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Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!
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1. Let V be a real inner product space with inner product 〈., .〉, and suppose that
T ∈ L(V ) is a linear operator T : V → V . Define what an adjoint of T is and show
that if T has an adjoint, then this adjoint is unique.



2. We consider Mn(R) the vector space of all n–by–n matrices with real coeffi-
cients and supplement it with the inner product 〈X, Y 〉 −→ trace(XT Y ). Let
A ∈Mn(R), and

ϕA :Mn(R) −→ Mn(R)
X 7−→ AT XA

Show that ϕA ∈ L(Mn(R)) and compute the adjoint of ϕA.



3. (a) Let A be a real symmetric n–by–n matrix. Prove that A is positive definite,
i.e., xT Ax > 0 for all x ∈ Rn \ {0}, if and only if all the eigenvalues of A are
positive.

(b) Let A =

 2 0 0
0 3 −1
0 −1 3

. Put V = R3. Define the map ∗ : V × V → R by

u ∗ v = uT Av for all u, v ∈ V . Prove that ∗ is an inner product on V .

(c) Use the inner product from above and the Gram-Schmidt orthogonalization
process to find an orthonormal basis for V .



4. Let Mn(R) be the vector space of all n × n matrices with real coefficients, and
A ∈ Mn(R) be diagonalizable. We have a nonsingular matrix W and a diagonal
matrix Λ, such that A = WΛW−1. Define

B =
(

0 −A
2A 3A

)
.

Prove that B is diagonalizable and give the diagonalization of B (i.e. the 2m
eigencouples of B).
(Hint: one can first consider the m = 1 case where A = 1.)



5. Let V be a vector space over the real numbers R. Let U1, U2, U3 be subspaces of
V .

(a) Prove that U1 ⊆ U3 implies that U1 + (U2 ∩ U3) = (U1 + U2) ∩ U3 (modular
law).

(b) Give examples to show that none of the following distributive laws holds,
in general. U1 ∩ (U2 + U3) = (U1 ∩ U2) + (U1 ∩ U3) and U1 + (U2 ∩ U3) =
(U1 + U2) ∩ (U1 + U3)



6. Let (u1, u2, . . . , um) be an orthonormal basis for subspace W 6= {0} of the vector
space V = Rn (under the standard inner product), let U be the n–by–m matrix
defined by U = [u1, u2, . . . , um], and let P be the n–by–n matrix defined by P =
UUT .

(a) Prove that if v is any given member of V , then among all the vectors w in W ,
the one which minimizes ‖v − w‖ is given by w = (v • u1)u1 + (v • u2)u2 +
. . . + (v • um)um where v • u is the standard inner product. (The vector w is
called the projection of v onto W .)

(b) Prove: For any vector v ∈ V , the projection w of v onto W is given by w = Pv.

(c) Prove: P is a projection matrix. (Recall that a matrix P ∈ Mn(R) is called
a projection matrix if and only if P is symmetric (P T = P ) and idempotent
(P 2 = P )).

(d) If V = R3, and W = Span[(1, 2, 2)T , (1, 0, 1)T ], find the projection matrix P
described above and use it to find the projection of (2, 2, 2)T onto W .



7. Let V be a real inner product space with inner product 〈., .〉V and let W be a real
inner product space with inner product 〈., .〉W such that dim V = dim W = n <∞.
Show that there exists a bijective linear mapping f : V → W so that 〈x, y〉V =
〈f(x), f(y)〉W for all x, y ∈ V .



8. Let n a natural integer, Mn(C) be the vector space of all n × n matrices with
complex coefficients, and A = (aij)ij ∈Mn(C). Show that

Spectrum(A) ⊂
n⋃

i=1

{
B′
(
aii,

∑
1 ≤ j ≤ n

j 6= i

|aij |
)}

,

where we define for any a ∈ C and any r ∈ [0, +∞), B′(a, r) by

B′(a, r) = {z ∈ C, |z − a| ≤ r} .

The B′
(
aii,
∑

1≤j≤n, j 6=i |aij |
)

are called the Gershgorin circles of A.


