
University of Colorado at Denver — Mathematics Department

Applied Linear Algebra Preliminary Exam With Solutions

1 June 2009, 10:00 am – 2:00 pm

Name:

The proctor will let you read the following conditions before the exam begins, and you will

have time for questions. Once the exam begins, you will have 4 hours to do your best. This

is a closed book exam. Please put your name on each sheet of paper that you turn in.

Exam conditions:

• Submit as many solutions as you can. All solutions will be graded and your final grade

will be based on your six best solutions.

• Each problem is worth 20 points; parts of problems have equal value unless stated

otherwise..

• Justify your solutions: cite theorems that you use, provide counter-examples for dis-

proof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your proof;

instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write legibly using a dark pencil or pen.

• Notation: C denotes the field of complex numbers , R denotes the field of real numbers,

and F denotes a field which may be either C or R. Cn and Rn denote the vector spaces

of n-tuples of complex and real scalars, respectively, written as column vectors. For

T ∈ L(V ), the image (sometimes called the range) of T is denoted Im(T ). If A is a

matrix over a field, then rk(A) is the rank of A. For x ∈ Rn, � · � denotes the usual

Euclidean norm. If A is an m× n matrix over F , TA is the linear map defined by

TA : Fn → Fm : x �→ Ax.

T ∗ is the adjoint of the operator T and λ∗ is the complex conjugate of the scalar λ.

vT and AT denote vector and matrix transposes, respectively.

• Ask the proctor if you have any questions.

Good luck!
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1. Let A =

�
1 2

2 1

�
. Define T : M2(R)→M2(R) by

T : B �→ AB −BA.

(i) (8 points) Fix an ordered basis B of M2(R) and compute the matrix [T ]B that
represents T with respect to this basis.

(ii) (8 points) Compute a basis for each of the eigenspaces of T .
(iii) (4 points) Give the minimal and characteristic polynomials of T and the Jordan

form for T .

Solution: We choose the "standard ordered basis"

B = (E11, E12, E21, E22)

where Eij has a 1 in the (i, j) position and zero elsewhere.
Then routine computations show that

T : E11 �→ 2(E21 − E12)

T : E12 �→ 2(E22 − E11)

T : E21 �→ 2(E11 − E22)

T : E22 �→ 2(E12 − E21)

From this it is easy to write down he matrix [T ]B, and then write down

λI − [T ]B =





λ 2 −2 0

2 λ 0 −2

−2 0 λ 2

0 −2 2 λ




.

In a few steps we evaluate the determinant of this matrix and find that the character-
istic polynomial of T is

f(λ) = λ2(λ− 4)(λ + 4).

Put λ = 0 in the matrix and row reduce to find that the null space has the basis
(E11 + E22, E12 + E21)

A basis for the eigenspace with λ = 4 is

(E11 − E12 + E21 − E22).

A basis for the eigenspace with λ = −4 is

(E11 + E12 − E21 − E22).



So the Jordan form is a diagonal matrix with diagonal entries 0, 0, 4,−4, and the

minimal polynomial is

p(λ) = λ(λ− 4)(λ + 4).

2. Let A ∈ M6(C) be defined by

A =





0 0 0 0 0 0

2 0 0 0 0 0

0 0 −1 0 0 0

0 0 −1 −1 0 0

0 0 0 −1 −1 −1

0 0 0 0 0 −1





.

Find all of the eigenvalues, eigenvectors, and generalized eigenvectors of A. Construct

the characteristic polynomial, the minimal polynomial, and the Jordan form of A.

Solution: The characteristic polynomial is x2(x + 1)4 and the eigenvalues are 0 and

-1. The eigenvectors associated with eigenvalue 0 are of the form [0, a, 0, 0, 0, 0]T and

the generalized eigenvectors are of the form [a, b, 0, 0, 0, ]T . The eigenvectors associated

with -1 are of the form [0, 0, 0, a, b,−a]T , and the generalized eigenvectors are of the

form [0, 0, 0, a, b, c]T . The minimal polynomial is x2(x + 1)3. One Jordan form is





0 1 0 0 0 0

0 0 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 0

0 0 0 0 0 −1





.

3. Norms of Linear Operators

(a) Let A be an m×n real matrix. Prove that there is a real constant MA such that

�Ax� ≤ MA�x� for all x ∈ Rn.

Solution: We use two basic facts: First, �(x1, . . . , xm)� ≤
�m

i=1 |xi|, by the

triangle inequality; Second, recall the Cauchy-Schwartz inequality: |x ·v| ≤ �x� ·
�v�. So we have:

�Av� = �(aij)





v1

v2

.

.

.

vn




� =

��������

��������

(a11, . . . , a1n) · v
.
.
.

(am1, . . . , amn) · v

��������

��������
≤

≤
m�

i=1

�(ai1, . . . , ain) · v� ≤
m�

i=1

�(ai1, . . . , ain)� · �v� = MA�v�,

where MA =
�m

i=1

�
a2

i1 + a2
i2 + · · · + a2

in.



(b) Let T : Rn → Rm be a linear map. Prove that there is some positive constant
�T� for which

�T (v)� ≤ �T� · �v�

for all v ∈ Rn.
Solution: If T = TA : Rn → Rm with A = (aij), then �T (v)� = �Av� ≤ MA�v�
(by part (a)) for all v ∈ Rn, where MA =

�m
i=1

�
a2

i1 + a2
i2 + · · · + a2

in ∈ R.

4. Spheres in Finite Dimensional Real Vector Spaces
Let B = (v1, v2, . . . , vn) be an ordered basis of the real vector space V with dimension
n. For each v ∈ V there are unique scalars c1, . . . , cn ∈ R for which v =

�n
i=1 civi.

Write the coordinate matrix [v]B of v with respect to the ordered basis B as

[v]B =





c1

c2

...
cn




, so that v = (v1, . . . , vn)





c1

c2

...
cn




= B · [v]B.

For c = [c1, . . . , cn]T ∈ Rn, we employ the usual Euclidean norm:

�c� =

����
n�

i=1

c2
i .

For an arbitrary ordered basis B of V , we define the norm with respect to B as follows:

�v�B := �[v]B�.

Given the basis B, a specific vector v0 and a positive number r we can define the
n-dimensional sphere with center v0 and radius r (with respect to B) by

Sr,B(v0) = {w ∈ V : �v0 − w�B ≤ r}.

Problem Let r > 0 and let B, B� be any two ordered bases of V . Show that there is
an r� > 0 such that

Sr,B(0) ⊆ Sr�,B�(0).

Solution: If B and B� are two given ordered bases of V , there is an invertible, real
n× n matrix A for which B� = BA, so that [v]B = A · [v]B� . Then there is a constant
�A� such that �AX� ≤ �A� · �X� for any X ∈ Rn. Hence

�v�B = �[v]B� = �A · [v]B�� ≤ �A� · �[v]B�� = �A� · �v�B� .

From this we see that

Sr,BA(0) ⊆ Sr�A�,B(0). (1)

Of course the argument is symmetric in B and B�.



5. Fredholm Alternative

Let A be an m × n real matrix and b ∈ Rm. Show that exactly one of the following

systems has a solution:

i) Ax = b

ii) AT y = 0, yT b �= 0.

Note: Our notation is y =





y1

.

.

.

ym



, so yT = [y1, . . . , ym].

Solution: If b ∈ colA, then statement i) has a solution, but since colA ⊥ nullAT ,

statement ii) has no solution.

If b �∈ colA, then statement i) does not have a solution. In this case, let z = projcolA b
(the orthogonal projection of b onto the column space of A), and define y = b − z.

Note that y �= 0 (since b �∈ colA). Note also that since z is an orthogonal projection,

y ∈ (colA)⊥ = nullAT . Thus, AT y = 0 and yT b = yT (y + z) = yT y �= 0, so statement

ii) has a solution.

6. Upper-triangularization

(a) (12 points) For each of the following, if it is true, merely say so; if it is false, give

a counterexample.

(i) If V is a finite-dimensional vector space over R and T ∈ L(V ), then V has a

basis B with respect to which [T ]B is upper triangular.

Solution: FALSE Suppose T : R2 → R2 : (x, y) �→ (y,−x). Then if S is the

standard ordered basis of R2, the matrix

[T ]S =

�
0 1

−1 0

�
,

so that the characteristic polynomial of T is x2 + 1. This polynomial has no

real roots, so T has no real eigenvalues, which would have to lie along the

diagonal of [T ]B if V had such a basis.

(ii) If V is a finite-dimensional vector spacee over C and T ∈ L(V ), then V has

a basis B with respect to which [T ]B is upper triangular.

Solution: TRUE (This is usually called the Theorem of Schur.)

(iii) If V is a finite-dimensional vector space over C and S, T ∈ L(V ), then V has

a basis B for which both [S]B and [T ]B are upper triangular.

Solution: False Suppose that with respect to some basis B�, S and T have

the following matrices:

[S]B� =

�
0 1

c 0

�
and [T ]B� =

�
0 1

d 0

�
,



with c �= d. Then a basis B of the desired type would exist if and only if

there were an invertible matrix P =

�
e f

g h

�
for which

�
e f

g h

� �
0 1

c 0

� �
h −f

−g e

�
=

�
∗ ∗

ch2 − g2 ∗

�
,

with a similar equation holding for the other matrix. It follows that there
would have to be an invertible matrix P as above with g2 = ch2 and g2 = dh2.
If g = 0, then h �= 0, implying that c = 0 and d = 0, contradicting c �= d.

(b) (8 points) Show that a normal, upper triangular matrix must be diagonal.

Solution: We may assume that A is n × n with entries in C, with Akj = 0 if
k > j. Then

A11A11 =
n�

k=1

Ak1Ak1 =
n�

k=1

A∗
1kAk1 = (A∗A)11 =

= (AA∗)11 =
n�

k=1

A1kA
∗
k1 =

n�

k=1

A1kA1k.

It now follows that A12 = A13 = · · · = A1n = 0. Consider the (2, 2) entry.

(AA∗)22 =
n�

k=1

A2k(A∗)k2 =
n�

k=2

A2kA2k.

This must also equal

(A∗A)22 =
�

k

(A∗)2kAk2 =
2�

k=1

(A∗)2kAk2 = A22A22.

It follows that A23 = A24 = · · · = A2n.
Proceed down the rows to show recursively that in fact A must be diagonal.

7. Tournament Matrices
The matrices of this problem are all n× n with real entries.

(a) Show that if the matrix A is skew-symmetric then I + A is nonsingular.
(b) Show that for arbitrary matrices A and B, rk(A + B) ≤ rk(A) + rk(B).
(c) If A is arbitrary and J is the matrix of all 1’s, then show that

rk(A− J) ≥ rk(A)− rk(J).

(d) If M is a (0, 1)-matrix with zeros on the main diagonal and with Mij = 0 if and
only if Mji = 1, show that rk(M) ≥ n− 1. (Such a matrix is called a tournament
matrix.)



Solution: Suppose AT = −A and that X is a column vector for which (I +A)X = 0.
Then AX = −X implies that X = (−A)X = AT X, so XT A = XT . Then XT X =
(XT A)X = XT (AX) = XT (−X) = −XTX, which implies that XT X = 0, and hence
X = 0. So 0 is not an eigenvalue of I + A. For the second part, observe that the
union of a maximal independent set of rows of A with a maximal independent set of
rows of B will certainly span the row space of A + B. For the third part, apply the
second part to the matrix A = (A− J) + J . For the last part, let M be a tournament
matrix of order n. Then M + MT = J − I, i.e., J = I + M + MT . Clearly M −MT

is skew-symmetric, so A = I + M − MT is nonsingular by the first part. Hence
rk(A) = n. Then rk(A − J) ≥ rk(A) − rk(J) = n − 1. But A − J = −2MT , so
rk(M) = rk(MT ) = rk(A− J) ≥ n− 1.

8. Given an m × n matrix A, the pseudoinverse of A, denoted A+, can be defined as
the matrix such that for all b ∈ Cm, x+ := A+b is the least squares solution to the
equation Ax = b that has the smallest norm.

(a) Using the above definition, explain why AA+ and A+A must be projection ma-
trices (and are therefore Hermitian). Onto what fundamental subspaces do these
matrices project?

(b) Prove that AA+A = A and A+AA+ = A+. (Note: these two properties, together
with the Hermitian properties in part (a) uniquely determine the pseudoinverse).

(c) If Σ is a real diagonal matrix, what is Σ+?
(d) Give an explicit formula for A+ in terms of the singular value decomposition

A = V ΣW ∗. Justify your answer.

Solution:

(a) For x+ to be a least squares solution to Ax = b, Ax+ must be the orthogonal
projection of b onto the column space of A. Let p(b) be this projection. Then
AA+b = Ax+ = p(b). It follows that AA+ is the projection matrix onto the
column space of A.
Since x+ is the least norm solution to Ax = p(b), it must lie in the row space of
A.
Consider any y ∈ Cn. Let b = Ay and x+ = A+b = A+Ay. Since b is in the
column space of A, p(b) = b. It follows that Ax+ = p(b) = Ay, so A(x+ − y) = 0.
Thus x+ = A+Ay is the orthogonal projection onto the row space of A.

(b) Observe that A+b = A+p(b). Thus, for any b, A+AA+b = A+Ax+ = A+p(b) =
A+b. Since this is true for all b, A+AA+ = A+. Similarly, for any y, AA+Ay =
Ax+ = Ay. Thus, AA+A = A.

(c) Σ+ is the diagonal matrix with entries

Σ+
ii =

�
1/Σii, if Σii �= 0;

0, otherwise.

It is easy to verify that ΣΣ+ = Σ+Σ is diagonal (and hence Hermitian); ΣΣ+Σ =
Σ, and Σ+ΣΣ+ = Σ+. Thus Σ+ is the pseudoinverse.



(d) A+ = WΣ+V ∗
. To prove that this is the pseudoinverse, check each of the proper-

ties. Let D := ΣΣ+
, and observe that D is diagonal with Dii = 0 if Σii = 0, and

Dii = 1 otherwise. Then

• AA+ = V ΣW ∗WΣ+V ∗ = V ΣΣ+V ∗ = V DV ∗
, which is clearly Hermitian.

• Similarly, A+A = WΣ+V ∗V ΣW ∗ = WDW ∗
, which is Hermitian.

• AA+A = V ΣW ∗WΣ+V ∗V ΣW ∗ = V DΣW ∗ = V ΣW ∗ = A.

• A+AA+ = WΣ+V ∗V ΣW ∗V Σ+V ∗ = WDΣ+W ∗ = WΣ+W ∗ = A+
.


