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1. Let V be a real inner product space with inner product 〈., .〉, and suppose that
T ∈ L(V ) is a linear operator T : V → V . Define what an adjoint of T is and show
that if T has an adjoint, then this adjoint is unique.

Solution

Let T ∈ L(V ). An adjoint of T is a linear operator T ∗ ∈ L(V ) such that

∀ x ∈ V,∀ y ∈ V, 〈Tx, y〉 = 〈x, T ∗y〉.

Claim: The adjoint is unique, if it exists.
Proof: Let A ∈ L(V ) be an adjoint of T and let B ∈ L(V ) be an adjoint of T , then

∀ y ∈ V,∀ x ∈ V, 〈Tx, y〉 = 〈x,Ay〉 and 〈Tx, y〉 = 〈x,By〉,

so that
∀ y ∈ V,∀ x ∈ V, 〈x,Ay〉 = 〈x,By〉,

using the bilinearity of the inner product,

∀ y ∈ V,∀ x ∈ V, 〈x,Ay −By〉 = 0,

so that
∀ y ∈ V, (Ay −By) ⊥ V,

but the only vector in V ⊥ is 0, so

∀ y ∈ V, Ay −By = 0,

so that
∀ y ∈ V, Ay = By,

so that
A = B.

Note: The adjoint always exists in finite dimensional inner product spaces. The
existence is not necessarily true in infinite dimensional inner product spaces.



2. We consider Mn(R) the vector space of all n–by–n matrices with real coeffi-
cients and supplement it with the inner product 〈X,Y 〉 −→ trace(XTY ). Let
A ∈Mn(R), and

ϕA :Mn(R) −→ Mn(R)
X 7−→ ATXA

Show that ϕA ∈ L(Mn(R)) and compute the adjoint of ϕA.

Solution

We have, ∀λ ∈ R,∀µ ∈ R, ∀X ∈Mn(R), ∀Y ∈Mn(R),

ϕA(λX+µY ) = AT (λX+µY )A = λ(ATXA)+µ(ATY A) = λϕA(X)+µϕA(Y ).

So ϕA ∈ L(Mn(R)).

Let X ∈Mn(R) and let Y ∈Mn(R),

〈ϕA(X), Y 〉 = trace
(
(ϕA(X))TY

)
= trace

(
(ATXA)TY

)
= trace

(
ATXTAY

)
,

we now use the fact that, { ∀A ∈Mn(R), ∀B ∈Mn(R), trace(AB) = trace(BA)}

= trace
(
XTAY AT

)
= trace

(
XT (AY AT )

)
= trace

(
XT (ϕAT (Y ))

)
= 〈X,ϕAT (Y )〉

So
(ϕA)∗ = ϕAT .



3. (a) Let A be a real symmetric n–by–n matrix. Prove that A is positive definite,
i.e., xTAx > 0 for all x ∈ Rn \ {0}, if and only if all the eigenvalues of A are
positive.

(b) Let A =

 2 0 0
0 3 −1
0 −1 3

. Put V = R3. Define the map ∗ : V × V → R by

u ∗ v = uTAv for all u, v ∈ V . Prove that ∗ is an inner product on V .

(c) Use the inner product from above and the Gram-Schmidt orthogonalization
process to find an orthonormal basis for V .

Solution

(a) Let A be a real symmetric matrix. We recall that, by definition, A is positive
definite if and only ∀x ∈ Rn\{0}, xTAx > 0. We also recall that a symmetric
matrix is diagonalizable in an orthonormal basis with real eigenvalues, so, for
our matrix A, there exists Λ a diagonal n–by–n matrix with real coefficients
and V a unitary matrix such that A = V ΛV T .

Let A be positive definite. Let λi be an eigenvalue of A and vi a unit-norm
eigenvector associated to λi, (so that vT

i vi = 1 and Avi = viλi,) then since
A is positive definite, we have vT

i Avi > 0 which means λi > 0. We have
proven that if A is positive definite then all eigenvalues of A are positive.
(Alternatively, this direction can be proven by contradiction because otherwise
vT
i Avi = λiv

T
i vi = λi‖vi‖2 < 0 and A was not positive definite.)

Let all eigenvalues of A be positive. Let x ∈ Rn\{0}. We have xTAx =
xTV ΛV Tx = (V Tx)T Λ(V Tx) =

∑n
i=1 λi(V Tx)2i > 0. So A is positive definite.

(b) A is symmetric, moreover the eigenvalues of A are 2 and 4 and so are positive,
using the previous question, we deduce that A is symmetric positive definite.
We check that ∗ satisfies the properties of an inner product on V .

i. x ∗ y = y ∗ x,
ii. (λx) ∗ y = λ(x ∗ y),
iii. (x+ y) ∗ z = (x ∗ z) + (y ∗ z),
iv. x ∗ x ≥ 0 with equality only for x = 0.

(i) comes from the symmetry of A, (ii) and (iii) comes from the linearity of
A, (iv) comes from the positive definiteness of A.

(c) We take the elementary basis and use the Gram-Schmidt process on it to
obtain on orthonormal basis for V . We obtain

q1 =

 √2/2
0
0

 , q2 =

 0√
3/3
0

 , q3 =

 0√
6/12√
6/4

 .



4. Let Mn(R) be the vector space of all n × n matrices with real coefficients, and
A ∈ Mn(R) be diagonalizable. We have a nonsingular matrix W and a diagonal
matrix Λ, such that A = WΛW−1. Define

B =
(

0 −A
2A 3A

)
.

Prove that B is diagonalizable and give the diagonalization of B (i.e. the 2m
eigencouples of B).
(Hint: one can first consider the m = 1 case where A = 1.)

Solution

Let

M =
(

0 −1
2 3

)
.

We have

pM (x) = det(
(
−x −1

2 3− x

)
) = x2 − 3x+ 2 = (x− 1)(x− 2).

Since M has two distinct eigenvalues, λ1 = 1 and λ2 = 2, M is diagonalizable.

Then we look for the eigenvectors of M , we find (for example)

v1 =
(

1
−1

)
and v2 =

(
1
−2

)
.

If we call

V =
(

1 1
−1 −2

)
,

we obtain the following diagonalization for M

M =
(

0 −1
2 3

)
= V DV −1 =

(
1 1
−1 −2

)(
1 0
0 2

)(
2 1
−1 −1

)
.

Extending this relation to blocks, one can check that

B =
(

0 −A
2A 3A

)
=
(

I I
−I −2I

)(
A 0
0 2A

)(
2I I
−I −I

)
.

Using the fact that A is diagonalizable, there exists a nonsingular matrix W and
a diagonal matrix Λ, such that A = WΛW−1. So

B =
(

0 −A
2A 3A

)
=
(

I I
−I −2I

)(
W 0

0 W

)(
Λ 0
0 2Λ

)(
W−1 0

0 W−1

)(
2I I
−I −I

)
.



which gives the diagonalization of B

B =
(

0 −A
2A 3A

)
=
(

W W
−W −2W

)(
Λ 0
0 2Λ

)(
2W−1 W−1

−W−1 −W−1

)
.

One can check that(
W W
−W −2W

)−1

=
(

2W−1 W−1

−W−1 −W−1

)
.



5. Let V be a vector space over the real numbers R. Let U1, U2, U3 be subspaces of
V .

(a) Prove that U1 ⊆ U3 implies that U1 + (U2 ∩ U3) = (U1 + U2) ∩ U3 (modular
law).

(b) Give examples to show that none of the following distributive laws holds,
in general. U1 ∩ (U2 + U3) = (U1 ∩ U2) + (U1 ∩ U3) and U1 + (U2 ∩ U3) =
(U1 + U2) ∩ (U1 + U3)

Solution

(a) Let U1 ⊆ U3.
One the one hand, we have that U1 + (U2 ∩ U3) ⊆ U1 + U2, on the other,
U1 + (U2 ∩ U3) ⊆ U3, so that

U1 + (U2 ∩ U3) ⊆ (U1 + U2) ∩ U3.

Now let z ∈ (U1 + U2) ∩ U3, then there exists z1 ∈ U1 and z2 ∈ U2 such that
z = z1 + z2 so z2 = z− z1 ∈ U3, so z2 ∈ U2 ∩U3. Therefore z ∈ U1 + (U2 ∩U3)
and so

(U1 + U2) ∩ U3 ⊆ U1 + (U2 ∩ U3).

We conclude that

(U1 + U2) ∩ U3 = U1 + (U2 ∩ U3).

(b) U1 ∩ (U2 + U3) = (U1 ∩ U2) + (U1 ∩ U3) does not hold in general. Consider

U1 = Span(
(

1
1

)
), U2 = Span(

(
1
0

)
), and U3 = Span(

(
0
1

)
).

Then

(U2 + U3) = R2, U1 ∩ (U2 + U3) = Span(
(

1
1

)
), but

(U1∩U2) = {
(

0
0

)
}, (U1∩U3) = {

(
0
0

)
}, (U1∩U2)+(U1∩U3) = {

(
0
0

)
}.

U1 + (U2 ∩ U3) = (U1 + U2) ∩ (U1 + U3) does not hold in general. Consider
again

U1 = Span(
(

1
1

)
), U2 = Span(

(
1
0

)
), and U3 = Span(

(
0
1

)
).

Then

(U2 ∩ U3) = {
(

0
0

)
}, U1 + (U2 ∩ U3) = Span(

(
1
1

)
), but

(U1 + U2) = R2, (U1 + U3) = R2, (U1 + U2) ∩ (U1 + U3) = R2.



6. Let (u1, u2, . . . , um) be an orthonormal basis for subspace W 6= {0} of the vector
space V = Rn (under the standard inner product), let U be the n–by–m matrix
defined by U = [u1, u2, . . . , um], and let P be the n–by–n matrix defined by P =
UUT .

(a) Prove that if v is any given member of V , then among all the vectors w in W ,
the one which minimizes ‖v − w‖ is given by w = (v • u1)u1 + (v • u2)u2 +
. . .+ (v • um)um where v • u is the standard inner product. (The vector w is
called the projection of v onto W .)

(b) Prove: For any vector v ∈ V , the projection w of v onto W is given by w = Pv.

(c) Prove: P is a projection matrix. (Recall that a matrix P ∈ Mn(R) is called
a projection matrix if and only if P is symmetric (P T = P ) and idempotent
(P 2 = P )).

(d) If V = R3, and W = Span[(1, 2, 2)T , (1, 0, 1)T ], find the projection matrix P
described above and use it to find the projection of (2, 2, 2)T onto W .

Solution

(a) First it is clear that w ∈W . Note as well that v−w ⊥W since for all x ∈W ,

(v − w • x) = ((v − (v • u1)u1 − . . .− (v • um)um) , x)
= (v, x)− (v • u1)(u1, x)− . . .− (v • um)(um, x) = 0.

The last equality comes from the fact that since x ∈W , x = (x•u1)u1 + . . .+
(x • um)um.

Now consider x ∈W . We define

‖v − x‖2 = ‖(v − w) + (w − x)‖2

= ‖v − w‖2 + 2(v − w) • (w − x) + ‖w − x‖2

Since v−w ⊥W and w− x ∈W , we have that (v−w) • (w− x) = 0, so that

‖v − x‖2 = ‖v − w‖2 + ‖w − x‖2

We see that the minimum for ‖v−x‖ is ‖v−w‖2 and is realized when x = w.

(b)

w = (v • u1)u1 + (v • u2)u2 + . . .+ (v • um)um

= u1(uT
1 v) + u2(uT

2 v) + . . .+ um(uT
mv)

= (u1u
T
1 + u2u

T
2 + . . .+ umu

T
m)v

= UUT v = Pv.

(c) First, P T = (UUT )T = UUT = P , second, P 2 = (UUT )2 = U(UTU)UT =
UUT = P where we have used the fact that UTU = I.



(d) An orthogonal basis for W is for example

(u1, u2) = (

 1/3
2/3
2/3

 ,

 2/3
−2/3

1/3

).

We get

P = UUT =

 5/9 −2/9 4/9
−2/9 8/9 2/9

4/9 2/9 5/9

 .

Finally

w = Px =

 14/9
16/9
22/9

 .



7. Let V be a real inner product space with inner product 〈., .〉V and let W be a real
inner product space with inner product 〈., .〉W such that dimV = dimW = n <∞.
Show that there exists a bijective linear mapping f : V → W so that 〈x, y〉V =
〈f(x), f(y)〉W for all x, y ∈ V .

Solution

Let {v1, . . . , vn} be an orthonormal basis of V and let {w1, . . . , wn} be an orthonor-
mal basis of W . We define the linear mapping f : V →W so that

∀i = 1, . . . , n, f(vi) = wi.

We note that f is correctly and uniquely defined and is bijective.

Claim: f conserves the scalar product (from V to W ).

Let x ∈ V , let y ∈ V , then we can decompose x and y onto the orthonormal basis
{v1, . . . , vn} as follows:

x =
n∑

i=1

vi〈vi, x〉V and y =
n∑

j=1

vj〈vj , y〉V . (1)

We form the inner product 〈x, y〉V and get

〈x, y〉V = 〈
n∑

i=1

vi〈vi, x〉V ,
n∑

j=1

vj〈vj , y〉V 〉V .

Using the bilinearity of the inner product 〈., .〉V

=
n∑

i=1

n∑
j=1

〈vi, x〉V 〈vi, vj〉V 〈vj , y〉V ,

Using the orthonormality of {v1, . . . , vn}, we get

=
n∑

i=1

〈vi, x〉V 〈vi, y〉V ,

Therefore we have

〈x, y〉V =
n∑

i=1

〈vi, x〉V 〈vi, y〉V , (2)

Back to Equation (1), Applying f and using the linearity of f , we get:

f(x) =
n∑

i=1

f(vi)〈vi, x〉V and f(y) =
n∑

j=1

f(vj)〈vj , y〉V .



And using the definition of f , we get

f(x) =
n∑

i=1

wi〈vi, x〉V and f(y) =
n∑

j=1

wj〈vj , y〉V .

We now form the inner product 〈f(x), f(y)〉W and get

〈f(x), f(y)〉W = 〈
n∑

i=1

wi〈vi, x〉V ,
n∑

j=1

wj〈vj , y〉V 〉W .

Using the bilinearity of the inner product 〈., .〉W

=
n∑

i=1

n∑
j=1

〈vi, x〉V 〈wi, wj〉W 〈vj , y〉V ,

Using the orthonormality of {w1, . . . , wn}, we get

=
n∑

i=1

〈vi, x〉V 〈vi, y〉V ,

Using Equation (2), we conclude that

〈f(x), f(y)〉W = 〈x, y〉V



8. Let n a natural integer, Mn(C) be the vector space of all n × n matrices with
complex coefficients, and A = (aij)ij ∈Mn(C). Show that

Spectrum(A) ⊂
n⋃

i=1

{
B′
(
aii,

∑
1 ≤ j ≤ n

j 6= i

|aij |
)}

,

where we define for any a ∈ C and any r ∈ [0,+∞), B′(a, r) by

B′(a, r) = {z ∈ C, |z − a| ≤ r} .

The B′
(
aii,
∑

1≤j≤n, j 6=i |aij |
)

are called the Gershgorin circles of A.

Solution

Let λ ∈ Spectrum(A) and consider an associated eigenvector x ∈ Rn. (So that
x 6= 0 and Ax = xλ.) We write the equality Ax = xλ row by row and get

∀ i = 1, . . . , n,
n∑

j=1

aijxj = xiλ.

Consider i0 such that
|xi0 | = max

i=1,...,n
|xi|.

(Note that |xi0 | 6= 0 since x 6= 0.) Then we get:

|xi0(λ− ai0i0)| = |
∑

1 ≤ j ≤ n
j 6= i0

ai0jxj |,

≤
∑

1 ≤ j ≤ n
j 6= i0

|ai0j | |xj |,

≤

 ∑
1 ≤ j ≤ n

j 6= i0

|ai0j |

 |xi0 |.

Since |xi0 | 6= 0,

|λ− ai0i0 | ≤

 ∑
1 ≤ j ≤ n

j 6= i0

|ai0j |

 .

So

λ ∈ {B′

ai0i0 ,
∑

1 ≤ j ≤ n
j 6= i0

|ai0j |

}.



So

λ ∈ ∪n
i=1{B′

aii,
∑

1 ≤ j ≤ n
j 6= i

|aij |

}.
Since λ was an arbitrary eigenvalue

Spectrum(A) ⊂ ∪n
i=1{B′

aii,
∑

1 ≤ j ≤ n
j 6= i

|aij |

}.


