University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam June 4, 2010

Name:

Exam Rules:

- This is a closed book exam. Once the exam begins, you have 4 hours to do your best. Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your <u>six best solutions</u>.
- Each problem is worth 20 points.
- Justify your solutions: **cite theorems that you use**, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write only on one side of paper.
- Write legibly using a dark pencil or pen.
- Ask the proctor if you have any questions.

	Good luck!	
1. 2. 3. 4.	5. 6. 7. 8.	
	Total	

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:

Alexander Engau, Julien Langou (Chair), Stanley Payne

1. Let V be a real inner product space with inner product $\langle ., . \rangle$, and suppose that $T \in \mathcal{L}(V)$ is a linear operator $T: V \to V$. Define what an *adjoint* of T is and show that if T has an adjoint, then this adjoint is unique.

2. We consider $\mathcal{M}_n(\mathbb{R})$ the vector space of all *n*-by-*n* matrices with real coefficients and supplement it with the inner product $\langle X, Y \rangle \longrightarrow \operatorname{trace}(X^T Y)$. Let $A \in \mathcal{M}_n(\mathbb{R})$, and

$$\begin{array}{cccc} \varphi_A: \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ X & \longmapsto & A^T X A \end{array}$$

Show that $\varphi_A \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ and compute the adjoint of φ_A .

- 3. (a) Let A be a real symmetric n-by-n matrix. Prove that A is positive definite, i.e., $x^T A x > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$, if and only if all the eigenvalues of A are positive.
 - (b) Let $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{pmatrix}$. Put $V = \mathbb{R}^3$. Define the map $*: V \times V \to \mathbb{R}$ by $u * v = u^T A v$ for all $u, v \in V$. Prove that * is an inner product on V.
 - (c) Use the inner product from above and the Gram-Schmidt orthogonalization process to find an orthonormal basis for V.

4. Let $\mathcal{M}_n(\mathbb{R})$ be the vector space of all $n \times n$ matrices with real coefficients, and $A \in \mathcal{M}_n(\mathbb{R})$ be diagonalizable. We have a nonsingular matrix W and a diagonal matrix Λ , such that $A = W \Lambda W^{-1}$. Define

$$B = \left(\begin{array}{cc} 0 & -A \\ 2A & 3A \end{array}\right).$$

Prove that B is diagonalizable and give the diagonalization of B (i.e. the 2m eigencouples of B).

(Hint: one can first consider the m = 1 case where A = 1.)

- 5. Let V be a vector space over the real numbers \mathbb{R} . Let U_1, U_2, U_3 be subspaces of V.
 - (a) Prove that $U_1 \subseteq U_3$ implies that $U_1 + (U_2 \cap U_3) = (U_1 + U_2) \cap U_3$ (modular law).
 - (b) Give examples to show that none of the following distributive laws holds, in general. $U_1 \cap (U_2 + U_3) = (U_1 \cap U_2) + (U_1 \cap U_3)$ and $U_1 + (U_2 \cap U_3) = (U_1 + U_2) \cap (U_1 + U_3)$

- 6. Let (u_1, u_2, \ldots, u_m) be an orthonormal basis for subspace $W \neq \{0\}$ of the vector space $V = \mathbb{R}^n$ (under the standard inner product), let U be the *n*-by-*m* matrix defined by $U = [u_1, u_2, \ldots, u_m]$, and let P be the *n*-by-*n* matrix defined by $P = UU^T$.
 - (a) Prove that if v is any given member of V, then among all the vectors w in W, the one which minimizes ||v w|| is given by $w = (v \bullet u_1)u_1 + (v \bullet u_2)u_2 + \dots + (v \bullet u_m)u_m$ where $v \bullet u$ is the standard inner product. (The vector w is called the *projection* of v onto W.)
 - (b) Prove: For any vector $v \in V$, the projection w of v onto W is given by w = Pv.
 - (c) Prove: P is a projection matrix. (Recall that a matrix $P \in \mathcal{M}_n(\mathbb{R})$ is called a *projection matrix* if and only if P is symmetric $(P^T = P)$ and idempotent $(P^2 = P)$).
 - (d) If $V = \mathbb{R}^3$, and $W = \text{Span}[(1,2,2)^T, (1,0,1)^T]$, find the projection matrix P described above and use it to find the projection of $(2,2,2)^T$ onto W.

7. Let V be a real inner product space with inner product $\langle ., . \rangle_V$ and let W be a real inner product space with inner product $\langle ., . \rangle_W$ such that dim $V = \dim W = n < \infty$. Show that there exists a bijective linear mapping $f : V \to W$ so that $\langle x, y \rangle_V = \langle f(x), f(y) \rangle_W$ for all $x, y \in V$. 8. Let *n* a natural integer, $\mathcal{M}_n(\mathbb{C})$ be the vector space of all $n \times n$ matrices with complex coefficients, and $A = (a_{ij})_{ij} \in \mathcal{M}_n(\mathbb{C})$. Show that

Spectrum(A)
$$\subset \bigcup_{i=1}^{n} \left\{ B' \left(a_{ii}, \sum_{\substack{1 \leq j \leq n \\ j \neq i}} |a_{ij}| \right) \right\},\$$

where we define for any $a \in \mathbb{C}$ and any $r \in [0, +\infty)$, B'(a, r) by

$$B'(a,r) = \{z \in \mathbb{C}, |z-a| \le r\}.$$

The $B'\left(a_{ii}, \sum_{1 \leq j \leq n, j \neq i} |a_{ij}|\right)$ are called the Gershgorin circles of A.