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Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to complete
all six problems.

• Please begin each problem on a new page, and write the problem number and page
number at the top of each page. (For example, 6-1, 6-2, 6-3 for pages 1, 2 and 3 of
problem 6). Please write only on one side of the paper.

• There are 8 total problems. Do all 4 problems in the first part (problems 1 to
4), and pick two problems in the second part (problems 5 to 8). Do not submit
more than two solved problems from the second part. If you do, only the first two
attempted problems will be graded. Each problem is worth 20 points.

• Do not submit multiple alternative solutions to any problem; if you do, only the
first solution will be graded.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Notation: Throughout the exam, R and C denote the sets of real and complex
numbers, respectively. F denotes either R or C. Fn and Fn,n are the vector spaces
of n-tuples and n × n matrices, respectively, over the field F. L(V ) denotes the
set of linear operators on the vector space V . T ∗ is the adjoint of the operator T
and λ∗ is the complex conjugate of the scalar λ. In an inner product space V , U⊥

denotes the orthogonal complement of the subspace U .

• If you are confused or stuck on a problem, either ask a question or move on to
another problem.

Problem Points Score Problem Points Score

1. 20 5. 20

2. 20 6. 20

3. 20 7. 20

4. 20 8. 20

Total 120
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Part I. Work all of problems 1 through 4.

Problem 1. Let T be a linear map T : U → V and S be a linear map S : V → W .
Prove that dimU − dimV ≤ dimnull ST − dimnull S.

Solution By the rank-nullity theorem dimU = dimnull ST+dim rangeST and dimV =
dimnull S + dim rangeS. Subtracting right and left sides one has dimU − dimV =
dimnull ST −dimnull S+(dim rangeST −dim rangeS). But rangeST is a subspace of
rangeS, and therefore dim rangeST ≤ dim rangeS and thus dimU−dimV ≤ dimnull ST−
dimnull S.

Problem 2.

Let u,v, and w be 3 unit vectors in a real inner-product space V .

(a) (15 points) Show that 2 ⟨u,v⟩ ⟨u,w⟩ ⟨v,w⟩ ≥ ⟨u,v⟩2+ ⟨u,w⟩2+ ⟨v,w⟩2− 1. Hint:
apply the first step of the Gram-Schmidt process to vectors v and w with respect
to u and and apply the Cauchy-Schwarz inequality to the resulting pair of vectors.

(b) (5 points) Show that the equality is reached if and only if vectors u,v, and w are
linearly dependent.

Solution

(a) Apply Cauchy-Schwarz inequality to vectors v− ⟨u,v⟩u and w− ⟨u,w⟩u

⟨v− ⟨u,v⟩u,w− ⟨u,w⟩u⟩2 ≤ ||v− ⟨u,v⟩u||2||w− ⟨u,w⟩u||2

The inner product on the left can be written as

⟨v− ⟨u,v⟩u,w− ⟨u,w⟩u⟩ = ⟨v,w⟩−⟨u,v⟩ ⟨u,w⟩−⟨u,w⟩ ⟨v,u⟩+⟨u,v⟩ ⟨u,w⟩ = ⟨v,w⟩−⟨u,v⟩ ⟨u,w⟩

and the squares of the norms on the right can be written as

||v− ⟨u,v⟩u||2 = ⟨v− ⟨u,v⟩u,v− ⟨u,v⟩u⟩ = ⟨v,v⟩ − ⟨u,v⟩ ⟨u,v⟩ = 1− ⟨u,v⟩2

and similarily ||w− ⟨u,w⟩u||2 = 1− ⟨u,w⟩2.
Cauchy-Schwarz inequality gives

(⟨v,w⟩ − ⟨u,v⟩ ⟨u,w⟩)2 ≤ (1− ⟨u,v⟩2)(1− ⟨u,w⟩2).



Expansions on both sides lead to

⟨v,w⟩2−2 ⟨v,w⟩ ⟨u,v⟩ ⟨u,w⟩+⟨u,v⟩2 ⟨u,w⟩2 ≤ 1−⟨u,v⟩2−⟨u,w⟩2+⟨u,v⟩2 ⟨u,w⟩2 ,

which leads to the desired inequality after subtraction of ⟨v,w⟩2 + ⟨u,v⟩2 ⟨u,w⟩2
and a sign change.

(b) Cauchy-Schwarz inequality becomes equality if and only if the two vectors are
linearly dependent. This means, WLOG, that v − ⟨u,v⟩u = a(w − ⟨u,w⟩u) for
some real a. Therefore, equality is reached if and only if v = (⟨u,v⟩−a ⟨u,w⟩)u+
aw, which proves linear dependence. In the other direction, if v = bu + aw then
⟨u,v⟩ = b+ a ⟨u,w⟩ and thus b = ⟨u,v⟩ − a ⟨u,w⟩.

Problem 3. Let T be a positive operator on V . Suppose v, w ∈ V are such that Tv = w
and Tw = v. Prove that v = w.

Solution Since T is a positive operator, we have ⟨T (v − w), v − w⟩ ≥ 0. On the other
hand, since Tv = w and Tw = v, we have T (v − w) = w − v. Thus

0 ≤ ⟨T (v − w), v − w⟩ = ⟨w − v, v − w⟩ = −∥v − w∥2 ≤ 0.

Therefore ∥v − w∥ = 0, so v = w.

Problem 4. Let n ≥ 2.

(a) Is there an n× n matrix A with An−1 ̸= 0 and An = 0? Give an example to show
such a matrix exists (and explain why the matrix satisfies the two conditions), or
disprove it.

(b) Show that an n × n upper triangular matrix A with An ̸= 0 and An+1 = 0 does
not exist.

Solution

1. Yes. For example, let A be the matrix such that Ai,i+1 = 1 for i = 1, . . . , n−1 and
Aij = 0 otherwise. The matrix is already in Jordan canonical form and 0 is the
only eigenvalue. The largest Jordan block corresponding to 0 is n, so the minimal
polynomial is p(x) = xn. Therefore we conclude An−1 ̸= 0, and An = 0.



2. Suppose An+1 = 0. Let λ be an eigenvalue of A (λ exists due to A being upper
triangular) with nonzero eigenvector v. Then

Av = λv ⇒ A2v = λAv = λ2v ⇒ · · · ⇒ An+1v = λnAv = λn+1v.

However, An+1 = 0, so λn+1v = 0, which implies λ = 0. Thus all eigenvalues of
A are zero. Then the minimal polynomial of A, p(x), has only zero as a root and
thus p(x) = xk, k ≤ n. Therefore, p(A) = 0 ⇒ Ak = 0 ⇒ An = 0.



Part II. Work two of problems 5 through 8.

Problem 5. Let T be a linear map on a vector space V , dimV = n.

(a) If for some vector v, the vectors v, T (v), T 2(v), . . . , Tn−1(v) are linearly inde-
pendent, show that every eigenvalue of T has only one corresponding eigenvector
up to a scalar multiplication.

(b) If T has n distinct eigenvalues, and vector u is the sum of n eigenvectors, corre-
sponding to the distinct eigenvalues, show that u, T (u), T 2(u), . . . , Tn−1(u) are
linearly independent (and thus form a basis of V ).

Solution:

(a) The vectors v, T (v), T 2(v), . . . , Tn−1(v) form a basis for V . The matrix repre-
sentation of the linear map under this basis has a matrix whose first n−1 columns
have a subdiagonal of 1’s and 0’s elsewhere. Therefore, for any eigenvalue λ, the
matrix A − λI has a rank of n − 1. Based on the rank-nullity theorem, we know
that dimnull (A− λI) = n− (n− 1) = 1, which means the eigenvectors belonging
to λ are multiples of each other.

(b) Let u1,u2, . . . ,un be eigenvectors (that form a basis) corresponding to the distinct
eigenvalues λ1, λ2, . . . , λn of T . Let u = u1 + u2 + · · · + un. Then T (u) =
λ1u1 + λ2u2 + · · · + λnun, T 2(u) = λ2

1u1 + λ2
2u2 + · · · + λ2

nun,. . . , Tn−1(u) =
λn−1
1 u1 + λn−1

2 u2 + · · · + λn−1
n un. The coefficient matrix of u, T (u), . . . , Tn−1u

under the basis u1, u2, . . . , un is a Vandermonde matrix, which is invertible for
distinct λ1, . . . , λn (it can be easily shown that the columns of the matrix are
linearly independent).

Problem 6. Let A be an n× n positive semidefinite matrix.

(a) Show that ∥∥(I −A)(I +A)−1x
∥∥
2
≤ ∥x∥2 , x ∈ Cn.

(b) Show that x ∈ null A is equivalent to

(I −A)(I +A)−1x = x.

Solution:



(a) To show
∥∥(I −A)(I +A)−1x

∥∥
2
≤ ∥x∥2, it is sufficient to show

x∗(I +A)−1(I −A)(I −A)(I +A)−1x ≤ x∗x, x ∈ Cn,

which is equivalent to showing I − (I + A)−1(I − A)(I − A)(I + A)−1 = I −
(I +A)−1(I −A)2(I +A)−1 is positive semidefinite, which is further equivalent to
showing

(I +A)I(I +A)− (I +A)(I +A)−1(I −A)2(I +A)−1(I +A) = (I +A)2− (I −A)2

is positive semidefinite. But, (I+A)2−(I−A)2 = 4A, which is positive semidefinite.

(b) Next we show the equivalence of x ∈ null A and (I − A)(I + A)−1x = x. If x ∈
null A, then Ax = 0. Hence (I−A)x = x−Ax = x, and (I+A)x = x+Ax = x,
the latter implying (I + A)−1x = x (note that I+A is invertible). Therefore, we
have (I −A)(I +A)−1x = x.

On the other hand, suppose (I−A)(I+A)−1x = x. Since I+A and I−A commute,
(I+A)−1 and I−A commute. Hence (I−A)(I+A)−1x = (I+A)−1(I−A)x = x,
or (I −A)x = (I +A)x. This implies that Ax = 0.

Problem 7. Let A be an isometry on a finite-dimensional real inner product space V
which satisfies A2 = −I. Prove that for every vector v in V , Av is orthogonal to v.

Solution For any non-zero v ∈ V consider Av = av + w where a is a scalar and
⟨v,w⟩ = 0. A2v = A(av + w) = a2v + aw + Aw = −v. The last equality can be
rewritten as Aw = −aw− (1 + a2)v. Because A is an isometry

||Av||2 = ||av+w||2 = a2||v||2 + ||w||2 = ||v||2,

where we have used ⟨v,w⟩ = 0. Thus, ||w||2 = (1− a2)||v||2. Similarily for Aw

||Aw||2 = || − aw− (1 + a2)v||2 = a2||w||2 + (1 + a2)2||v||2 = ||w||2

and thus, (1 + a2)2||v||2 = (1 − a2)||w||2 = (1 − a2)2||v||2. Because ||v||2 > 0 it follows
that 1 + a2 = |1 − a2|, which is possible only when a = 0. Therefore, Av = w and is
orthogonal to v.

An alternative solution (credit to Andrew Kitterman) Since A is an isometry,
AA∗ = A∗A = I. We also know that A2 + I = 0. Now, let v ∈ V , and v ̸= 0. Then we



have 〈
(A2 + I)v, Av

〉
= 0 (as A2 + I = 0)

→
〈
A2v + v, Av

〉
= 0

→
〈
A2v, Av

〉
+ ⟨v, Av⟩ = 0

→ ⟨Av, A∗Av⟩+ ⟨Av,v⟩ = 0

→ ⟨Av,v⟩+ ⟨Av,v⟩ = 0 (as AA∗ = I)

→ 2 ⟨Av,v⟩ = 0

→ ⟨Av,v⟩ = 0

Since v ̸= 0, this implies Av is orthogonal to v for every v ∈ V .

Problem 8. Let S = {v1,v2, ...,vn} be a set of vectors in a real inner-product space
such that ⟨vi,vj⟩ < 0 for all i ̸= j.

(a) (5 points) Show that any linear combination of a set of vectors can be written as
a difference of two linear combinations with non-negative coefficients.

(b) (7 points) If set S is linearly dependent, show that any nontrivial linear combination
of vectors from S equal to 0 contains only coefficients of the same sign (disregarding
zeros).

(c) (8 points) Show that dim span S ≥ n− 1.

Solution

(a) For any linear combination
∑

aivi define

bi =

{
ai, if ai ≥ 0
0, if ai < 0

and ci =

{
−ai, if ai < 0
0, if ai ≥ 0

Then, bi ≥ 0 and ci ≥ 0 and
∑

aivi =
∑

bivi−
∑

civi is the required difference of
linear combinations.

(b) For a linearly dependent set S there is a non-trivial linear combination
∑

aivi =
0. Introduce linear combinations

∑
bivi and

∑
civi as in part (a). Define w =∑

bivi =
∑

civi. Now,

||w||2 =
〈∑

bivi,
∑

cjvj

〉
=

∑∑
bicj ⟨vi,vj⟩ ≤ 0



because each term in the last sum is non-positive with bicj ≥ 0 and ⟨vi,vj⟩ < 0.
If both linear combinations

∑
bivi and

∑
civi are non-trivial than there is at

least one product bicj ̸= 0 and therefore ||w||2 < 0. Contradiction. Therefore,
either

∑
bivi or

∑
civi is trivial and therefore linear combination

∑
aivi has only

coefficients of the same sign.

(c) If dim span {v1,v2, ...,vn−1} ≤ n−2, then there is a non-trivial linear combination∑n−1
i=1 aivi = 0, which according to part (b) has only terms of the same sign and

which WLOG can be taken as non-negative. Now,

0 =

〈
n−1∑
i=1

aivi,vn

〉
=

n−1∑
i=1

ai ⟨vi,vn⟩ < 0

because all terms of the last sum are non-positive with at least one negative
term. Contradiction. Thus, dim span {v1,v2, ...,vn−1} = n − 1, which implies
dim span S ≥ n− 1.


