University of Colorado at Denver — Mathematics Department Applied Linear Algebra Preliminary Exam 15 January 2010, 10:00 am – 2:00 pm

Name:

The proctor will let you read the following conditions before the exam begins, and you will have time for questions. Once the exam begins, you will have 4 hours to do your best. This is a closed book exam. Please put your name on each sheet of paper that you turn in.

PLEASE WRITE ONLY ON ONE SIDE OF EACH SHEET OF PAPER.

Exam conditions:

- Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your <u>six best solutions</u>.
- Each problem is worth 20 points; parts of problems have equal value unless stated otherwise.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write legibly using a dark pencil or pen.
- Notation: C denotes the field of complex numbers, \mathbb{R} denotes the field of real numbers. C^n and \mathbb{R}^n denote the vector spaces of *n*-tuples of complex and real scalars, respectively, written as column vectors. $\mathcal{L}(V)$ denotes the set of linear operators on the vector space V. For $T \in \mathcal{L}(V)$, the range and null space of T (sometimes called the *image* and *kernel*) are denoted range (T) and null(T), respectively. $\langle u, v \rangle$ denotes the inner product of vectors u and v. If A is a matrix over a field, then rank (A) is the rank of A. For $x \in \mathbb{R}^n$, $\|\cdot\|$ denotes the usual Euclidean norm, unless specified otherwise. If A is an $m \times n$ matrix over a field F, T_A is the linear map defined by

$$T_A \colon F^n \to F^m \colon x \mapsto Ax.$$

 T^* is the adjoint of the operator T and λ^* is the complex conjugate of the scalar λ . v^T and A^T denote vector and matrix transposes, respectively.

• Ask the proctor if you have any questions.

- 1. Short answer problems.
 - (a) Suppose that A is a normal complex matrix with only one eigenvalue λ . Determine exactly what matrix A must be.

For the following three parts determine all 2×2 real matrices A for which

(b)
$$AA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

(c) $AA^T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$
(d) $AA^T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};$

- 2. Let A and B be $n \times n$ matrices, V be a finite dimensional vector space, and $T \in \mathcal{L}(V)$. Let row (A) denote the row space of A. Prove or disprove the following statements:
 - (a) If $A^2 = 0$, then the rank of A is at most 2.
 - (b) If T has no real eigenvalues, then T is invertible.
 - (c) $\operatorname{row}(AB) \subseteq \operatorname{row}(B)$.
 - (d) $V = \operatorname{null}(T) \oplus \operatorname{range}(T)$.
 - (e) There exists a positive integer k so that $V = \operatorname{null}(T^k) \oplus \operatorname{range}(T^k)$.
- 3. Let $T \in \mathcal{L}(\mathbb{R}^n)$ be a normal linear map with $\langle T(x), x \rangle = 0$ for all $x \in \mathbb{R}^n$. Show that $T^* = -T$.
- 4. Let A be a square matrix over \mathbb{R} and let $\rho(A)$ be the spectral radius of A. Let $\|\cdot\|$ denote the matrix norm induced by the vector norm $\|\cdot\|$. Prove or disprove each of the following:
 - (a) $\rho(A) \le ||A||.$
 - (b) $\rho(AB) \le \rho(A)\rho(B)$.
 - (c) $\rho(A+B) \le \rho(A) + \rho(B)$.
 - (d) If ||A|| > 1, then the sequence $\{A^i\}$ diverges as $i \to +\infty$.

5. Let C be an $n \times n$ matrix over the complex numbers.

- (a) Define the terms eigenvalue and eigenvector, and explain what are the algebraic and geometric multiplicities of an eigenvalue.
- (b) Let A be an $m \times n$ complex matrix and let B be an $n \times m$ complex matrix. Let λ be a nonzero eigenvalue of AB with geometric multiplicity equal to k. Show that λ is also an eigenvalue of BA with geometric multiplicity equal to k.
- (c) Explain the connection between the eigenvalues of AB and those of BA, including an example of a case where AB has an eigenvalue that BA does not.

- 6. Let V be a real inner product space, and $u, v \in V$.
 - (a) From the axioms of an inner product space, prove the Cauchy-Schwarz inequality

$$|\langle u, v \rangle| \le ||u|| \, ||v|| \, .$$

- (b) If $v \neq 0$, show that ||u + v|| = ||u|| + ||v|| if and only if there exists $\alpha \in [0, \infty)$ such that $u = \alpha v$.
- 7. Jordan Form

$$\operatorname{Put} A = \begin{pmatrix} 3 & -1 & 2 & -2 & 2 \\ 0 & 2 & 1 & -1 & 1 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}.$$

- (a) Determine the Jordan form of A.
- (b) Construct an invertible 5×5 matrix P such that $P^{-1}AP = J$ is in Jordan form.
- 8. Singular Value Decomposition Let $A = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 2 & 1 \end{pmatrix}$.
 - (a) Compute a singular value decomposition of A.
 - (b) Put $\mathbf{b} = (1, 1, 1)$. Compute the vector $\hat{\mathbf{b}}$ in the row space of A that is closest to \mathbf{b} .