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Name:

Exam Rules:

e This is a closed book exam. Once the exam begins, you have 4 hours to complete
all six problems.

e Please begin each problem on a new page, and write the problem number and page
number at the top of each page. (For example, 6-1, 6-2, 6-3 for pages 1, 2 and 3 of
problem 6). Please write only on one side of the paper.

e There are 8 total problems. Do all 4 problems in the first part (problems 1 to
4), and pick two problems in the second part (problems 5 to 8). Do not submit
more than two solved problems from the second part. If you do, only the first two
attempted problems will be graded. Each problem is worth 20 points.

e Do not submit multiple alternative solutions to any problem; if you do, only the
first solution will be graded.

e Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

e Notation: Throughout the exam, R and C denote the sets of real and complex
numbers, respectively. [ denotes either R or C. F" and F™" are the vector spaces
of n-tuples and n x n matrices, respectively, over the field F. L£(V) denotes the
set of linear operators on the vector space V. T™ is the adjoint of the operator T
and \* is the complex conjugate of the scalar \. In an inner product space V, U+
denotes the orthogonal complement of the subspace U.

e If you are confused or stuck on a problem, either ask a question or move on to
another problem.

’ Problem ‘ Points \ Score \ \ Problem \ Points \ Score ‘
1. 20 5. 20
2. 20 6. 20
3. 20 7. 20
4 20 8. 20
\ \ | | Total | 120 | |
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Part I. Work all of problems 1 through 4.

Problem 1. Let T be a linear map T : U — V and S be a linear map S : V — W.
Prove that dimU — dim V' < dimnull ST — dimnull S.

Solution By the rank-nullity theorem dim U = dim null ST+dimrange ST and dim V' =
dimnull S + dimrange S. Subtracting right and left sides one has dimU — dimV =
dimnull ST — dimnull S+ (dimrange ST — dimrange S). But range ST is a subspace of
range S, and therefore dim range ST < dimrange S and thus dim U —dim V' < dim null ST —
dimnull S.

Problem 2.

Let u,v,and w be 3 unit vectors in a real inner-product space V.

2 2

(a) (15 points) Show that 2 (u,v) (u, w) (v,w) > (u,v)>+ (u, w)> + (v, w)> — 1. Hint:
apply the first step of the Gram-Schmidt process to vectors v and w with respect
to u and and apply the Cauchy-Schwarz inequality to the resulting pair of vectors.

(b) (5 points) Show that the equality is reached if and only if vectors u,v, and w are
linearly dependent.

Solution

(a) Apply Cauchy-Schwarz inequality to vectors v — (u,v)u and w — (u, w)u
(v —(u,v)u,w - (u,w)w)? < [|v - (u,v) ul[*[|w — (a, W) u||”
The inner product on the left can be written as
(v—(uviu,w—(u,w)u) = (v,w)—(u,v) (0, w)—(u,w) (v, ) +(u,v) (u,w) = (v, w)—(u,v) (1, w)
and the squares of the norms on the right can be written as
v —(u,v)ul> = (v—(u,vIu,v—(u,v)u) = (v,v) — (u,v) (u,v) = 1 — (u,v)?

and similarily ||[w — (u,w)u|> =1 — (u, w)%

Cauchy-Schwarz inequality gives

(v, w) = (0, v) (4, w))® < (1= (u,v)")(1 — (u,w)?).



Expansions on both sides lead to

(v, w)?=2 (v, w) (u, v) (u, w)+(u, v)? (u,w)? < 1—(u, v)> = (u, w)>+(u, v)? (u, w)?

which leads to the desired inequality after subtraction of (v, w)? + (u,v)? (u, w)?

and a sign change.

(b) Cauchy-Schwarz inequality becomes equality if and only if the two vectors are
linearly dependent. This means, WLOG, that v — (u,v)u = a(w — (u,w) u) for
some real a. Therefore, equality is reached if and only if v = ((u,v) —a (u,w))u+
aw, which proves linear dependence. In the other direction, if v = bu + aw then
(u,v) = b+ a(u,w) and thus b = (u,v) —a(u,w).

Problem 3. Let T be a positive operator on V. Suppose v, w € V are such that Tv = w
and Tw = v. Prove that v = w.

Solution Since T is a positive operator, we have (T'(v —w),v — w) > 0. On the other
hand, since Tv = w and Tw = v, we have T'(v — w) = w — v. Thus

0<(T(v—w),v—w)=(w=—uv,0—w)=—|v—uw|?<0.

Therefore ||v — w| =0, so v = w.

Problem 4. Let n > 2.

(a) Is there an n x n matrix A with A"~! £ 0 and A" = 0? Give an example to show
such a matrix exists (and explain why the matrix satisfies the two conditions), or
disprove it.

(b) Show that an n x n upper triangular matrix A with A" # 0 and A"*! = 0 does
not exist.

Solution

1. Yes. For example, let A be the matrix such that A; ;41 =1fori=1,...,n—1 and
Aj; = 0 otherwise. The matrix is already in Jordan canonical form and 0 is the
only eigenvalue. The largest Jordan block corresponding to 0 is n, so the minimal
polynomial is p(z) = 2. Therefore we conclude A"~ # 0, and A" = 0.



2. Suppose A"t = 0. Let A be an eigenvalue of A () exists due to A being upper
triangular) with nonzero eigenvector v. Then

Av= v = A%v =D v =) v = - - = A"y = \"Av = \"1o.

However, A" = 0, so A""'v = 0, which implies A = 0. Thus all eigenvalues of
A are zero. Then the minimal polynomial of A, p(x), has only zero as a root and
thus p(z) = 2%, k < n. Therefore, p(4) = 0= A¥* =0 = A" = 0.




Part II. Work two of problems 5 through 8.

Problem 5. Let T be a linear map on a vector space V, dimV = n.

(a)

(b)

If for some vector v, the vectors v, T'(v), T?(v), ..., T" !(v) are linearly inde-
pendent, show that every eigenvalue of T" has only one corresponding eigenvector
up to a scalar multiplication.

If T has n distinct eigenvalues, and vector u is the sum of n eigenvectors, corre-
sponding to the distinct eigenvalues, show that u, T(u), T?(u), ..., T" !(u) are
linearly independent (and thus form a basis of V).

Solution:

(a)

The vectors v, T'(v), T?(v), ..., T" ! (v) form a basis for V. The matrix repre-
sentation of the linear map under this basis has a matrix whose first n — 1 columns
have a subdiagonal of 1’s and 0’s elsewhere. Therefore, for any eigenvalue A, the
matrix A — Al has a rank of n — 1. Based on the rank-nullity theorem, we know
that dimnull (A — AX) =n — (n— 1) = 1, which means the eigenvectors belonging
to A are multiples of each other.

Let wi,ug, ..., u, be eigenvectors (that form a basis) corresponding to the distinct
eigenvalues A, Ag,..., A\, of T. Let uw = uy + w2 + -+ + u,. Then T(u) =
Aug + Aous + -0+ A, Tz(u) = )\%ul + /\%Ug + -+ )\%un,. . T”_l(u) =
Ny + A tug 4 -+ AP, The coefficient matrix of w, T(u), ..., T" 'u
under the basis wq, ws, ..., 4, is a Vandermonde matrix, which is invertible for
distinct A1,..., A, (it can be easily shown that the columns of the matrix are
linearly independent).

Problem 6. Let A be an n x n positive semidefinite matrix.

(a)

(b)

Show that
H(I — 14)(.T+A)_1913H2 <|lx|,, z € C".

Show that € null A is equivalent to

(I-A)I+A) 'z=x.

Solution:



(a) To show ||(I — A)(I + A)~'z|, < ||z, it is sufficient to show
e (I +A) (I —A)IT AT+ A) 'z <xrx, xecC

which is equivalent to showing I — (I + A)™*(I — A)(I — A)(I + A)™t =1 —
(I +A)~Y(I — A)%(I + A)~! is positive semidefinite, which is further equivalent to
showing

(T4+AII+A) —T+A)I+A) T -A2T+A)TT+A) =T+A)>%—(I-A)7>

is positive semidefinite. But, (I+A)2—(I—A)? = 4A, which is positive semidefinite.

(b) Next we show the equivalence of € null A and (I — A)(I + A) 'z =z. If ¢ €
null A, then Az = 0. Hence (I —A)x =x— Az =z, and (I + A)x = x+ Az =z,
the latter implying (I + A)~'x = x (note that I+A is invertible). Therefore, we
have (I — A)(I + A)"lz =x.

On the other hand, suppose (I —A)(I+A) 'z = x. Since I+ A and I — A commute,
(I+A)~! and I — A commute. Hence (I —A)(I+A) "z = (I+A)"{(I-A)z ==,
or (I — A)x = (I + A)x. This implies that Az = 0.

Problem 7. Let A be an isometry on a finite-dimensional real inner product space V'
which satisfies A2 = —I. Prove that for every vector v in V, Av is orthogonal to v.

Solution For any non-zero v € V consider Av = av + w where a is a scalar and
(viw) = 0. A%v = A(av + w) = a’>v + aw + Aw = —v. The last equality can be
rewritten as Aw = —aw — (1 + a?)v. Because A is an isometry

1AV][* = [lav + w|[* = a®[[v|* + [|w]]* = ||v]]*,
where we have used (v,w) = 0. Thus, ||w||> = (1 — a?)||v||®. Similarily for Aw
[AW[[* = || = aw — (1 + a®)v[]* = a®[|w[]* + (1 + a®)?||v]]* = [|w]?

and thus, (14 a?)?||v|]? = (1 — a?)||w||? = (1 — a?)?||v||?. Because ||v||* > 0 it follows
that 1+ a? = |1 — a?|, which is possible only when @ = 0. Therefore, Av = w and is
orthogonal to v.

An alternative solution (credit to Andrew Kitterman) Since A is an isometry,

AA* = A*A = 1. We also know that A2 + I = 0. Now, let v € V, and v # 0. Then we



have

(A2 + v, Av) =0 (as A>+1=0)
— <A2v + v,Av> =0

— (A%, Av) + (v, Av) = 0

— (Av, A" Av) + (Av,v) =0

— (Av,v) + (Av,v) =0 (as AA" =1)
— 2 (Av,v) =0

— (Av,v) =0

Since v # 0, this implies Av is orthogonal to v for every v € V.

Problem 8. Let S = {vy,va,...,v,} be a set of vectors in a real inner-product space
such that (v;,v;) <0 for all ¢ # j.

(a) (5 points) Show that any linear combination of a set of vectors can be written as
a difference of two linear combinations with non-negative coefficients.

(b) (7 points) If set S is linearly dependent, show that any nontrivial linear combination
of vectors from S equal to 0 contains only coefficients of the same sign (disregarding
Z€ros).

(¢) (8 points) Show that dimspan S >n — 1.

Solution

(a) For any linear combination ) a;v; define

b — a;,if a; >0 and o — —a;,if a; <0
L 0,if a; <0 e 0,if a; >0

Then, b; > 0 and ¢; > 0 and ) a;v; = > b;v; — > ¢;v; is the required difference of
linear combinations.

(b) For a linearly dependent set S there is a non-trivial linear combination ) a;v; =
0. Introduce linear combinations > b;v; and ) ¢;v; as in part (a). Define w =
Zbivi = ZCiVZ'. NOW,

||w]|> = <Z bivi,chvj> = ZZbiCj (vi,vj) <0



because each term in the last sum is non-positive with b;c; > 0 and (v;,v;) < 0.
If both linear combinations »_ b;v; and ) ¢;v; are non-trivial than there is at
least one product bjc; # 0 and therefore ||w||> < 0. Contradiction. Therefore,
either Y b;v; or > ¢;v; is trivial and therefore linear combination  a;v; has only
coefficients of the same sign.

If dimspan {vy,va,...,v,—1} < n—2, then there is a non-trivial linear combination
Z?:_f a;v; = 0, which according to part (b) has only terms of the same sign and
which WLOG can be taken as non-negative. Now,

n—1 n—1
0= <Z aivi,vn> = Zai (Vi, Vi) <0
i=1 i=1

because all terms of the last sum are non-positive with at least one negative
term. Contradiction. Thus, dimspan {vi,vg,...,v,—1} = n — 1, which implies
dimspan S > n — 1.




