite if and
only if all the eigenvalues of A are positive.

(b) Let A =

2 0 0
0 3 −1
0 −1 3

. Let V = R3. We define the map ∗ : V × V → R by

u ∗ v = uTAv for all u, v ∈ V . Prove that ∗ is an inner product on V .

(c) Use the inner product from above and the Gram-Schmidt orthogonalization
process to find an orthonormal basis for V .



8. For a complex vector x = [x1 x2], we define the function f(x) = |x1|+ 2|x2|.

(a) Is f(x) a vector norm?

(b) Is there some scalar product (x, y) such that (x, x) = f2(x)? (Hint: Use the
parallelogram identity.)


