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• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.
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1. Suppose that T is a linear map from V to F where F can be either R or C. Prove
that if a vector u in V is not in null(T ), then

V = null(T )⊕ {αu : α ∈ F}.

Solution

(a) Let x ∈ V such that x ∈ null(T ) ∩ span(u). Then, since x ∈ span(u), there
exists γ ∈ F such that x = γu; since x ∈ null(T ), we have T (x) = 0. Combin-
ing both gives T (γu) = 0. Using the linearity of T gives, γT (u) = 0. But, by
assumption, u is not in null(T ), so T (u) 6= 0. So γ = 0, so x = 0. So

null(T ) ∩ span(u) = {0}.

(b) Let x ∈ V . We decompose x as:

x =
(

x− T (x)
T (u)

u

)
+

(
T (x)
T (u)

u

)
.

(Note that it is critical here to have T (u) 6= 0 to be able to divide by it.) The
left-hand side is

(
x− T (x)

T (u)u
)

and belongs to null(T ), since T
(
x− T (x)

T (u)u
)

=

T (x)− T (x)
T (u)T (u) = T (x)−T (x) = 0. The right-hand side is T (x)

T (u)u and belongs
to span(u). Therefore:

null(T ) + span(u) = V.

So we conclude
V = null(T )⊕ span(u).



2. Let A be an n–by–n complex matrix. Define H = 1
2(A + A∗) and S = 1

2(A−A∗).
Prove that A is normal if every eigenvector of H is also an eigenvector of S.

Solution

(a) Two observations.

i. A = H + S.

ii. H is Hermitian (since H = H∗). Consequently H is diagonalizable in an
orthogonal basis, therefore there exists Q, n–by–n unitary matrix, and
DH , n–by–n diagonal matrix, such that

H = QDHQ∗.

We note that, since H is Hermitian, its eigenvalues are all real; therefore,
DH is real. We note that, since S is Skew-Hermitian (since H = −H∗),
S is diagonalizable in an orthogonal basis and all its eigenvalues are purely
imaginary. However, these two remarks are not needed in the following.

(b) Since, every eigenvector of H is also an eigenvector of S, for each i = 1, . . . , n,
we have that, there exists a complex number d

(i)
S (the associated eigenvalue)

such that
Sq(i) = q(i)d

(i)
S .

(We could prove that d
(i)
S is purely imaginary.) Combining this n vector

equalities in one matrix equality reads

SQ = QDS ,

where DS is n–by–n diagonal matrix made of the d
(i)
S on the diagonal. Since

Q is unitary, we get
S = QDSQ∗.

In other words, we have unitarily diagonalize S in the Q orthogonal basis.

(c) We are ready to conclude:

A = H + S = QDHQ∗ + QDSQ∗ = Q(DH + DS)Q∗.

Therefore A is diagonalizable in an orthogonal basis. Therefore A is normal.



3. Let M be an n-by-n {0, 1} tournament matrix. That is M + MT = J − I, where
J is the matrix of all 1’s. Use the following 5 steps to show that r(M) is greater
than or equal to n−1. (Note: for each step, you can use any of the previous steps,
whether you solve them or not). r(·) denotes the rank function.

(a) (5 pts) Show that if BT = −B (i.e. B is skew symmetric), then all the
eigenvalues of B are pure imaginary or zero. (B is matrix with real coefficient.)

(b) (2 pts) Show that M −MT is skew symmetric.

(c) (5 pts) Let A = I + M − MT . Use (a) and (b) to show that 0 is not an
eigenvalue of A and hence A is nonsingular.

(d) (4 pts) Use that A = (A − J) + J to show that r(A − J) is greater than or
equal to n− 1.

(e) (4 pts) Use (d) to show that r(MT ) is greater than or equal to n−1. Conclude.

Solution

(a) Let (λ, x) be an eigencouple of B a skew symmetric matrix. Then, Bx = λx
(1). If we multiply on the left (1) by xH , we get xHBx = λxHx (2). Now
we transpose-conjugate (1) and get that xHBH = xHλ, we use the fact that
BH = BT (since B is real) and that BT = −B (since B is skew symmetric) to
get that xH(−B) = xHλ, we multiply by x on the right and rearrange to get
that xHBx = −λxHx (3). Since x is not zero, (2) and (3) imply that λ = −λ.
Therefore λ is pure imaginary or zero.

(b) (M − MT )T = MT − (MT )T = MT − M = −(M − MT ), this proves that
M −MT is skew symmetric.

(c) The eigenvalues of A are the eigenvalues of A− I shifted by -1. But A− I =
M −MT so, A− I is skew symmetric (see (b)) and all its eigenvalues are pure
imaginary or zero. Therefore all the eigenvalues of A are of the form 1 + λ.i
where λ ∈ R. Consequently, none of them is zero and so A is nonsingular.

(d) We know that, for any matrices A and B, r(A + B) ≤ r(A) + r(B). In our
case, this gives r(A) ≤ r(A−J)+ r(J), but r(J) = 1 and r(A) = n, therefore
r(A− J) ≥ n− 1.

(e) Since A = I + M − MT , A − J = I − J + M − MT . But M is such that
M + MT = J − I, so I − J + M − MT = −2MT . From this we get that
A−J = −2MT . Therefore (d) proves that r(2MT ) ≥ n−1, so that r(MT ) ≥
n− 1, and so conclude that so is r(M).



4. For each integer k ≥ 0, let Lk denote the vector space of all polynomials with
coefficients in the field F and of degree less than or equal to k, i.e., let

Lk = {a0 + a1x + . . . + akx
k : a0, . . . , ak ∈ F}.

(a) (3 pts) What is the dimension of Lk as a vector space over F? Exhibit a basis
for Lk. No justification required.

(b) (5 pts) Show that
W = {f ∈ Lk : f(0) + f(1) = 0}

is a subspace of Lk.

(c) (6 pts) What is the dimension of W?

(d) (6 pts) Find a basis for W .

Solution

(a) dim(Lk) = k + 1, a basis (for example) is 1, x, x2, . . ., xk. (Also called the
monomial basis.)

(b) Let p and q be two polynomials in W . Let µ and ν be two numbers in F. We
have

(µp + νq)(0) + (µp + νq)(1) = µp(0) + νq(0) + µp(1) + νq(1)
= µ(p(0) + p(1)) + ν(q(0) + q(1))
= µ0 + ν0 = 0.

Therefore (µp + νq) is in W . Therefore W is a subspace of Lk.

(c) and (d) We claim that
{
xi − 1

2 , for i = 1, . . . , k
}

is a basis for W .

i. First notice that these k polynomials all belong to W .
ii. Second notice that these k polynomials are linearly independent (since

their degrees are all different).
iii. These two observations imply that dim(W ) ≥ k.
iv. But since the constant polynomial 1 (for example) is not in W , dim(W ) <

dim(Lk) = k + 1.
v. Combining the last two items implies dim(W ) = k which answers (c).
vi. Combining (ii) and (v) implies that

{
xi − 1

2 , for i = 1, . . . , k
}

is a basis
for W . This answers (d).



5. Suppose that A is a real, n-by-n symmetric matrix with A3 = A2 + A − I. Show
that A is invertible and in fact A is its own inverse.

Solution

The relation A3 = A2 + A − I writes (A − I)2(A + I) = 0. So this means that
the eigenvalues of A are 1 and/or −1. But A is symmetric so there is no defective
eigenvalue so this means that (A−I)(A+I) = 0, this writes A2 = I: A is invertible
and in fact A is its own inverse.



6. Let A =


1 −1 0 1
x 0 1 x + 1
1 x− 1 1 x + 1
x 0 x x

, x ∈ R. What is the rank of A dependent of x ∈ R.

Solution

We can first “upper triangularize” the given matrix, yielding

A =


1 −1 0 1
x 0 1 x + 1
1 x− 1 1 x + 1
x 0 x x


(1)
(2)
(3)
(4)

(1)
(2)−x·(1)
(3)−(1)

(4)−x·(1)−→


1 −1 0 1
0 x 1 1
0 x 1 x
0 x x 0


(5)
(6)
(7)
(8)

(5)
(6)

(6)−(7)
(6)−(8)−→


1 −1 0 1
0 x 1 1
0 0 0 1− x
0 0 1− x 1

 = Ã.

The above operations do not affect the matrix rank, so rank(A) = rank(Ã). Hence,
we conclude that A has full rank 4 whenever x ∈ R\{0, 1}, and rank 3 both if x = 0
(as the second and fourth row in Ã become identical and thus linearly dependent),
and if x = 1 (as the third row of Ã reduces to zero).



7. Show that det(An) = (a + (n − 1)b)(a − b)n−1 where An =


a b · · · b

b
. . . . . .

...
...

. . . . . . b
b · · · b a

 ∈

Rn×n and a, b ∈ R.

Solution

We can first rewrite the given matrix (determinant-invariant) by subtracting each
row (starting from the second) from its predecessor, yielding

det(An) =

∣∣∣∣∣∣∣∣∣∣
a b · · · b

b
. . . . . .

...
...

. . . . . . b
b · · · b a

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b · · · · · · · · · b
b− a a− b 0 · · · · · · 0

0 b− a a− b 0 · · · 0
...

. . . . . . . . . . . .
...

... · · · 0 b− a a− b 0
0 · · · · · · 0 b− a a− b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= det(Ãn).

We may then develop this determinant from the first row of Ãn producing the
result to be shown:

det(An) = det(Ãn) =
n∑

i=1

(−1)1+iã1i det(Ã1i)

=a(a− b)n−1 +
n∑

i=2

(−1)1+ib(b− a)i−1(a− b)n−i

=a(a− b)n−1 +
n∑

i=2

b(a− b)n−1

=(a + (n− 1)b)(a− b)n−1.

Alternate solution: v1 =


1
1
...
1
1

 is an eigenvector for An associated with the

eigenvalue λ1 = a+(n−1)b, v2 =


1

−1
0
...
0

 is an eigenvector for An associated with



the eigenvalue λ2 = a− b, v3 =


0
1

−1
...
0

 is an eigenvector for An associated with

the eigenvalue λ2 = a − b, ... vn =


0
...
0
1

−1

 is an eigenvector for An associated

with the eigenvalue λ2 = a − b. Note that v1, v2, ... vn are linearly independent.
Consequently A has eigenvalue λ1 = a + (n − 1)b with (geometric and algebraic)
multiplicity 1, and λ2 = a − b with (geometric and algebraic) multiplicity n − 1.
Consequently detAn = λ1 · (λ2)n−1 = (a + (n− 1)b)(a− b)n−1.



8. A complex n-by-n matrix P is idempotent if P 2 = P . Show that every idempotent
matrix is diagonalizable.

Solution

Let P be a complex n-by-n idempotent matrix.

The relation P 2 = P reads as well P (P − I) = 0. Therefore the eigenvalues of P
are either 0 or 1. We consider the two eigenspaces E0 (the eigenspace associated
with the eigenvalue 0), and E1 (the eigenspace associated with the eigenvalue 0).
Our goal is to prove that E0 ⊕ E1 = Cn. This will prove that P is diagonalizable.

Note that E0 is Null(P ).

Note as well that E1 is Range(P ). This is less obvious. On the one hand, E1 ⊂
Range(P ), since, if x ∈ E1, x = Tx so x ∈ Range(P ) (in other words an eigenspace
is always in the range). On the other hand, if y ∈ Range(P ), there exists x such
that y = Px, and so Py = P 2x = Px = y so that y ∈ E1, so Range(P ) ⊂ E1,

We now need to prove that Null(P )⊕ Range(P ) = Cn.

First of, E0 ∩ E1 = {0}(, as the intersection of two eigenspaces associated with
distinct eigenvalues). So, Null(P ) ∩ Range(P ) = {0}.
So its remains to prove that Null(P ) + Range(P ) = Cn. Let y ∈ Cn, we can write
y = (Py)+(y−Py). The left-hand side (Py) belongs to Range(P ). The right-hand
side (y − Py) belongs to Null(P ) since P (y − Py) = Py − P 2y = Py − Py = 0.

Therefore Null(P ) ⊕ Range(P ) = Cn. So E0 ⊕ E1 = Cn. This proves that P is
diagonalizable.


