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Exam Rules:

e This is a closed book exam. Once the exam begins, you have 4 hours to complete
six problems. You are allowed to take a break of up to 45 minutes; please start this
break not earlier than 90 minutes and not later than 150 minutes into the exam.

e Please begin each problem on a new page, and write the problem number and page
number at the top of each page. (For example, 6-1, 6-2, 6-3 for pages 1, 2 and
3 of problem 6). Please write only on one side of the paper and leave at least a
half-inch margin.

e There are 8 total problems. Do all 4 problems in the first part (problems 1 to
4), and pick two problems in the second part (problems 5 to 8). Do not submit
more than two solved problems from the second part. If you do, only the first two
attempted problems will be graded. Each problem is worth 20 points.

e Do not submit multiple alternative solutions to any problem; if you do, only the
first solution will be graded.

e Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

e Notation: Throughout the exam, R and C denote the sets of real and complex
numbers, respectively. F denotes either R or C. F"™ and F™*" are the vector
spaces of n-tuples and m X n matrices, respectively, over the field F. £(V') denotes
the set of linear operators on the vector space V. T™* is the adjoint of the operator
T and \* is the complex conjugate of the scalar X\. In an inner product space V,
U~ denotes the orthogonal complement of the subspace U.

e If you are confused or stuck on a problem, either ask a question or move on to
another problem.

’ Problem ‘ Points ‘ Score ‘ ‘ Problem ‘ Points ‘ Score ‘
1. 20 9. 20
2. 20 6. 20
3. 20 7. 20
4. 20 8. 20
y \ \ \ | Total | 120 | \
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Part I. Work all of problems 1 through 4.

Problem 1.

Let T :V — W and S : W — X be linear transformations of finite-dimensional real
vector spaces. Prove that

rank (T') 4 rank (S) — dim(W) < rank (S o T') < min{rank (7), rank (5)}.

Solution Recall rank (') = dim(range (T")) and note that rank (S o T') = rank (7') —
dim(range (7') N null(S)). By rank theorem and this observation,

rank (7) + rank (S) — dim(W) = rank (7') + rank (S) — dim(null(S)) — rank (S) =
= rank (7') — dim(null(S)) = rank (S o T") + dim(range (7') N null(S)) — dim(null(.S))

and due to
dim(range (7') N null(S)) < dim(null(S))

we obtain the left-hand inequality
rank (T') 4 rank (S) — dim(W) < rank (SoT).

For the right-hand inequality, we observe
rank (S oT) = dim(S(T(V))) < dim(T(V)) = rank (T')

and
rank (S oT) = dim(S(T(V))) < dim(S(W)) = rank (.5).

Problem 2.

1. (10 points) Let V be a finite-dimensional inner product space. Let T' € L(V). Let
U be a subspace of V. Prove that U is invariant under 7' if and only if U~ is
invariant under T*.

2. (10 points) Let V' and W be two finite-dimensional inner product spaces. Let
T € L(V,W). Prove that

(a) T is injective if and only if T* is surjective;

(b) T is surjective if and only if 7™ is injective.



Solution

1. First suppose U is invariant under 7. To prove that U~ is invariant under 7%, let
v € U+. We need to show that T*v € U+. But

(u, T*v) = (Tu,v) =0
for every u € U (because if u € U, then Tu € U and hence T'u is orthogonal to v,

an element of UL). Thus T*v € U+. Hence U+ is invariant under T*, as desired.

To prove the other direction, now suppose U~ is invariant under 7. Then by the
first direction, we know that (UJ-)l is invariant under (7*)*. But (UJ-)J‘ =U (by
6.51) and (T*)" =T, so U is invariant under T', completing the proof.

2. First we prove (a):

T is injective < null(T) = {0}

(range(T™))* = {0}
range(T*) =V

T™ is surjective

t o0

where the second line comes from 7.7(c). Now that (a) has been proved, (b) follows
immediately by replacing T with 7% in (a).

Problem 3.

1. (10 points) Let T : R® — R™ be symmetric and let tr(7?) = 0. Show that T = 0.
2. (7 points) Give T : R? — R? such that T is normal, tr(7?) = 0 and T is not 0.

3. (3 points) Give T : R? — R? such that T is not normal, tr(7?) = 0 and T is not 0.

Solution

1. By the spectral theorem, T' = ODO* where O is orthogonal and D is a diago-
nal matrix with real entries A1,...,\,. Observe that T2 = (ODO*)(ODO*) =
ODDO* = OD?*0*. Now

0 = trace(T?) = trace(OD?0*) = trace(0*OD?) = trace(D?) = A3 + --- + A2,

As N €Rand A2 >0 foralli € {1,...,n}, \3+---+ A2 =0 implies \; = 0 for all
ie{l,...,n}.



2. Consider a transformation T represented by matrix

2 -2
= w)

which is not symmetric but readily verified to be normal, i.e. AA* = A*A.

The characteristic polynomial is (2 —\)2+4 = A2 — 4\ +8, which gives eigenvalues
1
Mz =5(4£VI16—32) =2+ V-4 =2£2i

By the spectral theorem, there exists an orthonormal basis of C? consisting of
eigenvectors of A and corresponding diagonal matrix

(242 0
D_< 0 2—2i>'

trace(T?) = trace(D?) = (2 + 2i)? + (2 — 2i)> = 8 + &% = 0,

Observe that

which disproves the claim.

Scaling in the above example and transpose do not matter, so other examples would

be
1 -1 11
101 )%\ =1 1)

3. An “easy” matrix would be for example

0 1
=00)

Then A is not zero, but A2 is zero, so trace(A?) = 0. This matrix is not normal.

a=(1 o)

Another example would be

Problem 4.

1. Let t € R such that ¢ is not an integer multiple of 7. For the matrix

s ( cos(t) sin(t)) 7

—sin(t) cos(t)

prove there does not exist a real-valued matrix B such that BAB~! is a diagonal
matrix.



2. Let g # 0 € R. For the matrix

_ (1 q
1= (o 1)

prove there does not exist a real-valued matrix B such that BAB~! is a diagonal
matrix.

Solution

1. We have

cos(t) — A sin(t)

det(A — AI) = det < —sin(t)  cos(t) — A

) =A% — 2X\cos(t) + 1,

which gives A\j2 = cos(t) £ y/cos?(t) — 1. As ¢ is not an integer multiple of m,
cos?(t) —1 < 0 and A2 = a £ bi for some a and some b # 0, i.e., \j 2 ¢ R. Thus,
eigenvectors are not real either, which implies that there cannot exist a real-valued
B such that BAB~! is diagonal.

2. As A is an upper-triangular matrix with diagonal entries 1, it only has a single
eigenvalue A = A\ 2 = 1. The corresponding eigenspace is

() ) - {(}

Observe that the geometric multiplicity strictly exceeds the algebraic multiplicity.
This implies that there does not exist a basis of R? consisting of eigenvectors of A,
and in turn that there cannot exist a real-valued B such that BAB™! is diagonal.

Part II. Work two of problems 5 through 8.

Problem 5. Let m be a positive integer. Suppose p1,...,pm are polynomials in the
space Pp,(R) (of polynomials over R with degree at most m) such that p;(2) = 0 and
p;(5) = 0 for each j. Prove that the set {p1,...,pn} is linearly dependent in P,,(R).



Solution Method 1:
Let S be the subset of P,,(R) consisting of the polynomials g(x) where ¢(2) = 0 and
q(5) = 0. We verify that S is a subspace of Pp,(R):

1. S is nonempty. The zero polynomial is in S.

2. S is closed under addition. Let ¢,b € S. Then (¢+b)(2) = ¢(2)+b(2) =0+0=0,
and (¢ +b)(5) = q(5) +b(5) =0+ 0=0. Hence, g+ b€ S.

3. S is closed under scalar multiplication. Let ¢ € S and ¢ € R. Then (cq)(2) =
c(q(2)) = c0 =0, and (cq)(5) = ¢(q(5)) = 0 = 0. Hence, cq € S.

Let f(x) =2 — 5 and g(z) = x — 2. Note that {f, g} is linearly independent in P,,(R)
due to the difference in constant terms. Let 7' = span{f,g}. Since {f, g} is linearly
independent, dim T = 2.

Suppose that ¢; f(x) + c2g(x) = g(x) € S. Then
0= q(2) = 01(2 - 5) + 02(2 - 2) == —361.

Hence ¢; = 0. Similarly, ca = 0. Therefore, SNT = {0}.

Thus, the direct sum S @ T is a subspace of P,,(R), and we have

dim(S & T) < dim Py, (R)
dimS +dimT <m+1
dimS <m —1.

Since the set {pi,...,pm} has m elements lying in a vector space of dimension at most
m — 1, the set is linearly dependent.

Method 2:
Let ¢ be an integer between 1 and m. Since p;(x) is a polynomial in P,,(R) (polynomial
of degree less than or equal to m) such that p;(2) = 0 and p;(5) = 0, p;(x) is of the form

pi(z) = (z = 2)(z = 5)gi(x),

where ¢;(x) is in P,,—2(R) (polynomial of degree less than or equal to m —2). Now since
41, - - -, qm are m polynomials in Pp,_2(R) and the dimension of Pp,_2(R) is m—1, it must
be that {q1, ..., qn} is linearly dependent. Since {qi,...,qm} is linearly dependent, there
exists m not-all-zero scalars aq, ..., apy,, such that a1q1 + ... + amgn = 0. Multiplying
by (x — 2)(z — 5), we obtain that aqp; + ... + ampm = 0, with the a1, ..., a;, that are
not-all-zero. Therefore {p1,...,pm} is linearly dependent.




Problem 6. For integer n,m > 1, consider the subset S(n,m) of R™*™ consisting of
all matrices for which the sum of all even-indexed column vectors equals the sum of all
odd-indexed column vectors. That is, S(n,m) consists of all matrices A € R™*"™ whose
column vectors ay, ..., a,, satisfy

S a=Y a

i even i odd

1. (4 pts) Show that S(n,m) is a vector subspace of R™"*"™.

2. (8 pts) Show that for any A € R™*™ and B € S(n,m), their product AB is in
S(m,m).

3. (8 pts) Let A € S(n,m). What is the least eigenvalue of I,,, + AT A?

Solution

1. To show that S = S(n,m) is a subspace of R™*™ we need only show that S is
S is nonempty; S is closed under vector addition; and S is closed under scalar
multiplication.

(a) S is nonempty. Note that the m x n zero matrix is in S.

(b) S is closed under vector addition. Let A, B € S, with corresponding column

vectors ay,...,a,, and by,...,b,,. Since A, B € S, we have that
Sa-Ya Yh-Yh
i even i odd 1 even i odd

Adding the two equations together and rearranging, we obtain

Z (ai -l-bi) = Z (ai +bi).

i even i odd

Thus, A+ Be S.

(¢c) S is closed under scalar multiplication. Let A € S, with corresponding column

vectors ay,...,a,, and let ¢ € R be a scalar. Since A € S, we have that
S a-Ya
i even i odd

Multiplying both sides of the equation by ¢ and rearranging, we obtain

E ca; = E ca;.

i even i odd

Thus, cA € S. Hence, S is a subspace of R™"*™,



2. Let v € R™ where the even coordinates are 1 and the odd coordinates are —1; that
is
v=(1,-1,1,-1,...).

Observe that B € R"*™ is in S(n, m) if and only if Bv = 0. (Note this observation
can be used as an alternate approach to the first part.) Let A € R™*" and
B € S(n,m). Then

(AB)v = A(Bv) = A0 = 0.

Thus, AB € S(m,m).

3. From the second part, ATA € S(m,m). Since A satisfies a linear dependence
among its columns (alternatively, that it has a nontrivial nullspace), the rank of
A is less than m. Thus the rank of AT A is also less than m, and hence AT A is
not invertible. Since AT A is symmetric and real, by the spectral theorem it has
nonnegative real roots. Thus, the least eigenvalue of AT A is 0. The eigenvalues of
I,, + AT A are the eigenvalues of AT A shifted by 1. Thus, the least eigenvalue of
I, +ATA s 1.

Problem 7.

1. (12 points)

1 -2 3

-1 2 1

Let A = 0 3 and b = 4
2 5 2

Find a least-squares solution z to min, ||Ax — b2.

1 1 1 1 1 1
-1 1 -1 1 2 1
2. (8 points) Let A = 0 -1 1 1 |andb=| 3 [ andz = 1
0 1 0 -1 2 1
1 1 -1 1 1

Check that x is a least-squares solution to ming ||Az — b||2.



Solution

1. We use the method of normal equations.
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A = <—2 2 3 5>
We now solve (AT A)z = (ATb), which is

(5 2)(5)=()

It might be a good idea to simplify by 6:

(o) (5)=(4)
We now solve and we find
()= () 0a)=s(2)-(0)

A solution to the least squares problem is

Note: Because AT A is invertible, (or equivalently, because A is full column rank,)
this solution z is unique.

Note: We can check that x* is a solution to the least squares problem by computing
the following:

3 1 -2 3 2 1

. 1 -1 4 1 — 3
bmAm =l T o ( 1 ) e | T -3
2 2 2 1 1

2
3
5
1
Trr  am 1 -1 0 2 3] /o
AT Ax)_<—2 235>(3 _<0>



N N N S

— —

N N N S

~— — — T

N e N N T

~—_ N TN TN

—
N o o
++ 4+ 1+
— o — O
+ 1+ +
R T e TR e T e B |
++ 1 ++
111001_A




1 -1 0 0 1 0
AT(b— Az) — 1 _} _1 (1) _1 9
1 1 1 -1 1 2
1
(1)(=1) + (=1)(0) + (0)(2) + (0)(2) + (1)(1)
_ ()(=1) 4+ (1)(0) + (=1)(2) + (1)(2) + (1)(1)
(1)(=1) + (=1)(0) + (1)(2) + (0)(2) + (=1)(1)
((=1) 4+ (1)(0) + (1)(2) + (=1)(2) + (1)(1)

~14+0+04+0+1
~140-2+2+1
~140+240-1
—140+2-2+1

0

o O o

Problem 8. M,(C) is the set of complex n-by-n matrices.

1. (7 points) Show that if C' in M, (C) and zCx = 0 for all z in C", then C = 0.
While this is not needed to prove the result, you may assume that C' is Hermitian.

2. (6 points) Show that for any A in M,,(C) there are Hermitian matrices B and C
for which A = B +iC.

3. (7 points) Let A in M,,(C). Show that if 27 Az is real for all  in C", then A is

Hermitian.

Hint 1: Part 1 and Part 2 are independent. Part 3 can be efficiently done using results
from Part 1 and from Part 2.

Hint 2: Part 1 can be proven for a general matriz C' in M, (R), however you may assume
that C' is Hermitian to prove the result. This might lead to an easier proof. Note: Part
3 only needs the result of Part 1 in the special case when C is Hermitian. Part 3 does
not need the general result of Part 1.



Solution

1. Some comments before starting:

(a) This result is Theorem 7.14 in Axler. The proof in Axler relies on the identity,
for any vectors u and w, and any linear operator T

(Tu,w) = i(<T(u+w),u+w> T (u = w), u — w)

+i(T(u + w),u +iw) — i(T(u —iw), u — iw)).
We propose a different proof below.

(b) We note that a similar result in R is not correct. It is not true that, if C' in
M, (R) is such that 27Cx = 0 for all x in R”, then C = 0. This would be
true if we add the assumption that C' is self-adjoint.

(c) The result is “easier” to prove in M, (C) if we assume C to be self-adjoint.
(Then we can use the spectral theorem and be done pretty quickly.) This
“easier” and “weaker” result is all we will need in Part 3.

Let C in M,,(C) such that 27 Cx = 0 for all 2 in C".

Let ¢ be an integer between 1 and n. Let e, be the vector of all zeros but a 1 in
position £. Then ef Cey = ¢py and so we find that we must have

Cyop = 0.

So the diagonal of C has to be zero.

Let j and k be two distinct integers between 1 and n. Let f;; the vector of all zeros
but a 1 in position j and a 1 in position k. Then fJ{IkC’fj7k = ¢jj + Cjk + Crj + Cik,
so that c;j; + ¢ji + cxj + cpr = 0. Since we proved that the diagonal elements of C'
are zeros, we get

Cjk + Ckj = 0. (1)

Let g; 1 be the vector of all zeros but a 1 in position j and an 4 in position k. Then
gkagj,k = ¢jj + icj, — ickj + Cpg, SO that cj; + icj, — icyj + cpr, = 0. Since we
proved that the diagonal elements of C are zeros, we get

Cjk - ij = 0. (2)
Combining Equations and , we find
cik=0 and ¢; =0.

This proves that all off-diagonal entries of C are zeros.

Therefore
C=0.



2. We will do a proof by construction. We assume that A = B+iC with B = B and
C = CH, therefore A = BH —iCH = B—iC. So A= B+iC and A" = B—iC,
we can solve for B and C' and we get

B=g(A+A") and C=-1(4-a").

Note: We can check that this B and this C' are Hermitian and that indeed A =
B+iC.

Note: There is no other solution. So this B and this C are unique.

3. Let A in M,,(C) such that z/’ Az is real for all z in C".

From Part 2, we can write A = B + iC where both B and C are Hermitian. Then
we have 7 Az = 2 Bx + iz Cx. We know that 2" Az is real by assumption.
And because B and C' are Hermitian, " Bz and 2" Cz are real as well. Therefore
it must be that 2Cx = 0. By Part 1, either the general result, or the result with
C Hermitian (since C' is Hermitian in our case), we conclude that C' = 0. Since
C =0, we find that A = B and so A is Hermitian.




