University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam January 10, 2011

Name:

Exam Rules:

- This is a closed book exam. Once the exam begins, you have 4 hours to do your best. Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your <u>six best solutions</u>.
- Each problem is worth 20 points.
- Justify your solutions: **cite theorems that you use**, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write only on one side of paper.
- Write legibly using a dark pencil or pen.
- Ask the proctor if you have any questions.

	Good luck!	
1 2 3 4.	5. 6. 7. 8.	
	Total	

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:

Alexander Engau, Julien Langou (Chair), Richard Lundgren

1. Suppose that T is a linear map from V to \mathbb{F} where \mathbb{F} can be either \mathbb{R} or \mathbb{C} . Prove that if a vector u in V is not in null(T), then

 $V = \operatorname{null}(T) \oplus \{ \alpha u : \alpha \in \mathbb{F} \}.$

2. Let A be an n-by-n complex matrix. Define $H = \frac{1}{2}(A + A^*)$ and $S = \frac{1}{2}(A - A^*)$. Prove that A is normal if every eigenvector of H is also an eigenvector of S.

- 3. Let M be an *n*-by- $n \{0, 1\}$ tournament matrix. That is $M + M^T = J I$, where J is the matrix of all 1's. Use the following 5 steps to show that r(M) is greater than or equal to n 1. (Note: for each step, you can use any of the previous steps, whether you solve them or not). $r(\cdot)$ denotes the rank function.
 - (a) (5 pts) Show that if $B^T = -B$ (i.e. *B* is skew symmetric), then all the eigenvalues of *B* are pure imaginary or zero. (*B* is matrix with real coefficient.)
 - (b) (2 pts) Show that $M M^T$ is skew symmetric.
 - (c) (5 pts) Let $A = I + M M^T$. Use (a) and (b) to show that 0 is not an eigenvalue of A and hence A is nonsingular.
 - (d) (4 pts) Use that A = (A J) + J to show that r(A J) is greater than or equal to n 1.
 - (e) (4 pts) Use (d) to show that $r(M^T)$ is greater than or equal to n-1. Conclude.

4. For each integer $k \ge 0$, let L_k denote the vector space of all polynomials with coefficients in the field \mathbb{F} and of degree less than or equal to k, i.e., let

$$L_k = \{a_0 + a_1 x + \dots + a_k x^k : a_0, \dots, a_k \in \mathbb{F}\}.$$

- (a) (3 pts) What is the dimension of L_k as a vector space over \mathbb{F} ? Exhibit a basis for L_k . No justification required.
- (b) (5 pts) Show that

$$W = \{ f \in L_k : f(0) + f(1) = 0 \}$$

is a subspace of L_k .

- (c) (6 pts) What is the dimension of W?
- (d) (6 pts) Find a basis for W.

5. Suppose that A is a real, n-by-n symmetric matrix with $A^3 = A^2 + A - I$. Show that A is invertible and in fact A is its own inverse.

6. Let
$$A = \begin{bmatrix} 1 & -1 & 0 & 1 \\ x & 0 & 1 & x+1 \\ 1 & x-1 & 1 & x+1 \\ x & 0 & x & x \end{bmatrix}$$
, $x \in \mathbb{R}$. What is the rank of A dependent of $x \in \mathbb{R}$.

7. Show that
$$\det(A_n) = (a + (n-1)b)(a-b)^{n-1}$$
 where $A_n = \begin{pmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix} \in \mathbb{R}.$

8. A complex *n*-by-*n* matrix *P* is idempotent if $P^2 = P$. Show that every idempotent matrix is diagonalizable.