University of Colorado at Denver — Mathematics Department Applied Linear Algebra Preliminary Exam 1 June 2009, 10:00 am – 2:00 pm

Name:

The proctor will let you read the following conditions before the exam begins, and you will have time for questions. Once the exam begins, you will have 4 hours to do your best. This is a closed book exam. Please put your name on each sheet of paper that you turn in.

Exam conditions:

- Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your <u>six best solutions</u>.
- Each problem is worth 20 points; parts of problems have equal value unless stated otherwise..
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write legibly using a dark pencil or pen.
- Notation: \mathcal{C} denotes the field of complex numbers, \mathbb{R} denotes the field of real numbers, and F denotes a field which may be either \mathcal{C} or \mathbb{R} . \mathcal{C}^n and \mathbb{R}^n denote the vector spaces of *n*-tuples of complex and real scalars, respectively, written as column vectors. For $T \in \mathcal{L}(V)$, the *image* (sometimes called the *range*) of T is denoted $\mathrm{Im}(T)$. If A is a matrix over a field, then $\mathrm{rk}(A)$ is the *rank of* A. For $x \in \mathbb{R}^n$, $\|\cdot\|$ denotes the usual Euclidean norm. If A is an $m \times n$ matrix over F, T_A is the linear map defined by

$$T_A \colon F^n \to F^m \colon x \mapsto Ax.$$

 T^* is the adjoint of the operator T and λ^* is the complex conjugate of the scalar λ . v^T and A^T denote vector and matrix transposes, respectively.

• Ask the proctor if you have any questions.

1. Let
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
. Define $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ by
 $T: B \mapsto AB - BA$.

- (i) (8 points) Fix an ordered basis \mathcal{B} of $M_2(\mathbb{R})$ and compute the matrix $[T]_{\mathcal{B}}$ that represents T with respect to this basis.
- (ii) (8 points) Compute a basis for each of the eigenspaces of T.
- (iii) (4 points) Give the minimal and characteristic polynomials of T and the Jordan form for T.
- 2. Let $A \in M_6(\mathcal{C})$ be defined by

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Find all of the eigenvalues, eigenvectors, and generalized eigenvectors of A. Construct the characteristic polynomial, the minimal polynomial, and the Jordan form of A.

3. Norms of Linear Operators

- (a) Let A be an $m \times n$ real matrix. Prove that there is a real constant M_A such that $||A\mathbf{x}|| \leq M_A ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$.
- (b) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Prove that there is some positive constant ||T|| for which

$$\|T(\mathbf{v})\| \le \|T\| \cdot \|\mathbf{v}\|$$

for all $\mathbf{v} \in \mathbb{R}^n$.

4. Spheres in Finite Dimensional Real Vector Spaces

Let $\mathcal{B} = (v_1, v_2, \dots, v_n)$ be an ordered basis of the real vector space V with dimension n. For each $v \in V$ there are unique scalars $c_1, \dots, c_n \in \mathbb{R}$ for which $v = \sum_{i=1}^n c_i v_i$. Write the coordinate matrix $[v]_{\mathcal{B}}$ of v with respect to the ordered basis \mathcal{B} as

$$[v]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}, \text{ so that } v = (v_1, \dots, v_n) \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \mathcal{B} \cdot [v]_{\mathcal{B}}.$$

For $\mathbf{c} = [c_1, \ldots, c_n]^T \in \mathbb{R}^n$, we employ the usual Euclidean norm:

$$\|\mathbf{c}\| = \sqrt{\sum_{i=1}^{n} c_i^2}.$$

For an arbitrary ordered basis \mathcal{B} of V, we define the norm with respect to \mathcal{B} as follows:

$$\|v\|_{\mathcal{B}} := \|[v]_{\mathcal{B}}\|.$$

Given the basis \mathcal{B} , a specific vector v_0 and a positive number r we can define the *n*-dimensional sphere with center v_0 and radius r (with respect to \mathcal{B}) by

$$S_{r,\mathcal{B}}(v_0) = \{ w \in V : \|v_0 - w\|_{\mathcal{B}} \le r \}.$$

Problem Let r > 0 and let \mathcal{B} , \mathcal{B}' be any two ordered bases of V. Show that there is an r' > 0 such that

$$S_{r,\mathcal{B}}(\mathbf{0}) \subseteq S_{r',\mathcal{B}'}(\mathbf{0}).$$

5. Fredholm Alternative

Let A be an $m \times n$ real matrix and $b \in \mathbb{R}^m$. Show that exactly one of the following systems has a solution:

i)
$$Ax = b$$

ii) $A^T y = 0$, $y^T b \neq 0$.
Note: Our notation is $y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$, so $y^T = [y_1, \dots, y_m]$.

- 6. Upper-triangularization
 - (a) (12 points) For each of the following, if it is true, merely say so; if it is false, give a counterexample.
 - (i) If V is a finite-dimensional vector space over \mathbb{R} and $T \in \mathcal{L}(V)$, then V has a basis \mathcal{B} with respect to which $[T]_{\mathcal{B}}$ is upper triangular.
 - (ii) If V is a finite-dimensional vector space over \mathcal{C} and $T \in \mathcal{L}(V)$, then V has a basis \mathcal{B} with respect to which $[T]_{\mathcal{B}}$ is upper triangular.
 - (iii) If V is a finite-dimensional vector space over \mathcal{C} and $S, T \in \mathcal{L}(V)$, then V has a basis \mathcal{B} for which both $[S]_{\mathcal{B}}$ and $[T]_{\mathcal{B}}$ are upper triangular.
 - (b) (8 points) Show that a normal, upper triangular matrix must be diagonal.
- 7. Tournament Matrices

The matrices of this problem are all $n \times n$ with real entries.

- (a) Show that if the matrix A is skew-symmetric then I + A is nonsingular.
- (b) Show that for arbitrary matrices A and B, $\operatorname{rk}(A+B) \leq \operatorname{rk}(A) + \operatorname{rk}(B)$.
- (c) If A is arbitrary and J is the matrix of all 1's, then show that

$$\operatorname{rk}(A - J) \ge \operatorname{rk}(A) - \operatorname{rk}(J).$$

- (d) If M is a (0, 1)-matrix with zeros on the main diagonal and with $M_{ij} = 0$ if and only if $M_{ji} = 1$, show that $rk(M) \ge n 1$. (Such a matrix is called a *tournament* matrix.)
- 8. Given an $m \times n$ matrix A, the *pseudoinverse of* A, denoted A^+ , can be defined as the matrix such that for all $b \in C^m$, $x^+ := A^+b$ is the least squares solution to the equation Ax = b that has the smallest norm.
 - (a) Using the above definition, explain why AA^+ and A^+A must be projection matrices (and are therefore Hermitian). Onto what fundamental subspaces do these matrices project?
 - (b) Prove that $AA^+A = A$ and $A^+AA^+ = A^+$. (Note: these two properties, together with the Hermitian properties in part (a) uniquely determine the pseudoinverse).
 - (c) If Σ is a real diagonal matrix, what is Σ^+ ?
 - (d) Give an explicit formula for A^+ in terms of the singular value decomposition $A = V\Sigma W^*$. Justify your answer.