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Student Number:

Exam Rules:

e This is a closed book exam. Once the exam begins, you have 4 hours to complete
six problems. You are allowed to take a break of up to 45 minutes; please start this
break not earlier than 90 minutes and not later than 150 minutes into the exam.

e Please begin each problem on a new page, and write the problem number and page
number at the top of each page. (For example, 6-1, 6-2, 6-3 for pages 1, 2 and
3 of problem 6). Please write only on one side of the paper and leave at least a
half-inch margin.

e There are 8 total problems. Do all 4 problems in the first part (problems 1 to
4), and pick two problems in the second part (problems 5 to 8). Do not submit
more than two solved problems from the second part. If you do, only the first two
attempted problems will be graded. Each problem is worth 20 points.

e Do not submit multiple alternative solutions to any problem; if you do, only the
first solution will be graded.

e Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

e Notation: Throughout the exam, R and C denote the sets of real and complex
numbers, respectively. F denotes either R or C. F"™ and F™*" are the vector
spaces of n-tuples and m X n matrices, respectively, over the field F. £(V') denotes
the set of linear operators on the vector space V. T™* is the adjoint of the operator
T and \* is the complex conjugate of the scalar X\. In an inner product space V,
U~ denotes the orthogonal complement of the subspace U.

e If you are confused or stuck on a problem, either ask a question or move on to
another problem.

’ Problem ‘ Points ‘ Score ‘ ‘ Problem ‘ Points ‘ Score ‘
1. 20 9. 20
2. 20 6. 20
3. 20 7. 20
4. 20 8. 20
y \ \ \ | Total | 120 | \
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Part I. Work all of problems 1 through 4.

Problem 1. Let a # 0,b # 0 € R be fixed. The below questions require a case
distinction based on values of a and b. Consider the matrix

a—b a+b a+b a-—>
0 0 a—b a—-"»
0 a—>b 0 b—a

b—a 0 0 b—a

A=

1. (10 points) Find a basis for null(A).
2. (5 points) Find a basis for range(A).

3. (b points) Find a basis for the subspace S = null(A) N range(A).

Solution We answer the questions with a case distinction based on a = b or a # b.
Let e; denote the i-th unit vector. First, let a = b.

1. If a = b, then the matrix consists of two (scaled) unit columns of the form 2a - e;
in columns 2 and 3, and is zero otherwise. Thus null(A) = span{e;, es — €3, e4}.

2. If a = b, the first and fourth vector are zero and vectors 2 and 3 are 2a - e;. Thus
{e1} is a basis of range(A).

3. For a = b, note that e; € span{ej,es — e3,e4}. Thus {e;} is a basis of S.
Now, let a # b.

1. If a # b, then the matrix can be row-reduced to the form

a—b a+b a+b a—-> a—b 0 0 a-—b
0 a—b 0 b—a . 0 a-b 0 b—-a
0 0 a—b a-bd 0 0 a—b a-bd
0 a+b a+b 0 0

Thus null(A) = span{(1, —1,1,-1)T}.

2. Let s; denote the i-th column of A. Note that s4 = s1—s2+s3, and that {s1, s2, s3}
is linearly independent for a # b. Thus {s1, s2, $3} is a basis of range(A).

3. Note that (a —b)(1,-1,1,-1)" = (a —b,b—a,a — b,b —a)” = 51 + s3 — s3. Thus
{(1,-1,1,-1)T} is a basis for S.



Problem 2. Let V be a finite-dimensional real inner product space. Let T € L(V).
Let U be a subspace of V that is invariant under 7.

1. Show that U~ is invariant under T*.

2. Construct an example of a T' € L(V') with a subspace U for which U is invariant
under T but U~ is not invariant under 7. In your answer, give V, T and U, then
show that U is invariant under 7" and show that U is not invariant under 7.

Solution:

1. Let w € U*, and let u € U, so Tu € U. Then 0 = (w,T(u)) = (T*(w), u) for all
uw €U and w € U', implying U is T*-invariant.

2. Define T € R? by T(w, 2) = (z,0). First, T(w,0) = (0,0) for all w € R. So U =
{(w,0) : w € R} is T-invariant. With usual inner product, U+ = {(0,2) : z € R}.
But 7(0, z) = (z,0), so Ut is not T-invariant.

Problem 3. Let A be a Hermitian matrix over C that is positive and invertible. (Such
a matrix A is often called “Hermitian positive definite”.) And let B be a Hermitian
matrix over C.

1. (10 points) Show that there exists an invertible matrix P such that PXAP = T
and PH BP is diagonal.
(Hint: First, show that there exists an invertible matriz T such that A =THT.)

2. (10 points) If B is positive, (such a matrix B is often called “Hermitian positive
semidefinite”,) show that
det(A + B) > det(A).

Solution:

1. Since A is positive definite, there exists an invertible matrix 7 such that A = THT.
T—HBT~1 is Hermitian, so is diagonalizable. That is, there exists a unitary matrix
U and a diagonal matrix D such that UT~#BT=1U = D. Let P = T~'U. Then
PHBP = D, and

PoAP =UHTH(THET)YT'U =U"U = 1.



2. Let P and D be as defined above. Then A = P~#P~1 and B =P " DP~!. Since
B is positive semidefinite, then the diagonal entries in D are nonnegative. Thus
det(A+B) = det (P #(I+D)P~') =det (PP~ !) det(I + D)
= det A det(/ + D) > det A.

Problem 4. Let V be a vector space over the field F. For any T' € £(V) and A € F, let
G (A, T) denote the generalized eigenspace of T' corresponding to A. Suppose T' € L(V)
is invertible. Prove that G(A\,T) = G(3,T!) for every A € F with A # 0.

(Hint: first show that G\, T) C G(3,T71).)

Solution: Let n = dim V. We first show G(A\,T) € G(3,T~"). Suppose v € G(A,T).
Then (T — A )"™v = 0. Note that the operators T~ and (T — AI) commute, so
0= (T"H™(T — AX)™
T YT = AD)T YT = \I)---T7HT — M)v
=T —=2TY - (I =Tt
= (

—A)" (T‘l — i[) v.

D)™ =0, s0 v € G(5,T7). Hence, G(A\,T) C G (5,T"). Replacing A
: =G (.17

Thus, (T~ -
by %, and T by T~1, we have G (},77') € G(A,T). Therefore, G(A, T)

>




Part II. Work two of problems 5 through 8.

Problem 5. Let A € R™*"™ with m < n.

1. (8 points) Prove that A is full rank if and only if AAT is invertible.

2. (12 points) Let A now be of full rank. Prove that the matrix P = I — AT(AAT)"1A
is the orthogonal projection matrix of R™ onto null (A).

Solution

1. (=) Suppose A has full (row) rank. Then AT has full column rank. To see that
AAT is invertible, it suffices to show that if AAT2 =0, then 2 = 0. If AAT2 =0,

then
0=alAATz = (AT2)T(ATz) = || ATz

This implies AT2 = 0. Since A” has full column rank this implies z = 0.

(<) Suppose AAT is invertible. To see that A” has full column rank m, note
that if ATz = 0, then AAT2z = 0 and thus null(A”) C null(AAT), which implies
that rank(A”T) > rank(AAT). As AAT is invertible, it has full rank m. Thus
m > rank(AT) > rank(AAT) = m. Thus AT has full rank.

2. P has to satisfy two properties that we verify:
e P projects onto null (A), i.e., Pz € null (A) for any x € R™
A-Pr=A (I-AT(AATY'A)x = Az — Az =0

e P projects orthogonally to null (A), i.e., d? (z — Px) = 0 for all d € null (A)
(note Ad = 0 = d? AT):

d'(x — Px)=dTe —d" (I — AT(AAT) ' A)x = dT AT - (AAT) 1Az =0

Problem 6. Let V be a finite-dimensional inner product space. Suppose eq,...,e, is
an orthonormal basis of V' and v1,...,v, are vectors in V such that
1
lej — vl < ﬁ

for each j. Prove that vy,...,v, is a basis of V.



Hint #1: First prove that for any n scalars aj, j =1,...,n, we have

2

1 n n
— > ajl < [ D lay?
\/ﬁjzl j=1

Hint #2: Assume aq, a3, ..., a, are scalars such that 2?21 ajv;i = 0 and look at

HZL a;(e; —Uj)H-

Solution We can prove the first hint using Cauchy-Schwartz on

|a]

. E‘H

ﬁ |an]
with the standard Euclidean inner product. Cauchy-Schwartz says that |u” v| < ||u||2||v]|2.
We have that

2

T 1 - = 2
lu”v| = N D olajl, ulla=1, and Jollz= | D lay]
=1

Jj=1

So that proves

2

1 n n
%Z\aﬂ < Z lail* | - (1)
i=1 =1

To prove that vi,...,v, is a basis, it is sufficient to prove that vi,...,v, is linearly
independent.

For sake of contradiction, suppose vi,...,v, is linearly dependent. Then there exist
scalars aq, as, ..., ap not all zeros such that

n
Z a;jV; = 0.
j=1
Following hint #2, observe that

n n n n
> ajles —vp)| =D ajes — D aus)| = D ajes))
j=1 j=1 j=1 j=1

where the second equality comes from the fact that Z?:1 ajvj = 0.



N|=

n n
Since e en is orthonormal, we get aje;l| = la;|? S0
1y «++y En s g F€ill = j s
j=1 j=1

> ajlej —vp)|| = | Do las* | - (2)
=1 =1

N

On the other hand, using the triangle inequality, we see that

n n
> ajle; —v)| <D lagllle; — vl (3)
j=1 j=1

And using the assumption
. 1
Vi, e — vl < Nk
we get that
i lajllle; —vill <
Note that the < is transformed to a < because |a;| may be zero. However because at
least one of the a;’s is not 0, we have that

1
%|aj|7

i, lajllle; — vl <

And so, we get that

n

1 n
> lagllle; = vill < == layl.

j=1

Unsing this last relation into Equation , we get

SIS

n n n

1
doale =)l < =D lal < | Xolal | (4)
j=1 j=1 j=1

where the second inequality comes from Equation .

We now see that we have a contradiction between Equations and . Thus, our
assumption “vi,...,v, is linearly dependent” is false. Therefore vy, ..., v, is linearly
independent, so is a basis of V.

Problem 7. Let A, B € R"*". Two matrices A, B are called simultaneously diago-
nalizable if there exists an invertible matrix S such that S~'AS and S~'BS are both
diagonal.



1. (6 points) Prove that if A, B are simultaneously diagonalizable then AB = BA.

2. (14 points) Prove that if AB = BA and if one of the matrices has n distinct
eigenvalues then A, B are simultaneously diagonalizable.

Solution

1. Let Dy = S7'AS and Dp = S~'BS be the two corresponding diagonal matrices.
Clearly, DuDp = DDy, and thus AB = SD,S~'SDpS~' = SD,DgS~! =
SDpDAS~!' =8SDS~1SD,S~! = BA.

2. Without loss of generality, let A have n distinct eigenvalues. Then A is diagonal-
izable, i.e., there exists an invertible matrix S € R™*" such that Dy = S~'AS =
diag(A1,..., An) is the diagonal matrix of eigenvalues \q,..., A, of A. We define
Dp:=S"'BS. As AB = BA, one obtains DyDg = S"'ASS™1BS = S"1ABS =
S™1BAS = S7'BSS™1AS = DpDy. Let DpDp = (Cij)ij and DgDy = (dl])l]
Then it holds that ¢; = d;; is the A\;-multiple of the corresponding entry of Dpg,
but for i # j it holds that ¢;; is the A;-multiple and that d;; is the \;-multiple
of the corresponding entry of Dp, respectively. As the eigenvalues A;, A\; of A are
distinct and as Do Dp = DpD 4, Dp has to be a diagonal matrix.

Problem 8.
Let A and B in R™*" such that AB — BA = A.

1. (10 points) Prove that A*B — BAF = kA*

2. (10 points) Prove that A is nilpotent.

Solution The first part is done by induction on k for the statement A¥B— BAF = kA*.
For k = 1, this is true by initial assumption. Assume the statement is true for k, let us
prove it is true for k + 1. We have that A*B — BAF = kA*. Multiplying by A on the
left and we get (1): A*1B — ABAF = kA*1. We also have that AB — BA = A, so
multiplying by A* on the right and we get (2): ABA* — BA*! = A*+1 Now adding
(1) and (2) together leads to the desired result that is A**1B — BAF! = (k + 1) AFFL,

The second part is done by arguing that part 1 shows that A* is an eigenvector of

eigenvalue k of ®(A) = A*B — BA*. If A* is not zero, then ® has an infinity of

eigenvalues (1, 2, etc.) which is absurd since the dimension of our space is n?.




