University of Colorado at Denver — Mathematics Department Applied Linear Algebra Preliminary Exam With Solutions 15 January 2010, 10:00 am – 2:00 pm

Name: ____

The proctor will let you read the following conditions before the exam begins, and you will have time for questions. Once the exam begins, you will have 4 hours to do your best. This is a closed book exam. Please put your name on each sheet of paper that you turn in.

PLEASE WRITE ONLY ON ONE SIDE OF EACH SHEET OF PAPER.

Exam conditions:

- Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your <u>six best solutions</u>.
- Each problem is worth 20 points; parts of problems have equal value unless stated otherwise.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write legibly using a dark pencil or pen.
- Notation: C denotes the field of complex numbers, \mathbb{R} denotes the field of real numbers. C^n and \mathbb{R}^n denote the vector spaces of *n*-tuples of complex and real scalars, respectively, written as column vectors. $\mathcal{L}(V)$ denotes the set of linear operators on the vector space V. For $T \in \mathcal{L}(V)$, the range and null space of T (sometimes called the *image* and *kernel*) are denoted range (T) and null(T), respectively. $\langle u, v \rangle$ denotes the inner product of vectors u and v. If A is a matrix over a field, then rank (A) is the rank of A. For $x \in \mathbb{R}^n$, $\|\cdot\|$ denotes the usual Euclidean norm, unless specified otherwise. If A is an $m \times n$ matrix over a field F, T_A is the linear map defined by

$$T_A \colon F^n \to F^m \colon x \mapsto Ax.$$

 T^* is the adjoint of the operator T and λ^* is the complex conjugate of the scalar λ . v^T and A^T denote vector and matrix transposes, respectively.

• Ask the proctor if you have any questions.

- 1. Short answer problems.
 - (a) Suppose that A is a normal complex matrix with only one eigenvalue λ . Determine exactly what matrix A must be.

For the following three parts determine all 2×2 real matrices A for which

(b)
$$AA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

(c) $AA^{T} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$
(d) $AA^{T} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};$

Solution:

For part (a), since A is a normal complex matrix with λ as its only eigenvalue, it must be unitarily diagonalizable to λI , from which it is clear that $A = \lambda I$.

For part(b), let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with $a, b, c, d \in \mathbb{R}$ so that

$$AA = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix}$$

which for (b) implies that b(a+d) = c(a+d) = 1, so $b = c \neq 0$ and $a^2+bc = a^2+b^2 = 0$ yielding a = b = 0, thus showing that such matrix cannot exist. For (c) and (d), we similarly find that

$$AA^{T} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a^{2} + b^{2} & ac + bd \\ ac + bd & c^{2} + d^{2} \end{pmatrix}$$

which immediately yields the same conclusion for (c) because $a^2 + b^2 = c^2 + d^2 = 0$ implies that a = b = c = d = 0 so that $ac + bd = 0 \neq 1$ also, and for (d) because $c^2 + d^2 \ge 0 > -1$.

- 2. Let A and B be $n \times n$ matrices, V be a finite dimensional vector space, and $T \in \mathcal{L}(V)$. Let row (A) denote the row space of A. Prove or disprove the following statements:
 - (a) If $A^2 = 0$, then the rank of A is at most 2.
 - (b) If T has no real eigenvalues, then T is invertible.
 - (c) $\operatorname{row}(AB) \subseteq \operatorname{row}(B)$.
 - (d) $V = \operatorname{null}(T) \oplus \operatorname{range}(T)$.
 - (e) There exists a positive integer k so that $V = \operatorname{null}(T^k) \oplus \operatorname{range}(T^k)$.

Solution:

(a) If $A^2 = 0$, then the rank of A is at most 2.

False: A counter example is given by

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

(b) If T has no real eigenvalues, then T is invertible.

True: 0 is not an eigenvalue of T, so T is invertible.

- (c) row $(AB) \subset$ row (B). True: Suppose $y \in$ row (AB). Then there is a vector c such that $y = c^T AB$. Let $d = A^T c$. Then $y = d^T B$, so $y \in$ row (B).
- (d) $V = \operatorname{null}(T) \oplus \operatorname{range}(T)$.

False: Let $T = T_A$, where $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then $\operatorname{null}(T) = \operatorname{range}(T) = \operatorname{null}(T) \oplus \operatorname{range}(T) = \operatorname{span}\{(1,0)^T\} \neq V.$

(e) There exists a positive integer k so that $V = \operatorname{null}(T^k) \oplus \operatorname{range}(T^k)$. True: $V \supseteq \operatorname{range}(T) \supseteq \operatorname{range}(T^2) \supseteq \cdots \supseteq \operatorname{range}(T^{n+1}) \supseteq \emptyset$. Thus,

 $n \ge \dim (\operatorname{range} (T)) \ge \ldots \ge \dim (\operatorname{range} (T^{n+1})) \ge 0.$

So, for some $k \leq n$, dim (range (T^k)) = dim (range (T^{k+1})). Thus, range (T^k) = range $(T^{k+1}) = T$ (range (T^k)), which means that range (T^k) is an invariant subspace of T.

Let $W = \operatorname{range}(T^k) \bigcap \operatorname{null}(T^k)$. Then $T^k W = \{0\}$ (since $W \subset \operatorname{null}(T^k)$), and $\dim(T^k W) = \dim(W)$ (since $W \subset \operatorname{range}(T^k)$, which is invariant). It follows that $\operatorname{range}(T^k) \bigcap \operatorname{null}(T^k) = \{0\}$. Using the fact that for any linear operator S, $\dim(\operatorname{range}(S)) + \dim(\operatorname{null}(S)) = n$, we have

$$\dim (\operatorname{range} (T^k) + \operatorname{null}(T^k)) = \dim (\operatorname{range} (T^k)) + \dim (\operatorname{null}(T^k))$$
$$- \dim (\operatorname{range} (T^k) \bigcap \dim (\operatorname{null}(T^k))$$
$$= \dim (\operatorname{range} (T^k)) + \dim (\operatorname{null}(T^k)) = n.$$

Thus, range (T^k) + null (T^k) is a subspace of V with dimension n, so is equal to V. Also, since range $(T^k) \cap \text{null}(T^k) = \{0\}, V = \text{range}(T^k) \oplus \text{null}(T^k).$

3. Let $T \in \mathcal{L}(\mathbb{R}^n)$ be a normal linear map with $\langle T(x), x \rangle = 0$ for all $x \in \mathbb{R}^n$. Show that $T^* = -T$.

Solution: Let $x, y \in \mathbb{R}^n$ be arbitrary, so $x + y \in \mathbb{R}^n$ and

$$0 = \langle T(x+y), x+y \rangle$$

$$= \underbrace{\langle T(x), x \rangle}_{=0} + \langle T(x), y \rangle + \langle T(y), x \rangle + \underbrace{\langle T(y), y \rangle}_{=0} \qquad \text{because } T \text{ is linear}$$

$$= \langle T(x), y \rangle + \langle y, T^*(x) \rangle \qquad \text{because } T \text{ is normal}$$

$$= \langle T(x), y \rangle + \langle T^*(x), y \rangle \qquad \text{because } T \in \mathcal{L}(\mathbb{R}^n)$$

$$= \langle T(x) + T^*(x), y \rangle \qquad \text{again because } T \text{ is linear}.$$

Because x and y were chosen arbitrarily, this implies that $T + T^* = 0$ showing that $T^* = -T$.

(NOTE: The assumption that T is normal is not necessary, as shown in the following alternative proof).

Let $T \in \mathcal{L}(\mathbb{R}^n)$ be arbitrary and define $S = T + T^*$ and $K = T - T^*$. Observe that S is Hermitian, that $K^* = -K$ and that, for any x, $\langle K(x), x \rangle = \langle T(x), x \rangle - \langle T^*(x), x \rangle = 0$. It follows that

$$2\langle T(x), x \rangle = \langle S(x), x \rangle + \langle K(x), x \rangle = \langle S(x), x \rangle.$$

Thus, if $\langle T(x), x \rangle = 0$ for all $x \in \mathbb{R}^n$, then $\langle S(x), x \rangle = 0$ for all $x \in \mathbb{R}^n$. Since S is Hermitian, all of its eigenvalues are real. If v is an eigenvector of S associated with eigenvalue λ , then $0 = \langle S(v), v \rangle = \lambda \langle v, v \rangle$, which implies that $\lambda = 0$. Thus, all eigenvalues of S are 0, and since S is Hermitian, S = 0.

It follows that $T^* = K^*/2 = -K/2 = -T$.

- 4. Let A be a square matrix over \mathbb{R} and let $\rho(A)$ be the spectral radius of A. Let $\|\cdot\|$ denote the matrix norm induced by the vector norm $\|\cdot\|$. Prove or disprove each of the following:
 - (a) $\rho(A) \le ||A||$.
 - (b) $\rho(AB) \leq \rho(A)\rho(B)$.
 - (c) $\rho(A+B) \le \rho(A) + \rho(B)$.
 - (d) If ||A|| > 1, then the sequence $\{A^i\}$ diverges as $i \to +\infty$.

Solution: Part (a). **True.** Let λ_1 denote the eigenvalue with largest magnitude, and let v be an eigenvector associated with λ_1 . Then

$$\rho(A) = |\lambda_1| = \frac{\|\lambda_1 v\|}{\|v\|} = \frac{\|Av\|}{\|v\|} \le \|A\|,$$

where the last inequality follows from the definition of the induced matrix norm.

Part (b). **False.** A counterexample is given by $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$; $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Here $\rho(A) = 0$; $\rho(B) = 2$, and $\rho(AB) = 2$.

Part (c) **False.** A counterexample is given by $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$

Part (d) **False.** A counterexample is given by $A = \begin{pmatrix} .5 & 1 \\ 0 & .5 \end{pmatrix}$. Then $||A||_1 = 1.5$ (where $||\cdot||_1$ denotes the 1-norm); but $A^3 = \begin{pmatrix} .125 & .75 \\ 0 & .125 \end{pmatrix}$, and $||A^3||_1 = .875$. Thus, $||A^{3i}||_1 \le .875^i \to 0$, as $i \to +\infty$. It follows that $A^i \to 0$ as $i \to +\infty$.

- 5. Let C be an $n \times n$ matrix over the complex numbers.
 - (a) Define the terms eigenvalue and eigenvector, and explain what are the algebraic and geometric multiplicities of an eigenvalue.
 - (b) Let A be an $m \times n$ complex matrix and let B be an $n \times m$ complex matrix. Let λ be a nonzero eigenvalue of AB with geometric multiplicity equal to k. Show that λ is also an eigenvalue of BA with geometric multiplicity equal to k.
 - (c) Explain the connection between the eigenvalues of AB and those of BA, including an example of a case where AB has an eigenvalue that BA does not.

Solution: Given the matrix C as above, if v is a nonzero vector in \mathbb{C}^n for which $Cv = \lambda v$ for some complex number λ , then v is an *eigenvector* of Cassociated with (or "belonging to") the eigenvalue λ . A complex number λ is an eigenvalue of C if and only if it is a root of the characteristic polynomial f(x)of C. The multiplicity of λ as a root of f(x) is the algebraic multiplicity of λ as an eigenvalue of C. The dimension of the (right) null space of $\lambda I - C$ is the geometric multiplicity of λ as an eigenvalue of C, and the geometric multiplicity of λ is always at least 1 and at most the algebraic multiplicity of λ .

Now suppose that λ is a nonzero eigenvalue of AB with geometric multiplicity equal to k. This means that there is a linearly independent list (v_1, \ldots, v_k) of eigenvectors of AB belonging to the eigenvalue λ . Then $(ABv_1, \ldots, ABv_k) =$ $(\lambda v_1, \ldots, \lambda v_k)$ is also a linearly independent list, and this easily implies that (Bv_1, \ldots, Bv_k) is a linearly independent list. But then

$$(BA)Bv_i = B(ABv_i) = B(\lambda v_i) = \lambda(Bv_i),$$

so that (Bv_1, \ldots, Bv_k) is a linearly independent list of eigenvectors of BA belonging to λ . Hence the geometric multiplicity of λ as an eigenvalue of BA is at least as large as the geometric multiplicity of λ as an eigenvalue of AB. Interchanging the roles of A and B shows that the two geometric multiplicities are the same. **WARNING:** In order for this argument to work we had to know that λ is not zero.

In general, if λ is a nonzero complex number, then λ is an eigenvalue of AB if and only if it is an eigenvalue of BA. In that case, the algebraic multiplicity of λ is the same for both AB and BA, just as is the case for the geometric multiplicities. However, for $\lambda = 0$ things are different. Suppose that m > n. Here AB is $m \times m$ and BA is $n \times n$. The characteristic polynomial of AB is equal to that of BAmultiplied by x^{m-n} . So it is possible for AB to have $\lambda = 0$ as an eigenvalue even

if *BA* does not. As a simple example, let $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and let B = (1, 1). Then

 $AB = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and BA = (2). So AB has $\lambda = 0$ as an eigenvalue but BA does not.

- 6. Let V be a real inner product space, and $u, v \in V$.
 - (a) From the axioms of an inner product space, prove the Cauchy-Schwarz inequality

 $|\langle u,v\rangle| \le \|u\| \, \|v\| \, .$

(b) If $v \neq 0$, show that ||u+v|| = ||u|| + ||v|| if and only if there exists $\alpha \in [0, \infty)$ such that $u = \alpha v$.

Solution:

(a) If v = 0, then both sides of the inequality are zero, so the inequality holds. Suppose $v \neq 0$, and let

$$w = u - \frac{\langle u, v \rangle}{\|v\|^2} v.$$

Note that w is orthogonal to v, so

$$\|u\|^{2} = \left(\frac{\langle u, v \rangle}{\|v\|^{2}}\right)^{2} \|v\|^{2} + \|w\|^{2} = \frac{\langle u, v \rangle^{2}}{\|v\|^{2}} + \|w\|^{2} \ge \frac{\langle u, v \rangle^{2}}{\|v\|^{2}}.$$
 (1)

Mutiplying both sides by $||v||^2$ and taking the square root yields the result. (b)

$$||u + v||^{2} = \langle u + v, u + v \rangle = ||u||^{2} + 2 \langle u, v \rangle + ||v||^{2}$$

$$\leq ||u||^{2} + 2 ||u|| ||v|| + ||v||^{2} = (||u|| + ||v||)^{2},$$

with equality if and only if

$$\langle u, v \rangle = \|u\| \|v\|.$$

In equation 1 above, note that equality holds only if w = 0, in which case $u = \pm \alpha v$, where $\alpha = -\frac{\langle u,v \rangle}{\|v\|^2}$. It follows that $\langle u,v \rangle = \|u\| \|v\|$ if and only if $u = \alpha v$. Thus, if $\|u+v\| = \|u\| + \|v\|$, then $u = \alpha v$, where α is as defined above, so is nonnegative. Conversely, if $u = \beta v$ for some $\beta \ge 0$, then $\|u+v\| = (\beta + 1) \|v\| = \|\beta v\| + \|v\| = \|u\| + \|v\|$.

7. Jordan Form

Put
$$A = \begin{pmatrix} 3 & -1 & 2 & -2 & 2 \\ 0 & 2 & 1 & -1 & 1 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$
.

- (a) Determine the Jordan form of A.
- (b) Construct an invertible 5×5 matrix P such that $P^{-1}AP = J$ is in Jordan form.

Solution: Note that A is upper triangular and that the characteristic polynomial of A is $f(x) = |\lambda I - A| = (x - 2)^3 (x - 3)^2$.

Since $\lambda_1 = 3$ has algebraic multiplicity 2, we consider it first. When we row reduce A - 3I we find that the null space of A - 3I has dimension 2 with basis $(e_1, e_4 + e_5)$, where we use the standard notation that $e_1 = (1, 0, 0, 0, 0)^T$, $e_2 = (0, 1, 0, 0, 0)^T$, \ldots , $e_5 = (0, 0, 0, 0, 1)^T$. This means that the geometric multiplicity of $\lambda_1 = 3$ is the same as its algebraic multiplicity, so the Jordan block associated with $\lambda_1 = 3$ is diagonal.

Now consider $\lambda_2 = 2$. Put B = A - 2I. When we row reduce B we find that a basis for its null space is $(e_1 + e_2, e_3 + e_4)$. This tells us that the Jordan block associated with $\lambda_2 = 2$ will have one elementary Jordan block of size 2 and one of size 1. So we can now write out the Jordan form of A.

The Jordan form of A is
$$J = \begin{pmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$
.

Next we compute a basis for the null space of the null space NB^2 of B^2 . When

we find that a basis for the null space of B^2 is $(e_1 + e_2, e_1 - e_3, e_1 + e_4)$. Since the algebraic multiplicity of $\lambda_2 = 2$ is 3, this is as far as we have to go. After playing around with these vectors we easily see the following:

 (e_1+e_4) is a maximal independent list of vectors of NB^2 spanning a space disjoint from NB. Then $B(e_1 + e_4) = -(e_1 + e_2)$ and with the vector $e_3 + e_4$ we have a basis for NB. So we can complete the solution to the problem as follows.

Put $v_1 = e_1$; $v_2 = e_4 + e_5$; $v_3 = -(e_1 + e_2)$; $v_4 = -(e_1 + e_4)$; $v_5 = e_3 + e_4$. Then if P is the matrix whose columns are the basis vectors v_1 , v_2 , v_3 , v_4 , v_5 ,

we have $P^{-1}AP = J$.

8. Singular Value Decomposition Let
$$A = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$
.

- (a) Compute a singular value decomposition of A.
- (b) Put $\mathbf{b} = (1, 1, 1)$. Compute the vector \mathbf{b} in the row space of A that is closest to \mathbf{b} .

Solution: Since $A^T A$ is 3×3 while AA^T is only 2×2 , we begin with computing the eigenvalues of $AA^T = \begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix}$. A simple computation shows that $w_1 = (1, -1)$ is an eigenvector of AA^T belonging to eigenvalue $\lambda_1 = 9$. Similarly, $w_2 = (1, 1)$ is an eigenvector of AA^T belonging to eigenvalue $\lambda_2 = 1$. Using Gram-Schmidt on this basis of \mathbb{R}^2 (which is trivial since w_1 and w_2 are orthogonal), we find the following orthonormal basis for \mathbb{R}^2 consisting of eigenvectors of AA^T :

$$\mathcal{B} = \left\{ u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}.$$

At this point we know that the (nonzero) singular values of A^T (and hence also of A) are $s_1 = \sqrt{9} = 3$ and $\sigma_2 = \sqrt{1} = 1$. Also we know that the eigenvalues of $A^T A$ must be $\lambda_1 = 9$, $\lambda_2 = 1$, and $\lambda_3 = 0$. At this point we must put $v_i = \frac{1}{s_i} A^T u_i$, for i = 1, 2. This gives

$$v_1 = \frac{1}{3\sqrt{2}} \begin{pmatrix} 1\\ -4\\ -1 \end{pmatrix}, v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}.$$

According to the general theory, the remaining vector v_3 must be a unit vector that spans the perp of the subspace spanned by v_1 and v_2 . It is easy to see that (2, 1, -2)is orthogonal to v_1 and v_2 and has length 3. So we put $v_3 = (2/3, 1/3, -2/3)^T$. This essentially allows us to write down a singular value decomposition of A. Let U be the matrix with columns u_1 and u_2 and let V be the matrix whose columns are the vectors v_1, v_2, v_3 . Then

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \text{ and } V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1/3 & 1 & 2\sqrt{2}/3 \\ -4/3 & 0 & \sqrt{2}/3 \\ -1/3 & 1 & -2\sqrt{2}/3 \end{pmatrix}.$$

Finally, Σ must have the same shape as A and have the singular values down the diagonal, so

$$\Sigma = \left(\begin{array}{rrr} 3 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

Putting this together we find that a singular value decomposition of A is

$$A = U\Sigma V^{T} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1/3 & 1 & 2\sqrt{2}/3 \\ -4/3 & 0 & \sqrt{2}/3 \\ -1/3 & 1 & -2\sqrt{2}/3 \end{pmatrix}^{T}$$

This completes a solution to part (a).

Probably the easiest way to do part (b) is to rewrite the problem as: find a least squares solution to $A^T \mathbf{x} = \mathbf{b}$. The usual roles of A and A^T are reversed, but the

normal equations give $AA^T \mathbf{x} = A\mathbf{b}$, which becomes

$$\left(\begin{array}{cc} 5 & -4 \\ -4 & 5 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} -1 \\ 3 \end{array}\right).$$

This leads to $\mathbf{x} = (7/9, 11/9)$, from which we find $\hat{\mathbf{b}} = (7/9, 8/9, 11/9)$, which we leave as a row, since the original problem was set that way. One could also have used Gram-Schmidt on the original rows of A to find an orthonormal basis of the row space and use that basis to project \mathbf{b} onto the row space of A.