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Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!
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1. Suppose that T is a linear map from V to F where F can be either R or C. Prove
that if a vector u in V is not in null(T ), then

V = null(T )⊕ {αu : α ∈ F}.



2. Let A be an n–by–n complex matrix. Define H = 1
2(A + A∗) and S = 1

2(A−A∗).
Prove that A is normal if every eigenvector of H is also an eigenvector of S.



3. Let M be an n-by-n {0, 1} tournament matrix. That is M + MT = J − I, where
J is the matrix of all 1’s. Use the following 5 steps to show that r(M) is greater
than or equal to n−1. (Note: for each step, you can use any of the previous steps,
whether you solve them or not). r(·) denotes the rank function.

(a) (5 pts) Show that if BT = −B (i.e. B is skew symmetric), then all the
eigenvalues of B are pure imaginary or zero. (B is matrix with real coefficient.)

(b) (2 pts) Show that M −MT is skew symmetric.

(c) (5 pts) Let A = I + M − MT . Use (a) and (b) to show that 0 is not an
eigenvalue of A and hence A is nonsingular.

(d) (4 pts) Use that A = (A − J) + J to show that r(A − J) is greater than or
equal to n− 1.

(e) (4 pts) Use (d) to show that r(MT ) is greater than or equal to n−1. Conclude.



4. For each integer k ≥ 0, let Lk denote the vector space of all polynomials with
coefficients in the field F and of degree less than or equal to k, i.e., let

Lk = {a0 + a1x + . . . + akx
k : a0, . . . , ak ∈ F}.

(a) (3 pts) What is the dimension of Lk as a vector space over F? Exhibit a basis
for Lk. No justification required.

(b) (5 pts) Show that
W = {f ∈ Lk : f(0) + f(1) = 0}

is a subspace of Lk.

(c) (6 pts) What is the dimension of W?

(d) (6 pts) Find a basis for W .



5. Suppose that A is a real, n-by-n symmetric matrix with A3 = A2 + A − I. Show
that A is invertible and in fact A is its own inverse.



6. Let A =


1 −1 0 1
x 0 1 x + 1
1 x− 1 1 x + 1
x 0 x x

, x ∈ R. What is the rank of A dependent of x ∈ R.



7. Show that det(An) = (a + (n − 1)b)(a − b)n−1 where An =


a b · · · b

b
. . . . . .

...
...

. . . . . . b
b · · · b a

 ∈

Rn×n and a, b ∈ R.



8. A complex n-by-n matrix P is idempotent if P 2 = P . Show that every idempotent
matrix is diagonalizable.


