University of Colorado Denver
Mathematical and Statistical Sciences
Applied Analysis Preliminary Exam
January 20, 2023

Student number (not your name):

Exam Rules:

e This is a closed book exam. You may not use external aides during the exam, such as

— communicating with anyone other than the exam proctor;
— consulting the internet, textbooks, solutions of previous exams, etc.
— using calculators or mathematical software.

You have 4 hours to complete the exam.

There are 8 total problems. Do all 4 problems in the first part (problems 1 to 4), and
pick two problems in the second part (problems 5 to 8). Do not submit more than
two solved problems from the second part. If you do, only the first two attempted
problems will be graded.

Do not submit multiple alternative solutions to any problem; if you do, only the first
solution will be graded.

Each problem is worth 20 points. The weights for each part on multi-step problems
are indicated in the problem.

Be sure to show all work that is relevant for each problem, but do not turn in scratch
work.

Justify your solutions: cite theorems that you use, justify that their assumptions
are satisfied, provide specific counter-examples for disproof, give explanations, and
show calculations for numerical computations.

If you are asked to prove a theorem, do not merely quote that theorem as your proof;
instead, produce an independent proof.

If you use a statement from Rudin, Pugh, or class, state it. If you are unsure if
a statement must be proved or may merely be stated, ask the proctor.

This exam uses the definitions from Pugh. If you want to use definitions from Rudin,
please state them and use them consistently.

Begin each solution on a new page and write on only one side of the paper. Put your
student number (not your name) and page number on the top of every page. Write
legibly using a dark pencil or pen.

In case of a major disruption due to which the exam cannot be completed, for example
due to health reasons or a campus evacuation, students are entitled to a choice between
acceptance of partial work and a partial new problem set, or a full new problem set.



Part 1: Solve all problems 1-4.

1. Construct a compact subset of R with a denumerable set of cluster points. (Definitions:
y is a cluster point of A if every neighborhood of y contains an element of A besides
y, or, equivalently, infinitely many points of A. Denumerable set is countable and
infinite.)

Solution. Example: Define
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Then lim;_,o a;, = % for all n, so % are cluster points of S. The point 0 is also a cluster
point, since lim,,_,, % =0.

We need to show that no other points are cluster points of S. We have

1
—<ap <2 fornm=1landallieN
n

and ) )
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because + — #1 < == — 2 Thus, the sets A, = {as, : i € N} are contained in disjoint

intervals. Since for each n, the set A,, has no cluster points other than %, the cluster
points of S are exactly {0} U {% : n € N}, a countable set. The set A is closed since it
contains its cluster points, it is bounded since A C [0, 2|, therefore it is compact.



2. Let (X, d) be a metric space and f and g be continuous maps f,g: X — R. Let E be
a dense subset of X.

(a)
(b)

(10 points) Prove that f (E) is dense in f (X).
(10 points) If g(x) = f(x) for all z € E, prove that g(z) = f(z) for all x € X.

Solution.

(a)

Definitions from Pugh: If S € M and S = M then S is dense in M. Closure
S ={p€ M :pisalimit of S}. A point pis a limit of S if there exists a sequence
(pn) in S that converges to it.

In summary, S is dense in M if for every p € M exists a sequence (p,) C S such
that p, — p.

Let y € f(X). Then there exists x € X such that f (z) = y. Since E is dense in
X, there exists sequence (z,) C E such that x, — z. Define y, = f (z,,). Then
yn € f(E) and y,, — y because f is continuous.

Let z € X. Since E is dense in X, there exists sequence (z,) C F such that x,, —
x. Since f is continuous, f (z,) — f () and since g is continuous, g (z,) — g (z).
Since x,, € E, f(x,) = g (x,), so from the uniqueness of limit, f () = g (x).



3. Let (a,) and (b,) be bounded nonnegative sequences. Prove that

liminf(a,b,) > (liminf a,)(liminf b,).

n—oo n—oo n—o0

Solution: Let m € N. Denote A = inf {a,, : n > m} and B = inf {b, : n > m}. Since
A>0and B > 0, it follows that a,b, > AB for all n > m,. Therefore,

inf {a,b, : n >m} >inf{a, :n >m}inf{b, : n > m}.
Taking the limit for m — oo, we get

liminf(a,b,) = lim inf {a,b, : n > m}

n—oo m—0o0
> lim inf{a, : n >m}inf{b, : n > m}
m—ro0
= lim i n > im i n >
Trlbl_rgo inf {a, : n > m} nll_rgo inf {b, : n >m}

= (liminf a,)(liminf b,).
n—oo n—o0

Another solution. Denote

a = liminfa,, b= liminfb,.
n—0o0 n—oo

The sequences (a,) and (b,) are assumed to be nonnegative and bounded, i.e., for some
M € R and all n € N,
0<a, <M, 0<b, <M.

Let € > 0. From the definition of lim inf and using the fact that a, b are finite because
the sequences (a,) and (b,,) are bounded, there exists N € N such that for all n > N,

a—¢e<da, b—c<b,,
and, consequently, for all n > N,
ab < (a, +€) (b +¢) < apb, +2Me + 2.

Therefore,
ab < liminf a,b, + 2Me + £2.

n—o0

Since € > 0 was arbitrary, it follows that ab < liminf, . a,b,.



4. Let fo(z) = sin(n + z), = € [0,27], n = 1,2,.... Prove that (f,) has a pointwise
convergent subsequence.

Solution: The interval [0,27] is closed and bounded. f,(z)| < 1 for all z € [0, 27},
s0 (fn) is uniformly bounded. Also, |f](z)| = |cos(n + x)| < 1, so (f,) is equicontin-
uous. By Arzela-Ascoli theorem, uniformly bounded and equicontinuous sequence of
functions on a closed and bounded interval has a uniformly convergent subsequence.
Since uniformly convergent sequence of functions is pointwise convergent, (f,,) has a
pointwise convergent subsequence.



Part 2 - Solve 2 out of the following 4 problems.

5. Let f: X — R. Define the graph of f to be the set G = {(x,y) € X xR :y = f(x)}.

Prove:

(a)
(b)

(10 points) If f is continuous then G is closed.

(10 points) If f is continuous and X is compact, then G is compact.

Solution.

(a)

G C X xR, so closed here means closed in the product metric space X x R with
the distance function dx«r((z,9),(2',y')) = d(x,2') + |y — ¢/|. Let (zn,yn) C G
with (z,,y,) — (z,y). Thus, x, — = and y, — y. Since f is continuous,
Yo = f(zn) — f(x). But y, — y, by uniqueness of the limit it follows that
f(z) =y, which implies (z,y) € G.

Note: Solutions assuming X C R and G C R x R were also accepted.

Since f is continuous and X is compact, it follows that f is bounded. Thus,
f(X) C [a,b] for some —o0 < a < b < 00, s0 G C X X [a,b], which is compact as
the product of compact metric spaces. Since G is closed by part (a), it is a closed
subset of a compact set, therefore compact.



6. Let f, : [0,1] — R be a sequence of Darboux integrable functions which converge
pointwise to a function f : [0,1] — R. Prove or find a counterexample:

The function f is Darboux integrable on [0, 1].
(Darboux integral as defined in Pugh is called Riemann integral in Rudin.)

Solution: Counterexample. Enumerate all rational numbers in [0, 1] by q1, g2, s, - -

Choose

1, if z = q for some k < n,
fn(x) = .
0, otherwise

For each n, f, has finitely many discontinuities and it is bounded, thus it is Darboux
integrable. But lim,, , f, = f,

1, if x rational
flx) = e
0, if x irrational

which is known not to be Darboux integrable.
Another solution: Define

n*z if x € [0,1/n] 0ifz=0
f"(‘”>:{ 1zifxe (1/n,1] f”(‘”):{ /2 if 2 € (0,1]

Then f, (x) — f (z) for all x € [0, 1], f, is continuous on [0, 1] thus Darboux integrable,
but f is not bounded and thus not Darboux integrable on [0, 1] .



7. Define an open mapping f : X — Y to be one where f(V') is open in Y whenever V is
open in X. Prove that if f : R — R is open and continuous then it is monotone.

Solution: Suppose f is not monotone. Then there is a < b < ¢ with f(a) < f(b)
and f(b) > f(c), or the reverse. Suppose f(a) < f(b) and f(b) > f(c) (the other
case is analogous). Since f is continuous, it attains its maximum on [a, ¢| (Extreme
Value Theorem), so there is d € (a,c) with f(d) > f(x) for every x € (a,c). Thus,
f(d) € f((a,c)), but for every € > 0, (f(d) — ¢, f(d) +¢€) & (f((a,c)). Thus, f((a,c))

is not open, so f is not an open map.



8. Suppose that (X,d) is a metric space and (f,) is a sequence of continuous functions
fn : X — R convergent pointwise on X to a function f.

(a)
(b)

(10 points) Prove that if f, = f on X, then for every convergent sequence
(xn) C X, limy, o0 fr (z5) = f (2), where x = lim,,_,o .

(10 points) Is the converse true? Prove or provide a counterexample.

Solution.

(a)

Let z, — x in (X, d). Since f,, = f on X and f, are continuous, f is continuous.
Let € > 0. Since f is continuous, there exists a 6 > 0 such that |f (¢) — f (z)| <
5 for all ¢ € X such that d(z,t) < d. Since x, — x, here exists N; > 0 such that
for all n > Ny, d(x,,x) < 0. Since f, = f on X, there exists Ny > 0 such that
for all n > Ny and all t € X, |f, (t) — f (t)| < 5. Let n > max {N;, No} .Then,

3

5~ ¢

[ (@n) = f (@) < [ (@n) = f (@) 4+ [ (20) = ] (2)] < % +
The converse is: Suppose that f,, — f pointwise. If for every convergent sequence
(xn) C X, x, = x, lim, o [ (x,) = f (z), then f, = f on X.
A counterexample should construct f,, such that f, — f on X pointwise and
limy,, 00 fn (z,) = f (2) for every convergent sequence (z,) C X, x, — z, but the
convergence of f, to f is not uniform.

Counterexample: Take X = R,

1—(t—n)?if|t—n| <1,
fn () = { 0 otherwise.
Then f, are continuous on R, and f,(t) = 0 for all n > t + 1, so f,.(t) — f(t),
where f(t) =0, for all £ € R. The convergence is not uniform because f,(n) =1,
SO SUpyeg | fn(t)— f(t)| > 1, for all n. Suppose z,, — =. From the definition of limit
and from the Archimedean principle, there exists N > x such that |z, —z| < 1
for all n > N. It follows that f,(x,) = 0 for all n > N + 1. In particular,

folan) = f(z) = 0.



