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Name:

Exam Rules:

e This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

e Each problem is worth 20 points.

e Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

e Begin each solution on a new page and use additional paper, if necessary.
e Write only on one side of paper.
e Write legibly using a dark pencil or pen.

e Ask the proctor if you have any questions.

| Good luck! |
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1. Suppose that T is a linear map from V to F where F can be either R or C. Prove
that if a vector w in V' is not in null(7"), then

V =null(T) & {au : o € F}.

Solution

(a)

Let © € V such that € null(7") N span(u). Then, since z € span(u), there
exists v € F such that = yu; since x € null(T'), we have T'(z) = 0. Combin-
ing both gives T'(yu) = 0. Using the linearity of 7" gives, vT'(u) = 0. But, by
assumption, v is not in null(7), so T'(u) # 0. So v =0, so x = 0. So

null(7") N span(u) = {0}.

Let x € V. We decompose z as:

(,_T@ N, (T@
r= |z T(u)u T(u)u .
(Note that it is critical here to have T'(u) # 0 to be able to divide by it.) The
left-hand side is (m - ;gzg u) and belongs to null(7"), since T’ <a: - ;Eg u) =
T(x)— ;Ei;T(u) =T(z)—T(z) = 0. The right-hand side is ;gz;u and belongs
to span(u). Therefore:

null(7T") + span(u) = V.

So we conclude

V = null(T") & span(u).



2. Let A be an n-by-n complex matrix. Define H = 3(A+ A*) and S = $(A — A*).
Prove that A is normal if every eigenvector of H is also an eigenvector of S.

Solution

(a)

Two observations.
i. A=H+S.
ii. H is Hermitian (since H = H*). Consequently H is diagonalizable in an

orthogonal basis, therefore there exists @), n—by—n unitary matrix, and
Dy, n—by—n diagonal matrix, such that

H=QDuQ".

We note that, since H is Hermitian, its eigenvalues are all real; therefore,
Dy is real. We note that, since S is Skew-Hermitian (since H = —H"),
S is diagonalizable in an orthogonal basis and all its eigenvalues are purely
imaginary. However, these two remarks are not needed in the following.
Since, every eigenvector of H is also an eigenvector of S, for each i =1,...,n,
we have that, there exists a complex number dg) (the associated eigenvalue)
such that
Sq = q(i)d(si).

(We could prove that dg) is purely imaginary.) Combining this n vector
equalities in one matrix equality reads

SQ =QDs,
where Dg is n—by—n diagonal matrix made of the dg) on the diagonal. Since
Q is unitary, we get

S=QDsQ".
In other words, we have unitarily diagonalize S in the @ orthogonal basis.

We are ready to conclude:
A=H+S=QDyQ*+ QDsQ" = Q(Dy + Ds)Q".

Therefore A is diagonalizable in an orthogonal basis. Therefore A is normal.



3. Let M be an n-by-n {0,1} tournament matrix. That is M + MT = J — I, where
J is the matrix of all 1’s. Use the following 5 steps to show that (M) is greater
than or equal to n — 1. (Note: for each step, you can use any of the previous steps,
whether you solve them or not). r(-) denotes the rank function.

(a) (5 pts) Show that if BT = —B (i.e. B is skew symmetric), then all the
eigenvalues of B are pure imaginary or zero. (B is matrix with real coefficient.)

(b) (2 pts) Show that M — M7 is skew symmetric.
(c) (5 pts) Let A =1+ M — MT. Use (a) and (b) to show that 0 is not an

eigenvalue of A and hence A is nonsingular.

(d) (4 pts) Use that A = (A — J) + J to show that r(A — J) is greater than or
equal ton — 1.

(e) (4 pts) Use (d) to show that r(M7) is greater than or equal to n—1. Conclude.
Solution

(a) Let (A, x) be an eigencouple of B a skew symmetric matrix. Then, Bz = \z
(1). If we multiply on the left (1) by x| we get 2" Bx = Xzfz (2). Now
we transpose-conjugate (1) and get that 2 BT = 2\, we use the fact that
B = BT (since B is real) and that BT = —B (since B is skew symmetric) to
get that 21 (—B) = 2\, we multiply by = on the right and rearrange to get
that 2/ Bx = —Xzfz (3). Since z is not zero, (2) and (3) imply that A = —\.
Therefore A is pure imaginary or zero.

) (M — M) = MT — (MT)T = MT — M = —(M — M7), this proves that
M — M7 is skew symmetric.

(c) The eigenvalues of A are the eigenvalues of A — [ shifted by -1. But A —1 =
M — M7 so, A—1I is skew symmetric (see (b)) and all its eigenvalues are pure
imaginary or zero. Therefore all the eigenvalues of A are of the form 1+ A.q
where A € R. Consequently, none of them is zero and so A is nonsingular.

(d) We know that, for any matrices A and B, r(A + B) < r(A4) + r(B). In our
case, this gives r(A4) < r(A—J)+r(J), but r(J) =1 and r(A) = n, therefore
r(A—J)>n—1

(e) Simce A=T+M—-MT', A—J=1-J+ M- M". But M is such that
M+M' =J—1,s0l—J+M-—MT=—-2MT. From this we get that
A—J = —-2MT. Therefore (d) proves that r(2MT) > n—1, so that r(MT) >
n — 1, and so conclude that so is r(M).



4. For each integer k > 0, let L; denote the vector space of all polynomials with
coefficients in the field F and of degree less than or equal to k, i.e., let

Lk:{ao—l—alx+...+akxk:ao,...7akEF}.

(a) (3 pts) What is the dimension of Lj, as a vector space over F? Exhibit a basis
for L. No justification required.

(b) (5 pts) Show that
W ={feL:f(0)+f(1)=0}
is a subspace of L.
(c) (6 pts) What is the dimension of W?
(d) (6 pts) Find a basis for W.

Solution

(a) dim(Ly) = k + 1, a basis (for example) is 1, x, 22, ..., 2¥. (Also called the
monomial basis.)

(b) Let p and ¢ be two polynomials in W. Let p and v be two numbers in F. We
have

(1p +vq)(0) + (up + vq)(1) = up(0) + vq(0) + pp(1) + vq(1)
= u(p(0) +p(1)) + v(q(0) + q(1))
= p0+v0=0.

Therefore (up + vq) is in W. Therefore W is a subspace of Ly.
(c) and (d) We claim that {2’ — §, for i =1,...,k} is a basis for W.
i. First notice that these k polynomials all belong to W.

ii. Second notice that these k polynomials are linearly independent (since
their degrees are all different).

iii. These two observations imply that dim(W) > k.

iv. But since the constant polynomial 1 (for example) is not in W, dim(W) <
dim(Ly) = & + 1.

v. Combining the last two items implies dim(W) = k which answers (c).

vi. Combining (ii) and (v) implies that {2 — 3, for i =1,...,k} is a basis
for W. This answers (d).



5. Suppose that A is a real, n-by-n symmetric matrix with A% = A2 4+ A — I. Show
that A is invertible and in fact A is its own inverse.

Solution

The relation A3 = A2 + A — I writes (A — I)?(A+ 1) = 0. So this means that
the eigenvalues of A are 1 and/or —1. But A is symmetric so there is no defective
eigenvalue so this means that (A—1I)(A+1I) = 0, this writes A? = I: A is invertible
and in fact A is its own inverse.



6. Let A =

Solution

We can first “upper triangularize”

8 = &8

LS R R, O

rz+1
z+1|’

1

X

z € R. What is the rank of A dependent of = € R.

the given matrix, yielding

-1 0 1

0 1 z+41
r—1 1 x+4+1

0 T T
-1 0 17 (5)
x 1 1](6)
x 1 x| (7)
x x 0] (8)
-1 0 1
T 1 1
0 0 1—=x
0 1—=x 1

2
3

o~~~ S~

~— — —

The above operations do not affect the matrix rank, so rank(A) = rank(A). Hence,
we conclude that A has full rank 4 whenever z € R\ {0, 1}, and rank 3 both if x = 0
(as the second and fourth row in A become identical and thus linearly dependent),
and if z = 1 (as the third row of A reduces to zero).



. Show that det(A,) = (a + (n — 1)b)(a — b)"~! where A, =

R™ ™ and a,b € R.

Solution

We can first rewrite the given matrix (determinant-invariant) by subtracting each
row (starting from the second) from its predecessor, yielding

a b
a b -+ b b—a a-—b» 0
: 0 b—a a-—2»
det(Ay) = =
b
b --- b a : 0
0

@)

b—a a—-2»> 0
0 b—a a—2»

= det(

N

n)-

We may then develop this determinant from the first row of A,, producing the

result to be shown:

n

det(Ay) = det(A,) =Y (1) ay; det(Ay)

i=1

=a(a —b)" 1 + i(—1)1+ib(b —a)"Ha—b)""
i=2

=ala —b)" 1 + z": b(a — b)" 1

=2

=(a+ (n—1)b)(a — b)*.

1
1

Alternate solution: v; =

eigenvalue \; = a+(n—1)b, va =

is an eigenvector for A, associated with the

0 | is an eigenvector for A,, associated with



the eigenvalue Ao = a — b, v3 = -1 is an eigenvector for A, associated with
0
0
the eigenvalue \o = a — 0, ... v, = 0 | is an eigenvector for A, associated
1
-1
with the eigenvalue Ao = a — b. Note that v1, ve, ... v, are linearly independent.

Consequently A has eigenvalue A\; = a + (n — 1)b with (geometric and algebraic)
multiplicity 1, and Ay = a — b with (geometric and algebraic) multiplicity n — 1.
Consequently detA, = A1 - (A\2)" ! = (a + (n — 1)b)(a — b)" L.



8. A complex n-by-n matrix P is idempotent if P2 = P. Show that every idempotent
matrix is diagonalizable.

Solution
Let P be a complex n-by-n idempotent matrix.

The relation P? = P reads as well P(P — I) = 0. Therefore the eigenvalues of P
are either 0 or 1. We consider the two eigenspaces Ej (the eigenspace associated
with the eigenvalue 0), and F; (the eigenspace associated with the eigenvalue 0).
Our goal is to prove that Ey @ £ = C™. This will prove that P is diagonalizable.

Note that Ey is Null(P).

Note as well that E; is Range(P). This is less obvious. On the one hand, Ey C
Range(P), since, if x € E1, x = Tx so x € Range(P) (in other words an eigenspace
is always in the range). On the other hand, if y € Range(P), there exists x such
that y = Px, and so Py = P?x = Pz =y so that y € E1, so Range(P) C F1,

We now need to prove that Null(P) @ Range(P) = C".

First of, Ey N E; = {0}(, as the intersection of two eigenspaces associated with
distinct eigenvalues). So, Null(P) N Range(P) = {0}.

So its remains to prove that Null(P) 4+ Range(P) = C". Let y € C", we can write
y = (Py)+(y— Py). The left-hand side (Py) belongs to Range(P). The right-hand
side (y — Py) belongs to Null(P) since P(y — Py) = Py — P>y = Py — Py = 0.
Therefore Null(P) & Range(P) = C". So Ep @ E; = C". This proves that P is
diagonalizable.



