University of Colorado at Denver — Mathematics Department
Applied Linear Algebra Preliminary Exam With Solutions
15 January 2010, 10:00 am — 2:00 pm

Name:

The proctor will let you read the following conditions before the exam begins, and you will
have time for questions. Once the exam begins, you will have 4 hours to do your best. This
is a closed book exam. Please put your name on each sheet of paper that you turn in.

PLEASE WRITE ONLY ON ONE SIDE OF EACH SHEET OF PAPER.
Exam conditions:

e Submit as many solutions as you can. All solutions will be graded and your final
grade will be based on your six best solutions.

e Each problem is worth 20 points; parts of problems have equal value unless stated
otherwise.

e Justify your solutions: cite theorems that you use, provide counter-examples for dis-
proof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your proof;
instead, produce an independent proof.

e Begin each solution on a new page and use additional paper, if necessary.

e Write legibly using a dark pencil or pen.

e Notation: C denotes the field of complex numbers , R denotes the field of real num-
bers. C™ and R"™ denote the vector spaces of n-tuples of complex and real scalars,
respectively, written as column vectors. £(V') denotes the set of linear operators on
the vector space V. For T' € L(V), the range and null space of T (sometimes called
the image and kernel) are denoted range (T") and null(T), respectively. (u,v) denotes
the inner product of vectors u and v. If A is a matrix over a field, then rank (A) is
the rank of A. For x € R", || - || denotes the usual Euclidean norm, unless specified
otherwise. If A is an m x n matrix over a field F', T4 is the linear map defined by

Ty: F" - F™: z — Az,

T* is the adjoint of the operator 7" and A\* is the complex conjugate of the scalar A.
vT and AT denote vector and matrix transposes, respectively.

e Ask the proctor if you have any questions.

| Good luck! |
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1. Short answer problems.

(a) Suppose that A is a normal complex matrix with only one eigenvalue A. Deter-
mine exactly what matrix A must be.

For the following three parts determine all 2 x 2 real matrices A for which

0 1
(b)AA=<1 0>7
goaar— [0 1),

T _ 1 0 .
(d) AA _<0 _1>,

Solution:

For part (a), since A is a normal complex matrix with X as its only eigenvalue, it must
be unitarily diagonalizable to AI, from which it is clear that A = AI.

b
For part(b), let A = (a d) with a, b, c,d € R so that
c

A - a b\ fa b _ a’? +bc ab+ bd
c d) \c d ac+cd be+ d>
which for (b) implies that b(a+d) = c(a+d) = 1,50 b = ¢ # 0 and a®>+bc = a®>+b> = 0

yielding a = b = 0, thus showing that such matrix cannot exist. For (c¢) and (d), we
similarly find that

AT — a b a c\ a?+b> ac+bd
c d) \b d ac+bd 2+ d?
which immediately yields the same conclusion for (c) because a® + b = ¢ +d? = 0

implies that a = b = ¢ = d = 0 so that ac+ bd = 0 # 1 also, and for (d) because
A+d>>0>-1.

2. Let A and B be n x n matrices, V be a finite dimensional vector space, and T' € L(V).
Let row (A) denote the row space of A. Prove or disprove the following statements:

(e) There exists a positive integer k so that V = null(T*) @ range (T*).

Solution:



(a) If A%2 =0, then the rank of A is at most 2.
False: A counter example is given by

1 -1 0 0 0
1 -1 0 00 O
A 0 01 -1 0 O
0 01 -1 0 O
0 00 1 -1
0 00 01 -1

(b) If T has no real eigenvalues, then T is invertible.
True: 0 is not an eigenvalue of T', so T is invertible.

(c) row (AB) C row (B).
True: Suppose y € row (AB). Then there is a vector ¢ such that y = ¢’ AB. Let
d= ATc. Then y = d' B, so y € row (B).

(d) V =null(T) @ range (T).

01

False: Let T'= T4, where A = ( 0 0 ) . Then null(7") = range (T') = null(T) @

range (T') = span {(1,0)7} # V.
(e) There exists a positive integer k so that V = null(T*) @ range (T*).
True: V D range (T') D range (T2) D --- D range (T"!) D ). Thus,

n > dim (range (T)) > ... > dim (range (T™*1)) > 0.

So, for some k < n,dim (range (T%)) = dim (range (T**1)). Thus, range (T*) =
range (T*+1) = T'(range (T*)), which means that range (T*) is an invariant sub-
space of T'.

Let W = range (T%) \null(T*). Then T*W = {0} (since W C null(T*)), and
dim (T*W) = dim (W) (since W C range (T*), which is invariant). It follows
that range (T%) (\null(7*) = {0}. Using the fact that for any linear operator S,
dim (range (5)) + dim (null(S)) = n, we have

dim (range (T%) + null(T*)) = dim (range (T%)) + dim (null(T*))
— dim (range (T") ﬂ dim (null(Tk)>
= dim (range (T%)) 4 dim (null(T*)) = n.

Thus, range (T*) + null(T*) is a subspace of V with dimension n, so is equal to
V. Also, since range (T*) N null(T*) = {0}, V = range (T*) @ null(T*).

3. Let T' € L(R™) be a normal linear map with (7'(z),z) = 0 for all z € R". Show that
T =-T.



Solution: Let x,y € R™ be arbitrary, so z + y € R” and

= (T(z),z)+(T(x),y) + (T(y),z) + (T'(y),y) because T' is linear
H:/—/O \16_/

= (T'(2),y) + (v, T"(2)) because T is normal

= (T(x),y) + (T"(x),y) because T € L(R")

=(T(z)+T"(x),y) again because T is linear.

Because x and y were chosen arbitrarily, this implies that 7'+ T = 0 showing that
™ =-T.

(NOTE: The assumption that T" is normal is not necessary, as shown in the following
alternative proof).

Let T' € L(R™) be arbitrary and define S = T'+7™ and K = T'—T*. Observe that S is
Hermitian, that K* = —K and that, for any z, (K (z),z) = (T'(x),z) — (T"(z),z) = 0.
It follows that

Thus, if (T'(z),z) = 0 for all z € R", then (S(z),z) = 0 for all x € R™. Since S
is Hermitian, all of its eigenvalues are real. If v is an eigenvector of S associated
with eigenvalue A, then 0 = (S(v),v) = \(v,v), which implies that A\ = 0. Thus, all
eigenvalues of S are 0, and since S is Hermitian, S = 0.

It follows that T* = K*/2 = - K /2 = —
. Let A be a square matrix over R and let p(A) be the spectral radius of A. Let || - ||
denote the matrix norm induced by the vector norm || - ||. Prove or disprove each of
the following:

(a) p(4) <Al

(b) p(AB) < p(A)p(B).
(¢) p(A+ B) < p(A) + p(B).
(d) If ||A|| > 1, then the sequence {A’} diverges as i — +oo.

Solution: Part (a). True. Let A\; denote the eigenvalue with largest magnitude, and
let v be an eigenvector associated with A;. Then

Aol [[Av]]
o]l loll

p(A) = M| = < [lAfl;

where the last inequality follows from the definition of the induced matrix norm.

0 1 11
Part (b). False. A counterexample is given by A = ( 00 ) ; B= < - > Here

p(A) =0; p(B) =2, and p(AB) = 2.

01 0 0
Part (c) False. A counterexample is given by A = ( 0 0 ) ; B= < Lo )



S
Part (d) False. A counterexample is given by A = ( 0 s ) Then ||A|l; = 1.5

(where ||-||; denotes the 1-norm); but A3 = (

125 .75

), and HA3H1 = .875. Thus,
0 125

HA?’iHl < 875" — 0, as i — +o00. It follows that A* — 0 as i — +oo.

5. Let C' be an n X n matrix over the complex numbers.

(a)
(b)

()

Define the terms eigenvalue and eigenvector, and explain what are the algebraic
and geometric multiplicities of an eigenvalue.

Let A be an m x n complex matrix and let B be an n X m complex matrix. Let
A be a nonzero eigenvalue of AB with geometric multiplicity equal to k. Show
that X is also an eigenvalue of BA with geometric multiplicity equal to k.

Explain the connection between the eigenvalues of AB and those of BA, including
an example of a case where AB has an eigenvalue that BA does not.

Solution: Given the matrix C' as above, if v is a nonzero vector in C™ for
which Cv = Av for some complex number A, then v is an eigenvector of C
associated with (or “belonging to”) the eigenvalue A\. A complex number A is an
eigenvalue of C' if and only if it is a root of the characteristic polynomial f(z)
of C. The multiplicity of A as a root of f(z) is the algebraic multiplicity of A
as an eigenvalue of C'. The dimension of the (right) null space of AI — C'is the
geometric multiplicity of A as an eigenvalue of C, and the geometric multiplicity
of X\ is always at least 1 and at most the algebraic multiplicity of A.

Now suppose that A is a nonzero eigenvalue of AB with geometric multiplicity
equal to k. This means that there is a linearly independent list (vq,...,vg) of
eigenvectors of AB belonging to the eigenvalue A. Then (ABwv,...,ABvg) =
(Av1,...,Av) is also a linearly independent list, and this easily implies that
(Bvy,...,Buy) is a linearly independent list. But then

(BA)B’UZ = B(AB’Ul) = B()\’UZ) = )\(Bvi),

so that (Bvy,...,Bug) is a linearly independent list of eigenvectors of BA be-
longing to A. Hence the geometric multiplicity of A as an eigenvalue of BA is at
least as large as the geometric multiplicity of A as an eigenvalue of AB. Inter-
changing the roles of A and B shows that the two geometric multiplicities are
the same. WARNING: In order for this argument to work we had to know
that A is not zero.

In general, if A is a nonzero complex number, then A is an eigenvalue of AB if and
only if it is an eigenvalue of BA. In that case, the algebraic multiplicity of A is
the same for both AB and BA, just as is the case for the geometric multiplicities.
However, for A = 0 things are different. Suppose that m > n. Here AB is m xm
and BA is n x n. The characteristic polynomial of AB is equal to that of BA
multiplied by ™~ ". So it is possible for AB to have A = 0 as an eigenvalue even

1
if BA does not. As a simple example, let A = < . ) and let B = (1,1). Then



11
AB = < - > and BA = (2). So AB has A\ = 0 as an eigenvalue but BA does

not.
6. Let V be a real inner product space, and u,v € V.

(a) From the axioms of an inner product space, prove the Cauchy-Schwarz inequality
[(w, )| < lull [[v]]-

(b) If v # 0, show that |u+ v| = |lul| + ||v] if and only if there exists a € [0, 00)
such that u = aw.

Solution:

(a) If v = 0, then both sides of the inequality are zero, so the inequality holds.
Suppose v # 0, and let

(u,v)
5 V.

o]l

w=u—

Note that w is orthogonal to v, so

2

2 2
2 <U,’U> 2 2 <U,U> 2 <U,U>
Jul :( ) oll? + uof? = S0 g2 » S0
ol ol ol

(1)

Mutiplying both sides by ||v||2 and taking the square root yields the result.

lu 4 oll* = (u+ v, u +0) = [ul]* + 2 (u, 0) + o]
2 2 2
< lull® + 2 Jull floll + {lolI = (]l + [[0l)7,

with equality if and only if
(u, v) = [[ul ][] -

In equation 1 above, note that equality holds only if w = 0, in which case

u = tav, where a = —ff}]”g. It follows that (u,v) = |ull|v| if and only if

u = av. Thus, if ||u+v| = |jul| + ||v|, then v = av, where « is as defined
above, so is nonnegative. Conversely, if u = fv for some § > 0, then ||ju + v|| =
(B + 1) [[oll = lIBvll + llvll = {Jull + [lv]l.

7. Jordan Form

3 -1 2 -2 2
0 2 1 -1 1
PutA=]10 0 2 0 0
0 0 0 2 1
0 0 0 0 3



(a) Determine the Jordan form of A.
(b) Construct an invertible 5 x 5 matrix P such that P"'AP = J is in Jordan form.

Solution: Note that A is upper triangular and that the characteristic polynomial
of Ais f(z) = |\ — A| = (z — 2)3(x — 3)%

Since A1 = 3 has algebraic multiplicity 2, we consider it first. When we row
reduce A — 31 we find that the null space of A — 31 has dimension 2 with basis
(e1,e4 + e5), where we use the standard notation that e; = (1,0,0,0,0)7, ey =
(0,1,0,0,0)7,...,e5 = (0,0,0,0,1)T. This means that the geometric multiplicity
of A1 = 3 is the same as its algebraic multiplicity, so the Jordan block associated
with A\; = 3 is diagonal.

Now consider Ay = 2. Put B = A — 2I. When we row reduce B we find that a
basis for its null space is (e1 + ez, es + e4). This tells us that the Jordan block
associated with Ao = 2 will have one elementary Jordan block of size 2 and one
of size 1. So we can now write out the Jordan form of A.

The Jordan form of A is J =

O O O O W
o O O w O
O O N O O
SO N = O O
N O O O O

Next we compute a basis for the null space of the null space NB? of B2. When
2

1 -1 2 -2 2 1 -1 1 -1 1
0 0 1 -1 1 0 0 0 0 O
werowreduce B2=| 0 0 0 0 0 =10 0 0 0 O
0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1

we find that a basis for the null space of B? is (e1 + e2,e1 — e3,e1 + e4). Since
the algebraic multiplicity of Ao = 2 is 3, this is as far as we have to go. After
playing around with these vectors we easily see the following:

(e1+e4) is a maximal independent list of vectors of N B? spanning a space disjoint
from NB. Then B(e; + e4) = —(e1 + e2) and with the vector e3 + e4 we have a
basis for NB. So we can complete the solution to the problem as follows.

Put v1 =e1; va =eq +e5; v3 = —(e1 +e2); va = —(e1 +e4); v5 = €3+ €4.
Then if P is the matrix whose columns are the basis vectors v1, ve, v3, v4, vs,
we have P71AP = J.

1 =2 0
8. Singular Value Decomposition Let A = < >
0 2 1

(a) Compute a singular value decomposition of A.

(b) Put b= (1,1,1). Compute the vector b in the row space of A that is closest to
b.



Solution: Since AT A is 3 x 3 while AA” is only 2 x 2, we begin with computing the
5 —4
-4 5
is an eigenvector of AA” belonging to eigenvalue A\; = 9. Similarly, wo = (1,1) is
an eigenvector of AAT belonging to eigenvalue Ay = 1. Using Gram-Schmidt on this

basis of R? (which is trivial since w; and wo are orthogonal), we find the following
orthonormal basis for R? consisting of eigenvectors of AAT:

()0}

At this point we know that the (nonzero) singular values of AT (and hence also of A)
are 51 = /9 = 3 and 09 = v/1 = 1. Also we know that the eigenvalues of AT A must
be A\{ =9, Ay =1, and A3 = 0. At this point we must put v; = S%_ATui7 fori=1,2.
This gives

eigenvalues of AAT = ( ) A simple computation shows that w; = (1, —1)

1 1
=373 =

U1

According to the general theory, the remaining vector vs must be a unit vector that
spans the perp of the subspace spanned by v; and ve. It is easy to see that (2,1, —2)
is orthogonal to v; and vy and has length 3. So we put v3 = (2/3,1/3,-2/3)7. This
essentially allows us to write down a singular value decomposition of A. Let U be
the matrix with columns u; and us and let V' be the matrix whose columns are the
vectors vy, v2,v3. Then

. L X /3 1 2v2/3
U—( ) andV=—| -4/3 0 2/3
Val-1a v ~1/3 1 —2v2/3

Finally, ¥ must have the same shape as A and have the singular values down the

diagonal, so
300
Y= .
< 010 >

Putting this together we find that a singular value decomposition of A is

/3 1 2v2/3

1 11 300 1
A:UZVT:\&<_1 1>~<0 X o)\ﬁ —4/3 0 V2/3
-1/3 1 —2v2/3

This completes a solution to part (a).

Probably the easiest way to do part (b) is to rewrite the problem as: find a least
squares solution to A7x = b. The usual roles of A and A" are reversed, but the



normal equations give AA”x = Ab, which becomes

5 —4 il B -1

—4 5 a9 3 )
This leads to x = (7/9,11/9), from which we find b = (7/9,8/9,11/9), which we
leave as a row, since the original problem was set that way. One could also have used

Gram-Schmidt on the original rows of A to find an orthonormal basis of the row space
and use that basis to project b onto the row space of A.



