University of Colorado at Denver — Mathematics Department
Applied Linear Algebra Preliminary Exam With Solutions
1 June 2009, 10:00 am — 2:00 pm

Name:

The proctor will let you read the following conditions before the exam begins, and you will
have time for questions. Once the exam begins, you will have 4 hours to do your best. This
is a closed book exam. Please put your name on each sheet of paper that you turn in.

Exam conditions:

e Submit as many solutions as you can. All solutions will be graded and your final grade
will be based on your six best solutions.

e Each problem is worth 20 points; parts of problems have equal value unless stated
otherwise..

e Justify your solutions: cite theorems that you use, provide counter-examples for dis-
proof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your proof;
instead, produce an independent proof.

e Begin each solution on a new page and use additional paper, if necessary.
e Write legibly using a dark pencil or pen.

e Notation: C denotes the field of complex numbers , R denotes the field of real numbers,
and F' denotes a field which may be either C or R. C™ and R™ denote the vector spaces
of n-tuples of complex and real scalars, respectively, written as column vectors. For
T € L(V), the image (sometimes called the range) of T is denoted Im(T"). If A is a
matrix over a field, then rk(A) is the rank of A. For z € R", || - || denotes the usual
Euclidean norm. If A is an m X n matrix over F', T}y is the linear map defined by

Ty: F" - F™: z— Az,

T* is the adjoint of the operator T and A\* is the complex conjugate of the scalar A.
vT and AT denote vector and matrix transposes, respectively.

e Ask the proctor if you have any questions.

| Good luck! |
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1. Let A= ( - ) Define T': M3(R) — M>(R) by

T: B— AB — BA.

(i) (8 points) Fix an ordered basis B of M3(R) and compute the matrix [T'|p that
represents T' with respect to this basis.

(ii) (8 points) Compute a basis for each of the eigenspaces of T

(iii) (4 points) Give the minimal and characteristic polynomials of 7" and the Jordan
form for T

Solution: We choose the "standard ordered basis"
B = (E11, E12, Eo1, E22)

where E;; has a 1 in the (¢, ) position and zero elsewhere.

Then routine computations show that

T: Ell — 2(E21 — E12>
TZ E12 — 2(E22 — EH)
T: Egl — 2(E11 — E22)

T: Egy — 2(E12 — F91)

From this it is easy to write down he matrix [Tz, and then write down

In a few steps we evaluate the determinant of this matrix and find that the character-
istic polynomial of T is
FO) = N2\ —4)(A+4).

Put A = 0 in the matrix and row reduce to find that the null space has the basis
(E11 + E22, E12 + Eo)

A basis for the eigenspace with A = 4 is
(E11 — E12 + Eo1 — Ea2).
A basis for the eigenspace with A = —4 is

(E11 + E12 — Eo — E99).



So the Jordan form is a diagonal matrix with diagonal entries 0,0,4, —4, and the
minimal polynomial is

p(A) = A(A —4)(A+4).
2. Let A € Mg(C) be defined by

-1

-1 -1
0 -1 -1 -1
0o 0 0 -1

o O o O

0
0
0
0

O O O O N O
o O O o o O

Find all of the eigenvalues, eigenvectors, and generalized eigenvectors of A. Construct
the characteristic polynomial, the minimal polynomial, and the Jordan form of A.

Solution: The characteristic polynomial is 2(z + 1)* and the eigenvalues are 0 and
-1. The eigenvectors associated with eigenvalue 0 are of the form [0,a,0,0,0,0]” and
the generalized eigenvectors are of the form [a, b,0,0,0,]7. The eigenvectors associated
with -1 are of the form [0,0,0,a,b, —a]”, and the generalized eigenvectors are of the
form [0,0,0, a,b,c]”. The minimal polynomial is z%(z + 1)3. One Jordan form is

0 1 0 0
00 0 0 0 O
0 0 -1 0 0
00 0 -1 1 O
0 0 -1 0
0 0 O 0 -1

3. Norms of Linear Operators

(a) Let A be an m x n real matrix. Prove that there is a real constant M4 such that
|Ax|| < My||x]|| for all x € R™.
Solution: We use two basic facts: First, ||(z1,...,2m)] < >0t |zi|, by the
triangle inequality; Second, recall the Cauchy-Schwartz inequality: |x-v| < ||x]| -
|v||. So we have:

U1
(an,...,aln)-v
(%] .
[Avii=li(as) | . | 1I= : <
. (amlv'-‘aamn>‘v
Un
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where My =", \/%‘21 +a?2 +...+a?n_



(b) Let T: R™ — R™ be a linear map. Prove that there is some positive constant
|T|| for which
[T < T - Iv]

for all v € R™.
Solution: If T' = T4 : R" — R™ with A = (a;j), then | T'(v)|| = ||Av|| < Ma||v||

(by part (a)) for all v.e R™, where My =>"", \/agl + a%Q 4+ -+ a?n € R.

4. Spheres in Finite Dimensional Real Vector Spaces

Let B = (v1,v2,...,v,) be an ordered basis of the real vector space V' with dimension
n. For each v € V there are unique scalars ci,...,c, € R for which v = Y" | ¢v;.
Write the coordinate matriz [v]p of v with respect to the ordered basis B as

Cc1 C1
2 2
[vlg = ) , sothat v = (vi,...,vp) ) =B [v]s.
Cn Cn
For ¢ = [c1,...,c,]T € R", we employ the usual Euclidean norm:

For an arbitrary ordered basis B of V', we define the norm with respect to B as follows:

[oll5 := l[[v]s]l-

Given the basis B, a specific vector vy and a positive number r we can define the
n-dimensional sphere with center vy and radius r (with respect to B) by

ST,B(vO) = {U/ eV: ”UO — ’LUHB < 7“}_

Problem Let 7 > 0 and let B, B’ be any two ordered bases of V. Show that there is
an v’ > 0 such that
ST,B(O) - Sr’,B' (O)

Solution: If B and B’ are two given ordered bases of V, there is an invertible, real
n x n matrix A for which B’ = BA, so that [v]g = A - [v]g. Then there is a constant
| A such that ||[AX|| <|A| - ||X]|| for any X € R™. Hence

lolls = ll[v]sll = 1A~ [ole | < [[A[}- [[v]s [l = Al - [v]ls-

From this we see that

S;54(0) C Spyja),5(0). (1)

Of course the argument is symmetric in B and B'.



5. Fredholm Alternative

Let A be an m X n real matrix and b € R™. Show that exactly one of the following
systems has a solution:

i) Az =b
i) ATy=0, yTb#0.

Y1
Note: Our notation is y = Sy soyl =y, Yl

Ym

Solution: If b € colA, then statement i) has a solution, but since colA L nullA7,
statement ii) has no solution.

If b & colA, then statement i) does not have a solution. In this case, let z = proj.j, b
(the orthogonal projection of b onto the column space of A), and define y = b — z.
Note that y # 0 (since b ¢ colA). Note also that since z is an orthogonal projection,
y € (colA)t = nullAT. Thus, ATy =0 and y"b = y"(y + 2) = yTy # 0, so statement
ii) has a solution.

6. Upper-triangularization

(a) (12 points) For each of the following, if it is true, merely say so; if it is false, give
a counterexample.

(i) If V is a finite-dimensional vector space over R and T' € L(V'), then V has a
basis B with respect to which [T]g is upper triangular.

Solution: FALSE Suppose T: R? — R?: (z,y) — (y, —). Then if S is the
standard ordered basis of R?, the matrix

0 1
[T]s=<_1 0>,

so that the characteristic polynomial of T" is 2 4+ 1. This polynomial has no
real roots, so 1" has no real eigenvalues, which would have to lie along the
diagonal of [T]5 if V' had such a basis.

(ii) If V is a finite-dimensional vector spacee over C and T' € L(V'), then V has
a basis B with respect to which [T]g is upper triangular.

Solution: TRUE (This is usually called the Theorem of Schur.)

(iii) If V is a finite-dimensional vector space over C and S,T € L(V'), then V has
a basis B for which both [S]g and [T|s are upper triangular.

Solution: False Suppose that with respect to some basis B, S and T have
the following matrices:

[S]B’:<2 ;) and[T]B'=<2 (1)>,



with ¢ # d. Then a basis B of the desired type would exist if and only if

e

/ ) for which

there were an invertible matrix P = <
g

o)) ) D)

with a similar equation holding for the other matrix. It follows that there
would have to be an invertible matrix P as above with g? = ch? and g? = dh?.
If g =0, then h # 0, implying that ¢ = 0 and d = 0, contradicting ¢ # d.

(b) (8 points) Show that a normal, upper triangular matrix must be diagonal.

Solution: We may assume that A is n x n with entries in C, with Ay; = 0 if

k > j. Then
A A = ZZklAkl = ZATkAkl = (A"A)11 =
k=1 k=1
= (AA )1 =) Ay =) AnAug.
k=1 k=1
It now follows that Ajo = A3 =--- = Ay, = 0. Consider the (2,2) entry.

(AA" )99 = Z Aop (A" )2 = Z Aoy Agg.
k=1 =2

This must also equal

2

(A"A)gg =Y (A")arAre = > (A2 Apy = Agp Agy.
k k=1

It follows that Ags = A9y = --- = Ag,,.
Proceed down the rows to show recursively that in fact A must be diagonal.

7. Tournament Matrices

The matrices of this problem are all n x n with real entries.

(a) Show that if the matrix A is skew-symmetric then I + A is nonsingular.

(b) Show that for arbitrary matrices A and B, rk(A + B) < rk(A) + rk(B).
(c) If A is arbitrary and J is the matrix of all 1’s, then show that

tk(A — J) > rk(A) — rk(J).

(d) If M is a (0,1)-matrix with zeros on the main diagonal and with A;; = 0 if and
only if Mj; =1, show that rk(M) > n — 1. (Such a matrix is called a tournament
matrix.)



Solution: Suppose AT = —A and that X is a column vector for which (I + A)X = 0.
Then AX = —X implies that X = (-A)X = ATX, s0o XTA = XT. Then XTX =
(XTA)X = XT(AX) = XT(—X) = —XTX, which implies that X7 X = 0, and hence
X = 0. So 0 is not an eigenvalue of I + A. For the second part, observe that the
union of a maximal independent set of rows of A with a maximal independent set of
rows of B will certainly span the row space of A + B. For the third part, apply the
second part to the matrix A = (A — J) + J. For the last part, let M be a tournament
matrix of order n. Then M + MT =J -1, ie, J=I1+ M+ MT. Clearly M — M”
is skew-symmetric, so A = I + M — M7 is nonsingular by the first part. Hence
rk(A) = n. Then k(A — J) > 1k(4) —rk(J) = n—1. But A —J = —2M7, so
k(M) = 1k(MT) =rk(A—J) >n—1.

. Given an m x n matrix A, the pseudoinverse of A, denoted AT, can be defined as
the matrix such that for all b € C™, 2™ := A"b is the least squares solution to the
equation Az = b that has the smallest norm.

(a) Using the above definition, explain why AA* and AT A must be projection ma-
trices (and are therefore Hermitian). Onto what fundamental subspaces do these
matrices project?

(b) Prove that AATA = A and ATAAT = A*. (Note: these two properties, together
with the Hermitian properties in part (a) uniquely determine the pseudoinverse).

(c) If ¥ is a real diagonal matrix, what is 17

(d) Give an explicit formula for A* in terms of the singular value decomposition
A =VIW*. Justify your answer.

Solution:

(a) For 2™ to be a least squares solution to Ar = b, Az* must be the orthogonal
projection of b onto the column space of A. Let p(b) be this projection. Then
AATh = AzT = p(b). It follows that AAT is the projection matrix onto the
column space of A.

Since z* is the least norm solution to Az = p(b), it must lie in the row space of

A.
Consider any y € C". Let b = Ay and 27 = A*b = At Ay. Since b is in the
column space of A, p(b) = b. It follows that Az = p(b) = Ay, so A(z™ —y) = 0.
Thus 2T = AT Ay is the orthogonal projection onto the row space of A.

(b) Observe that ATb = ATp(b). Thus, for any b, ATAATY = AT Axt = ATp(b) =
ATb. Since this is true for all b, ATAAT = AT, Similarly, for any y, AAT Ay =
Art = Ay. Thus, AATA = A.

(c) XT is the diagonal matrix with entries

st _ /%, if X% #0;
" 0, otherwise.

It is easy to verify that XX = X% is diagonal (and hence Hermitian); XX =
¥, and XTXXT = ¥t Thus X7 is the pseudoinverse.



(d) AT = WXTV*. To prove that this is the pseudoinverse, check each of the proper-
ties. Let D := X X7, and observe that D is diagonal with D;; = 0 if ¥;; = 0, and
D;; = 1 otherwise. Then
o AAT = VIW*WETV* = VEXTV* = VDV*, which is clearly Hermitian.
e Similarly, ATA = WETV*VEW* = WDW?*, which is Hermitian.
o AATA=VIW*WETV*VEW* = VDEW* = VEW* = A.
o ATAAT = WETV*VEW*VETV* = WDSTW* = WETW* = AT,



