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Name:

The proctor will let you read the following conditions before the exam begins, and you will
have time for questions. Once the exam begins, you will have 4 hours to do your best. This
is a closed book exam. Please put your name on each sheet of paper that you turn in.

Exam conditions:

• Submit as many solutions as you can. All solutions will be graded and your final grade
will be based on your six best solutions.
• Each problem is worth 20 points; parts of problems have equal value.
• Justify your solutions: cite theorems that you use, provide counter-examples for dis-

proof, give explanations, and show calculations for numerical problems.
• If you are asked to prove a theorem, do not merely quote that theorem as your proof;

instead, produce an independent proof.
• Begin each solution on a new page and use additional paper, if necessary.
• Write legibly using a dark pencil or pen.
• Notation: C denotes the field of complex numbers , R denotes the field of real numbers,

and F denotes a field which may be either C or R. Cn and Rn denote the vector spaces
of n-tuples of complex and real scalars, respectively. T ∗ is the adjoint of the operator
T and λ∗ is the complex conjugate of the scalar λ. vT and AT denote vector and
matrix transposes, respectively.
• Ask the proctor if you have any questions.

Good luck!
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On this exam V is a finite dimensional vector space over the field F , where either F = C,
the field of complex numbers, or F = R, the field of real numbers. Also, Fn denotes the
vector space of column vectors with n entries from F , as usual. For T ∈ L(V ), the image
(sometimes called the range) of T is denoted Im(T ).

1. Suppose that P ∈ L(V ) (the vector space of linear maps from V to itself) and that
P 2 = P .

(a) (6 points) Determine all possible eigenvalues of P .

(b) (10 points) Prove that V = null(P )⊕ Im(P ).

(c) (4 points) Is it necessary that all possible eigenvalues found in part (a) actually
must occur? Prove that your answer is correct.

Solution: P 2−P = 0 implies that the minimal polynomial p(x) of P divides x2−x =
x(x−1). Hence p(x) = x, or (x−1), or x(x−1). So in general the eigenvalues are each
equal to either 0 or 1. But p(x) = x if and only if P = 0, in which case V = null(P )
and {0} = Im(P ). And p(x) = x − 1 if and only if P = I. In this case V = Im(P )
and null(P ) = {0}. In these two cases the condition in part (b) clearly holds, and we
see that part (c) is also answered.

Finally, suppose p(x) = x(x − 1), so that both 0 and 1 are eigenvalues of P . If v ∈
null(P )∩ Im(P ), then P (v) = 0 on the one hand, and on the other hand there is some
w ∈ V for which v = P (w) = P 2(w) = P (v) = 0. Hence null(P ) ∩ Im(P ) = {0}. But
also for any v ∈ V we have v = (v−P (v))+P (v), where P (v − P (v)) = p(v)−P (v) =
0. So v − P (v) ∈ null(P ) and clearly P (v) ∈ Im(P ). Hence V = null(P ) ⊕ Im(P ).
This finishes part (b).

2. Define T ∈ L(Fn) by T : (w1, w2, w3, w4)T 7→ (0, w2 + w4, w3, w4)T .

(a) (8 points) Determine the minimal polynomial of T .

(b) (6 points) Determine the characteristic polynomial of T .

(c) (6 points) Determine the Jordan form of T .

Solution: Let p(x) be the minimal polynomial of T . It is easy to see that T (1, 0, 0, 0) =
0, so 0 is an eigenvalue of T and hence x is a divisor of p(x). Also, T (0, 1, 0, 0) =
(0, 1, 0, 0), so 1 is an eigenvalue of T and x− 1 divides p(x). Since T 2(x1, x2, x3, x4) =
(0, x2 + 2x4, x3, x4), it is clear that null(T ) = null(T 2) = {a, 0, 0, 0) : a ∈ F}, hence
the dimension of the space of generalized eigenvectors of T associated with 0 is 1. This
says that the multiplicity of 0 as a root of the characteristic polynomial f(x) of T is 1.
So we check for eigenvalue 1. (T − I)(x1, x2, x3, x4) = (−x1, x4, 0, 0). Repeating this
we see (T − I)2(x1, x2, x3, x4) = (x1, 0, 0, 0), which is in the null space of T . Hence
T (T − I)2 = 0. Since T (T − I)(x1, x2, x3, x4) = (0, x4, 0, 0), clearly T (T − I) is not
the zero operator, hence p(x) = x(x− 1)2. This finishes part (a).

Part (b): Since the dimension of the space of generalized eigenvectors belonging to 0
is 1, it must be that the dimension of the space of generalized eigenvectors belonging
to 1 is 3. Hence the characteristic polynomial of T must be f(x) = x(x− 1)3.



Part (c) Since the minimal polynomial of T is x(x − 1)2 and the characteristic poly-
nomial is x(x − 1)3, the only possibility (up to the order of the diagonal blocks) for
the Jordan form of T is: 

0 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

 .

3. Let T be a normal operator on a complex inner product space V of dimension n.

(a) (10 points) If T (v) = λv with 0 6= v ∈ V , show that v is an eigenvector of the
adjoint T ∗ with associated eigenvalue λ.

(b) (10 points) Show that T ∗ is a polynomial in T .

Solution to part (a):

T (v) = λv ⇔ 0 = ‖(T − λI)(v)‖2

= 〈(T − λI)v, (T − λI)v〉 = 〈v, (T ∗ − λI)(T − λI)v〉
= 〈v, (T − λI)(T ∗ − λI)v〉 = ‖(T ∗ − λI)v‖2

⇔ T ∗(v) = λv.

Solution to part (b): Since T is a normal operator on a complex vector space V ,
there is an orthonormal basis B = {v1, . . . , vn} of V consisting of eigenvectors of T .
Suppose that T (vi) = λivi for 1 ≤ i ≤ n. So by part (a) we know that T ∗(vi) = λivi,
for 1 ≤ i ≤ n. WLOG we may assume that the eigenvalues have been ordered so
that λ1, λ2, . . . , λr are the distinct eigenvalues of T . Using Lagrange interpolation (or
any method have at hand) construct a polynomial f(x) ∈ C[x] (having degree at most
r − 1, if desired), such that f(λi) = λi, for 1 ≤ i ≤ r. Then f(T )(vj) = f(λj)(vj) =
λj(vj) = T ∗(vj), 1 ≤ j ≤ n, so that f(T ) and T ∗ have the same effect on each member
of the basis B. This implies that f(T ) = T ∗.

4. Let A and B be n× n Hermitian matrices over C.

(a) (10 points) If A is positive definite, show that there exists an invertible matrix P
such that P ∗AP = I and P ∗BP is diagonal.

(b) (10 points) If A is positive definite and B is positive semidefinite, show that

det(A+B) ≥ det(A).

Solution:

(a) Since A is positive definite, there exists an invertible matrix T such that A = T ∗T .
(T−1)∗B(T−1) is Hermitian, so is diagonalizable. That is, there exists a unitary
matrix U and a diagonal matrix D such that U∗(T−1)∗B(T−1)U = D. Let
P = T−1U . Then P ∗BP = D, and

P ∗AP = U∗(T−1)∗(T ∗T )T−1U = U∗U = I.



(b) Let P and D be as defined above. Then A = (P ∗)−1P−1 and B = (P ∗)−1DP−1.
Since B is positive semidefinite, then the diagonal entries in D are nonnegative.
Thus

det(A+B) = det
(
(P ∗)−1(I +D)P−1

)
= det

(
(P ∗)−1P−1

)
det(I +D)

= detA det(I +D) ≥ detA.

5. Let ‖ · ‖∞ : Cn → R be defined by

‖x‖∞ = max1≤i≤n|xi|.

(a) (8 points) Prove that ‖ · ‖∞ is a norm.

(b) (12 points) A norm ‖ · ‖ is said to be derived from an inner product if there is
an inner product 〈·, ·〉 such that ‖x‖ = 〈x,x〉1/2 for all x ∈ Cn. Show that ‖ · ‖∞
cannot be derived from an inner product.

Solution:

(a) We verify the properties of norms:

i. ‖x‖∞ = max1≤i≤n|xi| ≥ 0, for all x ∈ Cn.
ii. ‖x‖∞ = 0⇐⇒ max1≤i≤n|xi| = 0⇐⇒ x = 0.
iii. For any c ∈ C and x ∈ Cn, ‖cx‖∞ = max1≤i≤n|cxi| = |c|max1≤i≤n|xi| =
|c| ‖x‖∞.

iv. For all x, y ∈ Cn, ‖x+ y‖∞ = max1≤i≤n|xi + yi| ≤ max1≤i≤n|xi| + |yi| ≤
max1≤i≤n|xi|+ max1≤i≤n|yi| = ‖x‖∞ + ‖y‖∞.

(b) Assume there exists an inner product 〈·, ·〉 such that ‖x‖∞ = 〈x, x〉1/2 for all
x ∈ Cn. Then for any x, y ∈ Cn, we have

‖x+ y‖2∞ + ‖x− y‖2∞ = 2 〈x, x〉+ 2 〈y, y〉 = 2 ‖x‖2∞ + 2 ‖y‖2∞ .

But, choosing x = (1, 0, . . . , 0)T and y = (0, 1, 0, . . . , 0)T , this yields the following
contradiction:

2 = ‖x+ y‖2∞ + ‖x− y‖2∞ = 2 ‖x‖2∞ + 2 ‖y‖2∞ = 2 + 2 = 4.

(One of our theorems said that a norm is derived from an inner product if and only if
it satisfies the parallelogram equality, so this type of proof should naturally come to
mind.)

6. Suppose that F = C and that S, T ∈ L(V ) satisfy ST = TS. Prove each of the
following:

(a) (4 points) If λ is an eigenvalue of S, then the eigenspace

Vλ = {x ∈ V |Sx = λx}

is invariant under T .

(b) (4 points) S and T have at least one common eigenvector (not necessarily be-
longing to the same eigenvalue).



(c) (12 points) There is a basis B of V such that the matrix representations of S and
T are both upper triangular.

Solution:

(a) If x ∈ Vλ, then Sx = λx. Thus,

S(Tx) = TSx = T (λx) = λTx,

so Tx ∈ Vλ.
(b) Let T|Vλ

denote the restriction of T to the subspace Vλ. T|Vλ
has at least one

eigenvector v ∈ Vλ, with eigenvalue µ. It follows that Tv = T|Vλ
v = µv, so v is

an eigenvector of V . And since v ∈ Vλ, it is also an eigenvector of S.
(c) The matrix of a linear transformation with respect to a basis {v1, . . . , vn} is

upper triangular if and only if span(v1, . . . , vk) is invariant for each k = 1, . . . , n.
Using part (b) above, we shall construct a basis {v1, . . . , vn} for V such that
span(v1, . . . , vk) is invariant under both S and T for each k.
We proceed by induction on n, the dimension of V , with the result being clearly
true if n = 1. So suppose that n > 1 with the desired result holding for all
operators on spaces of positive dimension less than n. By part (b) there is a
vector v1 ∈ V such that Tv1 = λ1v1 and Sv1 = µ1v1 for some scalars λ1 and µ1.
Let W be the subspace spanned by v1. Then the dimension of the quotient space
V/W is n− 1, and the operators T and S induced on V/W commute, so by our
induction hypothesis there is a basis B1 = (v2 +W, v3 +W, . . . , vn +W ) of V/W
with respect to which both T and S have upper triangular matrices. It follows
that B = (v1, v2, . . . , vn) is a basis of V with respect to which both T and S have
upper triangular matrices.

7. Let F = C and suppose that T ∈ L(V ).

(a) (10 points) Prove that the dimension of Im(T ) equals the number of nonzero
singular values of T .

(b) (10 points) Suppose that T ∈ L(V ) is positive semidefinite. Prove that T is
invertible if and only if 〈T (x),x〉 > 0 for every x ∈ V with x 6= 0.

Solution:

Let T ∈ L(V ). Since T ∗T is self-adjoint, there is an orthonormal basis (v1, . . . , vn) of
V whose members are eigenvectors of T ∗T , say T ∗Tvj = λjvj , for 1 ≤ j ≤ n. Note
‖Tvj‖2 = 〈Tvj , T vj〉 = 〈T ∗Tvj , vj〉 = λj‖vj‖2, so in particluar λj ≥ 0.

Then T ∗T has real, nonnegative eigenvalues, so we may suppose they are λ1 ≥ λ2 ≥
· · · ≥ λr > λr+1 = · · · = λn = 0. Put si =

√
λi, 1 ≤ i ≤ n, so that s1 ≥ s2 ≥

· · · ≥ sr > 0 are the nonzero singular values of T and in general si = ‖Tvi‖, for all
i = 1, 2, . . . , n. It follows that (vr+1, vr+2, . . . , vn) is a basis of the null space of T and
(Tv1, T v2, . . . , T vr) is a basis for the Image of T . Clearly r is the number of nonzero
singular values and also the dimension of the range of T , finishing part (a).

(b) Suppose that T ∈ L(V ) is positive semidefinite, i.e., T is self-adjoint and 〈T (v), v〉 ≥
0 for all v ∈ V . Since T is self-adjoint we know there is an operator S for which
T = S∗S. So 〈T (v), v〉 = 〈S∗S(v), v〉 = 〈S(v), S(v)〉 = 0 if and only if S(v) = 0. So T



is invertible if and only if S is invertible iff S(v) 6= 0 whenever v 6= 0 iff 〈T (v), v〉 > 0
whenever v 6= 0.

8. Let N be a real n× n matrix of rank n−m and nullity m. Let L be an m× n matrix
whose rows form a basis of the left null space of N , and let R be an n × m matrix
whose columns form a basis of the right null space of N . Put Z = LTRT . Finally, put
M = N + Z.

(a) (2 points) For x ∈ Rn, show that NTx = 0 if and only if x = LTy for some
y ∈ Rm.

(b) (2 points) For x ∈ Rn, show that Nx = 0 if and only if x = Ry for some y ∈ Rm.
(c) (4 points) Show that Z is an n × n matrix with rank m for which NTZ = 0,

NZT = 0 and MMT = NNT + ZZT .

(d) (12 points) Show that the eigenvalues of MMT are precisely the positive eigen-
values of NNT and the positive eigenvalues of ZZT , and conclude that MMT is
nonsingular.

Solution:

(a) NTX = 0 iff XTN = 0 iff XT is in the row space of L, i.e., iff XT = Y TL for
some Y ∈ Rm, iff X = LTY for some Y ∈ Rm.

(b) NX = 0 iff X is in the column space of R, i.e., iff X = RY for some Y ∈ Rm.
(c) NTZ = NTLTRT = 0 by part (a). Similarly, NZT = NRL = 0 by part (b). The

columns of LT are independent and m in number, so Zv = 0 iff LT (RT v) = 0 iff
RT v = 0. Since RT is m × n with rank m and right nullity n −m, Z = LTRT

must have nullity n−m, and hence rank m. It now is easy to compute MMT =
(N + Z)(NT + ZT ) = NNT +NZT + ZNT + ZZT = NNT + ZZT .

(d) NNT and ZZT are real, symmetric commuting matrices (both products are 0),
so there must be an orthogonal basis B = (v1, v2, . . . , vn) of Rn consisting of
eigenvectors of both NNT and ZZT . We know that all the eigenvalues of NNT

and ZZT are real and nonnegative. Suppose that vi is a member of B for which
NNT vi = λivi 6= 0. vi must be orthogonal to all the vectors in the right null
space of NNT , i.e., vi orthogonal to the right null space of NT . This says
vTi Z = 0, which implies ZZT vi = 0. Hence each vi not in the null space of NNT

must be in the null space of ZZT . N and Z play symmetric roles, so a similar
argument shows that each vj not in the right null space of ZZT must be in the
null space of NNT . Hence we may assume that the members of B are ordered
so that v1, . . . , vn−m are not in the null space of NNT and are in the null space
of ZZT . Similarly, vn−m+1, . . . , vn are in the null space of NNT and not in the
null space of ZZT . It follows immediately that v1, . . . , vn−m are eigenvectors
of MMT belonging to the positive eigenvalues of NNT and vn−m+1, . . . , vn are
eigenvectors of MMT belonging to the positive eigenvalues of ZZT . Finally,
since all the eigenvalues of MMT are positive (i.e., none of them is zero), MMT

is nonsingular.


