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1. (a) (8 pts) Let A be the n-by-n matrix with all entries equal to one.
Find the eigenvalues and corresponding eigenvectors of A.

(b) (12 pts) Let B be the 2n-by-2n matrix

B =
(

0 A
A 0

)
.

Find the eigenvalues and corresponding eigenvectors of B.

Solution

(a) A has two distinct eigenvalues: n and 0. A is actually diagonalizable. The
geometric multiplicity of the eigenvalue n is 1, the geometric multiplicity of
the eigenvalue 0 is n− 1. A basis of eigenvectors is for example:

(



1
1
1
...
1
1
1


,



1
−1

0
...
0
0
0


,



0
1

−1
...
0
0
0


, . . . ,



0
0
0
...
1

−1
0


,



0
0
0
...
0
1

−1


).

The first eigenvector given above is associated with the eigenvalue n. The
following n− 1 eigenvectors are associated with the eigenvalue 0.

(b) B has three distinct eigenvalues: n, −n, and 0. B is actually diagonalizable.
The geometric multiplicity of the eigenvalue n is 1, the geometric multiplicity
of the eigenvalue −n is 1, the geometric multiplicity of the eigenvalue 0 is
2n− 2. A basis of eigenvectors is for example:

(



1
1
1
...
1
1
1
1
1
1
...
1
1
1



,



1
1
1
...
1
1
1

−1
−1
−1

...
−1
−1
−1



,



1
−1

0
...
0
0
0
0
0
0
...
0
0
0



,



0
1

−1
...
0
0
0
0
0
0
...
0
0
0



, . . . ,



0
0
0
...
1

−1
0
0
0
0
...
0
0
0



,



0
0
0
...
0
1

−1
0
0
0
...
0
0
0





0
0
0
...
0
0
0
1

−1
0
...
0
0
0



,



0
0
0
...
0
0
0
0
1

−1
...
0
0
0



, . . . ,



0
0
0
...
0
0
0
0
0
0
...
1

−1
0



,



0
0
0
...
0
0
0
0
0
0
...
0
1

−1



).



The first eigenvector given above is associated with the eigenvalue n. The
second eigenvector given above is associated with the eigenvalue −n. The
following 2n− 2 eigenvectors are associated with the eigenvalue 0.



2. Let Pn be the vector space of all polynomials of degree at most n over R. Define

T : Pn −→ Pn

p(x) 7−→ p(x) = xp′(x)− p(x)

(a) (6 pts) Show that T is a linear transformation on Pn.

(b) (14 pts) Find Null(T ) and Range(T ).

Solution

(a) Let p and q be two polynomials of degree at most n, and let λ and µ be two
real numbers. Let x be a real number. (T (λp + µq))(x) = x(λp + µq)′(x) −
(λp+µq)(x) = λ(xp′(x)− p(x))+µ(xq′(x)− q(x)) = (λT (p)+µT (q))(x).. So
T (λp + µq) = λT (p) + µT (q). So T is linear.

(b) We consider the polynomial p(x) such that p(x) = anxn + an−1x
n−1 + . . . +

a2x
2 + a1x + a0. A direct calculation gives

(T (p))(x) = an(n− 1)xn + an−1(n− 2)xn−1 + . . . + a2x
2 + a0.

We have
Range(T ) = Span(1, x2, x3, . . . , xn),

and
Null(T ) = Span(x),



3. Let A be an m-by-n real matrix and b ∈ Rm. Show that exactly one of the following
systems has a solution:

(a) Ax = b,

(b) AT y = 0 and yT b 6= 0.

Solution

The name of the theorem is called the Fredholm Alternative. Two cases. First
case: we assume that there is a solution for statement (a). (In this case, there
exists x ∈ Rn such that b = Ax.) We now prove that statement (b) has no
solution. Let y ∈ Rm such that AT y = 0, multiplying on the left by xT , we get
xT AT y = (Ax)T y = bT y = 0. So that yT b = 0. Statement (b) has no solution.
Second case: we assume that there is no solution for statement (a). We need to
prove that statement (b) has a solution. Let P be the orthogonal projection onto
Range(A). We claim that y = b − Pb = (I − P )b is a solution of (b). (y as
defined is actually the orthogonal projection of b onto the orthogonal complement
of Range(A).) First of AT y = 0. (Since y belongs to the orthogonal complement of
A.) Now we want to prove that yT b 6= 0. Let us assume that yT b = 0. In this case,
‖b‖2 = bT b = bT (Pb + b − Pb) = bT (Pb + y) = bT Pb + bT y = bT Pb ≤ ‖b‖.‖Pb‖
(, the last inequality is Cauchy-Schwartz). b 6= 0 because the case b = 0 falls
into Statement (a) has a solution, so, since b 6= 0, we find that, ‖b‖ ≤ ‖Pb‖, now
P is an orthogonal projection so ‖Pb‖ ≤ ‖b‖, so that ‖Pb‖ = ‖b‖, but since, by
Pythagorean theorem, ‖b‖2 = ‖Pb‖2 + ‖y‖2, we get ‖y‖ = 0, this implies b = Pb,
that is b ∈ Range(A). This contradicts our assumption (, there is no solution for
statement (a)). Therefore, yT b 6= 0.

Geometric Argument using the Separation Theorem for Convex Sets
As indicated in the above proof, this result has an intutive geometric interpretation.
Note that the range of A is a convex set, and that statement (a) is equivalent to
vector b being in the set. By the separation theorem for convex sets, an element is
either contained in the set (if statement (a) is true), or there exists a hyperplane
yT e = f for some nonzero normal vector y and some scalar f that separates set
and element, such that yT (Ax) ≥ f for all x and yT b < f (the inequalities could
be reversed by alternating the sign of y and f). Now, because yT (Ax) ≥ f for all
x independent of the sign of x, f must be zero and the inequality is actually an
equality, yT (Ax) = 0 for all x and thus yT A = 0 with yT b 6= 0 by separation.

Argument using the Duality Theorem in Linear Programming In opti-
mization theory, the above result is also known as a variant of Farkas Lemma and
either used to prove, or derived from LP duality (if proven differently). From LP
duality, a primal problem min{cT x : Ax = b} has an optimal solution if and only
its dual problem max{bT y : AT y = c} has an optimal solution, in which case the



optimal values coincide, or the primal problem is infeasible if the dual problem is
unbounded (and vice versa; note that this does not preclude that both primal and
dual problem can also be infeasible, in general). Now, for c = 0, the dual problem
is always feasible for y = 0 with objective value 0. If 0 is the optimal value, then
by duality there must be a feasible x for the primal, so Ax = 0, and there cannot
be a feasible y for the dual (so AT y = 0) with objective yT b 6= 0 (because then
there is α greater or less than zero such that AT (αy) = 0 but αyT b > 0, and 0
would not be optimal). Hence, in this case statement (a) is true and statement (b)
is false. Following the same argument, if 0 is not the optimal value, then there is
α greater or less than zero such that AT (αy) = 0 but αyT b > 0 (so statement (b)
is true), but then the dual problem is unbounded and the primal problem must be
infeasible (so statement (a) is false).



4. Prove or disprove:

(a) (7 pts) Let A be an n-by-n matrix. If A2 = 0, then the rank of A is at most
2.

(b) (7 pts) Let T be a linear operator on a finite dimensional vector space V over
R. If T has no eigenvalues, then T is invertible.

(c) (6 pts) Let A be Hermitian (self-adjoint). If A2 = I, then A = I or −I.

Solution

(a) False. Consider 

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 .

(The matrix A has three Jordan block of size two associated with the eigen-
value 0.) Then A2 = 0 but rank(A) = 3.

(b) True. We know that T is noninvertible implies that T has 0 as an eigenvalue.
Therefore, if T has no eigenvalues, T does not have 0 as an eigenvalue (obvi-
ously), and so T is invertible.
Note: All said above is true in complex or real vector space, however in a
complex vector space the statement T has no eigenvalues is false, therefore it
is better to ask the problem in a real vector space.

(c) False. Consider (
1 0
0 −1

)
.



5. If A is a nilpotent matrix, show that

(a) (10 pts) I −A is invertible. Find (I −A)−1.

(b) (5 pts) I + A is invertible.

(c) (5 pts) A is not diagonalizable when A is not the 0-matrix.

Solution

(a) A matrix A is nilpotent if there exists an integer k such that Ak = 0. In this
case, we note that

(I−A)(I+A+A2+. . .+Ak−1) = (I+A+A2+. . .+Ak−1)(I−A) = I−Ak = I.

Therefore (I −A) is invertible and

(I −A)−1 = I + A + A2 + . . . + Ak−1.

Note: this is related to the Taylor expansion of (1 + x)−1 for |x| < 1.

(b) To find the inverse of I + A, we apply the previous formula to −A (, since A
is nilpotent, so is −A,) and obtain

(I + A)−1 = I −A + A2 + . . . + (−1)k−1Ak−1.

(c) We will prove the contrapositive: If A is diagonalizable then A is the 0-matrix.
Let us assume that A is diagonalizable. Then there exists a basis V such that
A = V DV −1 where D contains the eigenvalue of A on the diagonal. Since A
is nilpotent, its only eigenvalue is 0, so D = 0. We conclude that A = 0.



6. Let V be a complex vector space of finite dimension with dim(V ) = n < ∞. Let
f ∈ L(V ) and g ∈ L(V ) such that fg = gf . Show that

(a) (5 pts) if λ is an eigenvalue of f , then the eigenspace Eλ is invariant under g.

(b) (5 pts) Range(f) and Null(f) are invariant under g.

(c) (5 pts) f and g have at least one common eigenvector.

(d) (5 pts) The matrix representations of f and g are both upper-triangular with
respect to some basis.

Solution

(a) We recall that Eλ is defined as the set {x ∈ V : f(x) = λx}. In other
words, Eλ is the subspace made of 0 and all eigenvectors associated with the
eigenvalue λ.
Let x ∈ Eλ, then f(x) = λx, applying g on both sides gives g(f(x)) =
g(λx) = λg(x). Since f and g commute, we obtain that f(g(x)) = λg(x). So
g(x) ∈ Eλ. So Eλ is invariant under g.

(b) Since Null(f) = E0, (a) answers the question for the Null(f) case: Null(f)
is invariant under g. Let x ∈ Range(f), then there exists y in V such that
x = f(y). Applying g on both sides gives g(x) = g(f(y)). Commuting f and
g gives g(x) = f(g(y)). So g(x) ∈ Range(f). So Range(f) is invariant under
g.

(c) Let λ be an eigenvalue of f . By (a), we know that Eλ is invariant under g. We
consider now the linear mapping g Eλ

: Eλ −→ Eλ. Since, Eλ is a complex
vector space, any f ∈ L(Eλ) has at least one eigenvalue. So g Eλ

has an
eigenvalue with an associated eigenvector, say y. This vector y is eigenvector
of g (since it is an eigenvector of its restriction g Eλ

) but is also an eigenvector
for f (since it belongs to Eλ). f and g have a common eigenvector.

(d) This is an inductive process. From (c) and the commutativity of f and g, we
obtain there exists a common eigenvector y1 for f and g. Hence, there are
corresponding eigenvalues λ1 and µ1 such that

f(y1) = λ1y1 and g(y1) = µ1y1.

We complete span(y1) with a subspace U2 of dimension n − 1 such that
Span(y1)⊕U2 = V . The matrix of f and g in a basis made of y1 and basis of
U2 looks like: 

? ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?


We will use P2 the oblique projection onto U2 parallel to y1. P2 is defined
as followed. Let x ∈ V , since Span(y1) ⊕ U2 = V , there exist unique x1 ∈



Span(y1) and unique x2 ∈ U2, such that x = x1 + x2. P2(x) is defined as
P2(x) = x2. We now define f2 : U2 −→ U2 as the composition of f followed
by the projection onto U2 parallel to y1 and g2 : U2 −→ U2 as the composition
of g followed by the projection onto U2 parallel to y1. In other words:

f2 = P2f and g2 = P2g.

We have that f2 ∈ L(U2), g2 ∈ L(U2), and f2 and g2 commute. So, (c) gives
us y2 a common eigenvector for f2 and g2. There exists λ2 and µ2 such that

f2(y2) = λ2y2 and g2(y2) = µ2y2. (1)

So that
P2(f(y2)) = λ2y2 and P2(f(y2)) = µ2y2.

Now, since P2 is the oblique projection onto U2 parallel to y1, for all x, there
exists α such that x = αy1 + P2x. Applying this to f(y2) and g(y2), we see
that there exist s12 and t12 such that

f(y2) = s12y1 + P2(f(y2)) and g(y2) = t12y1 + P2(g(y2)).

Combining Eq (??) with the previous relation gives

f(y2) = s12y1 + λ2y2 and g(y2) = t12y1 + µ2y2.

We complete span(y1, y2) with a subspace U3 of dimension n − 2 such that
Span(y1, y2)⊕U3 = V . The matrix of f and g in a basis made of (y1, y2) and
basis of U3 looks like: 

? ? ? ?
0 ? ? ?
0 0 ? ?
0 0 ? ?


We continue the process.

Note: if we would have an inner product, there would be no difficulty in finding
an orthonormal basis with respect to which the matrix representations of f
and g are both upper-triangular. The complement subspaces U1, U2, ... need
to be taken as U2 = y⊥1 , U3 = y⊥2 , ...



7. (a) (5 pts) Let A be a 5-by-5 matrix. Suppose that you know that rank(A2) < 5.
What can you say about rank(A)?

(b) (10 pts) Write down

det


x 1 1 1
1 x 1 1
1 1 x 1
1 1 1 x


as a polynomial in x, either factored or expanded.

(c) (5 pts) What are the singular values of a 1× n matrix? What is the pseudo-
inverse of a 1× n matrix?

Solution

(a) rank(A) is 0, 1, 2, 3, or 4. Since A is a 5-by-5 matrix, then rank(A) ≤ 5.
If rank(A) = 5, A is full rank, and so rank(A2) = 5. Not possible. Now all
values 0, 1, 2, 3, or 4 are possible. For 3, we can for example consider the
matrix A with all zeros except 3 ones on the diagonal. Replace 3 by 0, 1, 2,
or 4 in the previous sentence to get all the cases.

(b) Answer 1: We define A as

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

The polynomial in x we are looking for is nothing else as the characteristic
polynomial of A up to the sign of x. A has two distinct eigenvalues: 3 and
−1. A is actually diagonalizable. The geometric multiplicity of the eigenvalue
3 is 1, the geometric multiplicity of the eigenvalue −1 is 3. We conclude that
the characteristic polynomial of A is

χA(λ) = (λ + 1)3(λ− 3),

(there is a + sign on χA since 4 is even,) and so replacing λ by −x gives us

χA(λ) = (x− 1)3(x + 3).

A basis of eigenvectors is for example:

(


1
1
1
1

 ,


3

−1
−1
−1

 ,


−1

3
−1
−1

 , . . . ,


−1
−1

3
−1

 , ).

The first eigenvector given above is associated with the eigenvalue 3. The
following 3 eigenvectors are associated with the eigenvalue −1.



Answer 2: A direct computation is as easy:∣∣∣∣∣∣∣∣
x 1 1 1
1 x 1 1
1 1 x 1
1 1 1 x

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 1 1 x
1 x 1 1
1 1 x 1
x 1 1 1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 1 1 x
0 x− 1 0 1− x
0 0 x− 1 1− x
0 1− x 1− x 1− x2

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
1 1 1 x
0 x− 1 0 1− x
0 0 x− 1 1− x
0 0 1− x 2− x− x2

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 1 1 x
0 x− 1 0 1− x
0 0 x− 1 1− x
0 0 0 3− 2x− x2

∣∣∣∣∣∣∣∣
= (x− 1)3(3 + x)

(c) Let x be 1-by-n matrix. Then there is one singular value and its value is

σ = ‖x‖2 =
√∑

i x
2
i . The singular value decomposition of the x is x = uσvT ,

where u is simply the scalar 1, σ is as previously given (σ = ‖x‖2), and v =
1

‖x‖2 xT . The pseudoinverse is given by x† = v(σ)−1uT for σ 6= 0, and x† = 0
for σ = 0. Answer: if x = 0, x† = 0, if x 6= 0, x† = 1

‖x‖22
xT

Note: We can check that xx† = 1
‖x‖22

xxT is the orthogonal projection on x.



8. The Cayley-Hamilton theorem states that any square matrix satisfies its own char-
acteristic equation. Prove it, following the steps below. Do not deal with the real
arithmetic case, work only in complex arithmetic.

(a) (7 pts) Prove that the theorem holds for square matrices that may be diago-
nalized.

(b) (7 pts) Prove that the theorem holds for Jordan blocks, i.e., matrices of the
form λI + J , where λ ∈ C, I is the identity matrix and J is the matrix with
zeros everywhere, except immediately above the diagonal, where it has 1’s.

(c) (6 pts) Prove the theorem for all square matrices.

Solution

Let χ be the characteristic polynomial of A, we want to prove that

χ(A) = 0.

Let n be the order of A. Let us assume that A has k distinct eigenvalues in C:
λ1, . . . λk. Each eigenvalue of A is a root of the characteristic polynomial of A so
that the characteristic polynomial of A writes χ(x) = (λ1 − x)m1 . . . (λk − x)mk ,
where mi is an integer representing the algebraic multiplicity of λi. We have that
mi ≥ 1 and

∑
mi = n.

(a) Let assume that A is diagonalizable matrix. There exists an invertible matrix
V (basis of eigenvectors) and a diagonal matrix such that A = V DV −1. Now

χ(A) = χ(V DV −1) = V χ(D)V −1 = V

 χ(λ1) 0 0

0
. . . 0

0 0 χ(λk)

 V −1.

Since, for all i, χ(λi) = 0, then

χ(A) = 0.

(b) Let A be a Jordan block. So there exists λ ∈ C, so that

A =



λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


.

The characteristic polynomial of A is

χ(x) = (λ− x)n.



Now

χ(A) = (λI −A)n =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0



n

= 0.

(c) We first reduce A to Jordan form. (This is possible for any matrix.) We know
that there exists V an invertible matrix and J a block diagonal matrix made
of Jordan blocks on the diagonal such that A = V JV −1. We assume that
A has ` Jordan blocks: J1, . . . , J` of dimension n1, . . . , n`. In this case the
characteristic polynomial of A writes χ(x) = (λ1 − x)n1 . . . (λ` − x)n` . (Note:
the indexing of the eigenvalue λ here is different than the one in part (a).
Here we allow for repeat. ` is the number of Jordan blocks.) In this case, we
have

χ(A) = χ(V JV −1) = V χ(J)V −1 = V

 χ(J1) 0 0

0
. . . 0

0 0 χ(Jk)

 V −1.

We know by part (b) that, for all i = 1, . . . , `, ((λi − x)ni)(Ji) = 0, so a
fortiori, χ(Ji) = 0. Finally,

χ(A) = 0.


