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Mathematical and Statistical Sciences
Applied Analysis Preliminary Exam
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Student number (not your name):
Exam Rules:

• This is a closed book exam. You may use one page of notes (1 side of a letter-sized piece of
paper). You may not use any other external aides during the exam, such as

– communicating with anyone other than the exam proctor;

– consulting the internet, textbooks, solutions of previous exams, etc.

– using calculators or mathematical software.

• You have 4 hours to complete the exam.

• There are 8 total problems. Do all 4 problems in the first part (problems 1 to 4), and pick two
problems in the second part (problems 5 to 8). Do not submit more than two solved problems
from the second part. If you do, only the first two attempted problems will be graded.

• Do not submit multiple alternative solutions to any problem; if you do, only the first solution
will be graded.

• Each problem is worth 20 points. The weights for each part on multi-step problems are
indicated in the problem.

• Be sure to show all work that is relevant for each problem, but do not turn in scratch work.

• Justify your solutions: cite theorems that you use, justify that their assumptions are
satisfied, provide specific counter-examples for disproof, give explanations, and show calcula-
tions for numerical computations. If you are asked to prove a theorem, do not merely quote
that theorem as your proof; instead, produce an independent proof.

• If you use a statement from Rudin, Pugh, or class, state it. If you are unsure if a statement
must be proved or may merely be stated, ask the proctor. This exam uses the definitions from
Pugh. If you want to use definitions from Rudin, please state them and use them consistently.

• When read aloud, your solution must make complete English sentences. Do not put in just
math symbols and expect the committee to guess the rest.

• Begin each solution on a new page. Put your student number (not your name) and page
number on the top of every page.

• Write legibly using a dark pencil or pen. Write on only one side of the paper, the back side
will not be scanned. Leave 1in margins, the scanner won’t pick up your writing all the way
to the edges. If you leave a reasonable space between the lines for our notes, the committee
will be much happier!

• In case of a major disruption due to which the exam cannot be completed, for example due to
health reasons or a campus evacuation, students are entitled to a choice between acceptance
of partial work and a partial new problem set, or a full new problem set.



Part 1: Solve all problems 1-4.

1. Suppose (X, d) is a metric space. Denote by S the closure of a set S ⊂ X. Suppose
A1, A2, . . . ⊂ X.

(a) (10 points) Prove that
⋃∞

n=1An ⊂
⋃∞

n=1An.

(b) (10 points) Give an example where the inclusion is proper.

Solution:

(a) Suppose x ∈
⋃∞

n=1An. Then, there exists n such that x ∈ An. Then x = limk→∞ xk for

some sequence (xk) ⊂ Ak. Since (xk) ⊂ Ak ⊂
⋃∞

n=1An, it follows that x ∈
⋃∞

n=1An.

Another solution: Use the definition of S as the smallest closed set containing S, that
is, S =

⋂
F⊃S, F⊂X closed F. For any k = 1, 2, . . ., it holds that Ak ⊂

⋃∞
n=1An ⊂

⋃∞
n=1An.

Since the intersection of a family of closed sets is closed,
⋃∞

n=1An is closed. Thus,⋃∞
n=1An is one of the closed sets in the definition of closure of Ak. It follows that Ak ⊂⋃∞
n=1An for all k, and thus

⋃∞
n=1An ⊂

⋃∞
n=1An.

(b) Consider X = R with the Euclidean metric, and An = {1/n}, n = 1, 2, . . .. The sets
An are singletons, therefore closed, therefore An = An, so

⋃∞
n=1An =

⋃∞
n=1An =

{1/n : n = 1, 2, . . .}. But the point 0 is a cluster point of the set {1/n : n = 1, 2, . . .}
because limn→∞ 1/n = 0, so 0 ∈

⋃∞
n=1An, but 0 /∈ An for any n, so 0 /∈

⋃∞
n=1An =⋃∞

n=1An. We can conclude that
⋃∞

n=1An ⊊
⋃∞

n=1An.

2. Let f : X → Y and g : Y → Z be uniformly continuous functions between metric spaces
X,Y, Z. Prove that h : X → Z with h(x) = g(f(x)) is uniformly continuous.

Solution:

Let ε > 0. Choose ρ > 0 such that dZ(g(y1), g(y2)) < ε whenever y1, y2 ∈ Y with
dY (y1, y2) < ρ (possible since g is uniformly continuous). Further, choose δ > 0 such that
dY (f(x1), f(x2)) < ρ whenever x1, x2 ∈ X with dX(x1, x2) < δ (possible since f is uniformly
continuous.).

Now let x1, x2 ∈ X with dX(x1, x2) < δ. Then dY (f(x1), f(x2)) < ρ, and thus
dZ(g(f(x1)), g(f(x2))) < ε.

3. Suppose f is a bounded real function on [a, b] such that f2 is Riemann integrable. Does it
follow that f is Riemann integrable? Does the answer change if we assume that f3 is Riemann
integrable

Solution:

All statements below are understood on [a, b].

f does not have to be Riemann integrable. For example, define f(x) = 1 if x is rational, and
f(x) = −1 if x is irrational. Then f2 is a constant function, so it is Riemann integrable.



On the other hand, if f3 is Riemann integrable, then so is f . To see this, define ϕ : R→ R by
ϕ(x) = 3

√
x. Then f = ϕ ◦ f3. Since ϕ is continuous and f3 is Riemann integrable, it follows

that the composition f = ϕ ◦ f3 is Riemann integrable.

4. Suppose f is a real continuous function on R, fn(t) = f(nt) for n = 1, 2, 3, . . . , and the
sequence (fn) is equicontinuous on [0, 1]. Show that f is constant on [0,∞).

Solution:

Let x, y be distinct points in [0,∞) and let ϵ > 0 be given. By equicontinuity, there exists
δ > 0 such that for any a, b ∈ [0, 1], if |a − b| < δ, then |fn(a) − fn(b)| < ϵ. Choose n large
enough so that |x/n− y/n| < δ and x/n, y/n ∈ [0, 1]. Then,

|f(x)− f(y)| =
∣∣∣fn (x

n

)
− fn

(y
n

)∣∣∣ < ϵ.

Since this holds for every ϵ > 0, it follows that f(x) = f(y). Since this is true for every
x, y ∈ [0,∞), we conclude that f is constant on [0,∞).

Part 2 - Solve 2 out of the following 4 problems.

5. Prove this version of Lebesgue’s Number Lemma (without using the lemma itself):

Let (X, d) be a compact metric space with an open cover U . Then there exists a δ > 0 such
that every open δ-ball

B(x, δ) = {y ∈ X : d(x, y) < δ}

is contained in some element of U .
Solution:

Definition (Pugh, p. 79): A subset A of a metric space M is (sequentially) compact if every
sequence (an) ⊂ A has a subsequence (ank

) that converges to a limit in A.

Suppose for the sake of contradiction, that no such δ exists. Therefore, for every element
of the sequence δn = 1

n , we can find an xn ∈ X such that B(xn,
1
n) ̸⊂ U for every U ∈ U ,

yielding a sequence (xn) ⊂ X. Since X is compact, there exists a convergent subsequence
xnk

→ x for some x ∈ X. Since U is a cover, there exists an U ∈ U with x ∈ U . Since U is
open, there exists an ε > 0 such that B(x, ε) ⊂ U . But for a large enough k, we have that
d(x, xnk

) < 1
2ε, and

1
nk

< 1
2ε, which implies that B(xnk

, 1
nk
) ⊂ B(x, ε) ⊂ U by the triangle

inequality: Let y ∈ B(xnk
, 1
nk
). Then,

d(x, y) ≤ d(x, xnk
) + d(xnk

, y) <
1

2
ε+

1

2
ε = ε.

But B(xnk
, 1
nk
) ⊂ U is a contradiction.

6. Suppose that A,B ⊂ R and define A+B = {z = x+ y : x ∈ A, y ∈ B}.

(a) (5 points) Prove that if a is an upper bound on A and b is an upper bound on B, then
a+ b is an upper bound on A+B.



(b) (3 points) Prove that if X ⊂ R, X ̸= ∅, then supX > −∞.

(c) (2 points) Prove that if A ̸= ∅ and B ̸= ∅, then supA+ supB is defined

(d) (10 points) Prove that if A ̸= ∅ and B ̸= ∅, then sup (A+B) = supA+ supB.

Solution:

(a) Suppose a is an upper bound on A and b is an upper bound on B, that is,

∀x ∈ A : x ≤ a and ∀y ∈ A : y ≤ b.

Let z ∈ A + B. Then z = x + y : x ∈ A, y ∈ B, and since x ≤ a and y ≤ b, it follows
that

z = x+ y ≤ a+ b.

Thus, a+ b is an upper bound on A+B.

(b) Since X ̸= ∅, there exists x ∈ X. Since X ⊂ R and −∞ /∈ R, it holds that x ̸= −∞.
If X has an upper bound, then, by definition, sup X is the least upper bound on X,
and from the completeness of reals, sup X exists. Since sup X is an upper bound on
X and x ∈ X, we have sup X ≥ x > −∞. If X does not have an upper bound, then
sup = +∞ > −∞.

(c) Set a = supA and b = supB. Since a, b > −∞ by part b, a + b is defined (the case
∞−∞ cannot happen).

(d) From the completeness of reals, sup(A + B) is known to exist. Set a = supA and
b = supB. If either a = ∞ or b = ∞, then a+ b = ∞ ≥ sup(A+B). Otherwise, a is an
upper bound on A and b is an upper bound on B, and we have from part a, that a+ b
is an upper bound on A+B. From the definition of sup, sup (A+B) is the least upper
bound on A+B, thus sup (A+B) ≤ a+ b.

To show the opposite inequality, first consider the case when A is not bounded above.
Since B ̸= ∅, there exists ȳ ∈ B and by the definition of A + B, A + B ⊃ C, where
C = {z = x+ ȳ : x ∈ A} is not bounded above, because A is not bounded above. Thus,
A+B is not bounded above, and sup(A+B) = ∞ ≥ supA+ supB. The case when B
is not bounded above follows by swapping the notation of A and B.

It remains to consider the case when both A and B are bounded above. Then, supA ∈ R
and supB ∈ R. Let ε > 0. Since supA ∈ R, it holds that supA− ε/2 < supA, and from
the definition of supremum, there exist x ∈ A such that x > supA− ε/2. Swapping the
notation A and B, we have that there exist y ∈ B such that y > supB − ε/2. Then
x + y ∈ A + B and x + y > supA + supB − ε, thus sup(A + B) > supA + supB − ε.
Since ε > 0 was arbitrary, sup(A+B) ≥ supA+ supB.

7. Suppose f : R → R is continuous with limx→−∞ f(x) = α and limx→∞ = β, where α and β
are finite. Prove that f is uniformly continuous.

Solution:

Let ϵ > 0 be given. Since limx→−∞ = α, there exists L < 0 such that |f(x)− α| < ϵ/2 for all
x ≤ L. Similarly, there exists U ≥ 0 such that |f(x)−β| < ϵ/2 for all x ≥ U . Without loss of



generality, assume L < U . Since f is continuous, it is uniformly continuous on the compact
set [L− 1, U + 1]. Thus, there exists δ > 0 such that if x, y ∈ [L− 1, U + 1] and |x− y| < δ,
then |f(x)− f(y)| < ϵ/2. Without loss of generality, assume δ < 1.

Suppose x, y ∈ R satisfy |x− y| < δ. Consider the following 3 cases:

Case 1: x, y ∈ [L− 1, U + 1]:

By the definition of δ, |f(x)− f(y)| < ϵ/2 < ϵ.

Case 2: x, y ≤ L:

If x, y ≤ L, then |f(x)− f(y)| ≤ |f(x)− α|+ |α− f(y)| < ϵ/2 + ϵ/2 = ϵ.

Case 3: x, y ≥ U :

If x, y ≥ U , then |f(x)− f(y)| ≤ |f(x)− β|+ |β − f(y)| < ϵ/2 + ϵ/2 < ϵ.

Since |x − y| < δ < 1, at least one of the 3 cases above must hold. Thus, |f(x) − f(y)| < ϵ,
which shows that f is uniformly continuous.

8. Let (fn) be a uniformly bounded sequence of functions that are Riemann integrable on [a, b],
and define

Fn(x) =

∫ x

a
fn(t)dt (a ≤ x ≤ b).

Prove that there exists a subsequence {Fnk
} that converges uniformly on [a, b].

Solution:

By assumption, there exists M > 0 such that |fn(x)| ≤ M for all n and x. Thus, |Fn(x)| ≤∫ x
a Mdt ≤ M(b− a) for all n and x ∈ [a, b]. Hence (Fn) is uniformly bounded on [a, b].

Given ϵ > 0, let δ = ϵ/M . Then, for any x, y ∈ [a, b], if |x− y| < δ, then

|Fn(x)− Fn(y)| =
∣∣∣∣∫ y

x
fn(t)dt

∣∣∣∣ ≤ M |x− y| < ϵ.

Hence (Fn) is equicontinuous. Therefore, by Arzelà-Ascoli theorem, (Fn) has a subsequence
that converges uniformly on [a, b].


