
University of Colorado Denver
Mathematical and Statistical Sciences
Applied Analysis Preliminary Exam

January 20, 2023

Student number (not your name):
Exam Rules:

• This is a closed book exam. You may not use external aides during the exam, such as

– communicating with anyone other than the exam proctor;

– consulting the internet, textbooks, solutions of previous exams, etc.

– using calculators or mathematical software.

• You have 4 hours to complete the exam.

• There are 8 total problems. Do all 4 problems in the first part (problems 1 to 4), and
pick two problems in the second part (problems 5 to 8). Do not submit more than
two solved problems from the second part. If you do, only the first two attempted
problems will be graded.

• Do not submit multiple alternative solutions to any problem; if you do, only the first
solution will be graded.

• Each problem is worth 20 points. The weights for each part on multi-step problems
are indicated in the problem.

• Be sure to show all work that is relevant for each problem, but do not turn in scratch
work.

• Justify your solutions: cite theorems that you use, justify that their assumptions
are satisfied, provide specific counter-examples for disproof, give explanations, and
show calculations for numerical computations.

• If you are asked to prove a theorem, do not merely quote that theorem as your proof;
instead, produce an independent proof.

• If you use a statement from Rudin, Pugh, or class, state it. If you are unsure if
a statement must be proved or may merely be stated, ask the proctor.

• This exam uses the definitions from Pugh. If you want to use definitions from Rudin,
please state them and use them consistently.

• Begin each solution on a new page and write on only one side of the paper. Put your
student number (not your name) and page number on the top of every page. Write
legibly using a dark pencil or pen.

• In case of a major disruption due to which the exam cannot be completed, for example
due to health reasons or a campus evacuation, students are entitled to a choice between
acceptance of partial work and a partial new problem set, or a full new problem set.



Part 1: Solve all problems 1-4.

1. Construct a compact subset of R with a denumerable set of cluster points. (Definitions:
y is a cluster point of A if every neighborhood of y contains an element of A besides
y, or, equivalently, infinitely many points of A. Denumerable set is countable and
infinite.)

Solution. Example: Define

A =

{
ain : ain =

1
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Then limi→∞ ain = 1
n
for all n, so 1

n
are cluster points of S. The point 0 is also a cluster

point, since limn→∞
1
n
= 0.

We need to show that no other points are cluster points of S. We have

1

n
< an1 < 2 for n = 1 and all i ∈ N

and
1

n
< ain <

1

n− 1
for all n > 1 and all i ∈ N,

because 1
n
− 1

n+1
< 1
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− 1

n
. Thus, the sets An = {ain : i ∈ N} are contained in disjoint

intervals. Since for each n, the set An has no cluster points other than 1
n
, the cluster

points of S are exactly {0} ∪
{

1
n
: n ∈ N

}
, a countable set. The set A is closed since it

contains its cluster points, it is bounded since A ⊂ [0, 2], therefore it is compact.



2. Let (X, d) be a metric space and f and g be continuous maps f, g : X → R. Let E be
a dense subset of X.

(a) (10 points) Prove that f (E) is dense in f (X).

(b) (10 points) If g(x) = f(x) for all x ∈ E, prove that g(x) = f(x) for all x ∈ X.

Solution.

(a) Definitions from Pugh: If S ⊂ M and S = M then S is dense in M . Closure
S = {p ∈ M : p is a limit of S}. A point p is a limit of S if there exists a sequence
(pn) in S that converges to it.

In summary, S is dense in M if for every p ∈ M exists a sequence (pn) ⊂ S such
that pn → p.

Let y ∈ f (X). Then there exists x ∈ X such that f (x) = y. Since E is dense in
X, there exists sequence (xn) ⊂ E such that xn → x. Define yn = f (xn). Then
yn ∈ f (E) and yn → y because f is continuous.

(b) Let x ∈ X. Since E is dense in X, there exists sequence (xn) ⊂ E such that xn →
x. Since f is continuous, f (xn) → f (x) and since g is continuous, g (xn) → g (x).
Since xn ∈ E, f (xn) = g (xn), so from the uniqueness of limit, f (x) = g (x).



3. Let (an) and (bn) be bounded nonnegative sequences. Prove that

lim inf
n→∞

(anbn) ≥ (lim inf
n→∞

an)(lim inf
n→∞

bn).

Solution: Let m ∈ N. Denote A = inf {an : n ≥ m} and B = inf {bn : n ≥ m}. Since
A ≥ 0 and B ≥ 0, it follows that anbn ≥ AB for all n ≥ m,. Therefore,

inf {anbn : n ≥ m} ≥ inf {an : n ≥ m} inf {bn : n ≥ m} .

Taking the limit for m → ∞, we get

lim inf
n→∞

(anbn) = lim
m→∞

inf {anbn : n ≥ m}

≥ lim
m→∞

inf {an : n ≥ m} inf {bn : n ≥ m}

= lim
m→∞

inf {an : n ≥ m} lim
m→∞

inf {bn : n ≥ m}

= (lim inf
n→∞

an)(lim inf
n→∞

bn).

Another solution. Denote

a = lim inf
n→∞

an, b = lim inf
n→∞

bn.

The sequences (an) and (bn) are assumed to be nonnegative and bounded, i.e., for some
M ∈ R and all n ∈ N,

0 ≤ an ≤ M, 0 ≤ bn ≤ M.

Let ε > 0. From the definition of lim inf and using the fact that a, b are finite because
the sequences (an) and (bn) are bounded, there exists N ∈ N such that for all n ≥ N ,

a− ε < an, b− ε < bn,

and, consequently, for all n ≥ N ,

ab < (an + ε) (bn + ε) ≤ anbn + 2Mε+ ε2.

Therefore,
ab ≤ lim inf

n→∞
anbn + 2Mε+ ε2.

Since ε > 0 was arbitrary, it follows that ab ≤ lim infn→∞ anbn.



4. Let fn(x) = sin(n + x), x ∈ [0, 2π], n = 1, 2, . . .. Prove that (fn) has a pointwise
convergent subsequence.

Solution: The interval [0, 2π] is closed and bounded. fn(x)| ≤ 1 for all x ∈ [0, 2π],
so (fn) is uniformly bounded. Also, |f ′

n(x)| = | cos(n + x)| ≤ 1, so (fn) is equicontin-
uous. By Arzèla-Ascoli theorem, uniformly bounded and equicontinuous sequence of
functions on a closed and bounded interval has a uniformly convergent subsequence.
Since uniformly convergent sequence of functions is pointwise convergent, (fn) has a
pointwise convergent subsequence.



Part 2 - Solve 2 out of the following 4 problems.

5. Let f : X → R. Define the graph of f to be the set G = {(x, y) ∈ X × R : y = f(x)}.
Prove:

(a) (10 points) If f is continuous then G is closed.

(b) (10 points) If f is continuous and X is compact, then G is compact.

Solution.

(a) G ⊂ X ×R, so closed here means closed in the product metric space X ×R with
the distance function dX×R((x, y), (x

′, y′)) = d(x, x′) + |y − y′|. Let (xn, yn) ⊂ G
with (xn, yn) → (x, y). Thus, xn → x and yn → y. Since f is continuous,
yn = f(xn) → f(x). But yn → y, by uniqueness of the limit it follows that
f(x) = y, which implies (x, y) ∈ G.

Note: Solutions assuming X ⊂ R and G ⊂ R× R were also accepted.

(b) Since f is continuous and X is compact, it follows that f is bounded. Thus,
f(X) ⊂ [a, b] for some −∞ < a < b < ∞, so G ⊂ X × [a, b], which is compact as
the product of compact metric spaces. Since G is closed by part (a), it is a closed
subset of a compact set, therefore compact.



6. Let fn : [0, 1] → R be a sequence of Darboux integrable functions which converge
pointwise to a function f : [0, 1] → R. Prove or find a counterexample:

The function f is Darboux integrable on [0, 1].

(Darboux integral as defined in Pugh is called Riemann integral in Rudin.)

Solution: Counterexample. Enumerate all rational numbers in [0, 1] by q1, q2, q3, ... .
Choose

fn(x) =

{
1, if x = qk for some k < n,

0, otherwise

For each n, fn has finitely many discontinuities and it is bounded, thus it is Darboux
integrable. But limn→∞ fn = f ,

f(x) =

{
1, if x rational

0, if x irrational

which is known not to be Darboux integrable.

Another solution: Define

fn (x) =

{
n2x if x ∈ [0, 1/n]
1/x if x ∈ (1/n, 1]

, fn (x) =

{
0 if x = 0

1/x if x ∈ (0, 1]

Then fn (x) → f (x) for all x ∈ [0, 1], fn is continuous on [0, 1] thus Darboux integrable,
but f is not bounded and thus not Darboux integrable on [0, 1] .



7. Define an open mapping f : X → Y to be one where f(V ) is open in Y whenever V is
open in X. Prove that if f : R → R is open and continuous then it is monotone.

Solution: Suppose f is not monotone. Then there is a < b < c with f(a) < f(b)
and f(b) > f(c), or the reverse. Suppose f(a) < f(b) and f(b) > f(c) (the other
case is analogous). Since f is continuous, it attains its maximum on [a, c] (Extreme
Value Theorem), so there is d ∈ (a, c) with f(d) ≥ f(x) for every x ∈ (a, c). Thus,
f(d) ∈ f((a, c)), but for every ϵ > 0, (f(d) − ϵ, f(d) + ϵ) ̸⊂ (f((a, c)). Thus, f((a, c))
is not open, so f is not an open map.



8. Suppose that (X, d) is a metric space and (fn) is a sequence of continuous functions
fn : X → R convergent pointwise on X to a function f .

(a) (10 points) Prove that if fn ⇒ f on X, then for every convergent sequence
(xn) ⊂ X, limn→∞ fn (xn) = f (x), where x = limn→∞ xn.

(b) (10 points) Is the converse true? Prove or provide a counterexample.

Solution.

(a) Let xn → x in (X, d) . Since fn ⇒ f on X and fn are continuous, f is continuous.
Let ε > 0. Since f is continuous, there exists a δ > 0 such that |f (t)− f (x)| <
ε
2
for all t ∈ X such that d (x, t) < δ. Since xn → x, here exists N1 > 0 such that

for all n ≥ N1, d (xn, x) < δ. Since fn ⇒ f on X, there exists N2 > 0 such that
for all n ≥ N2 and all t ∈ X, |fn (t)− f (t)| < ε

2
. Let n > max {N1, N2} .Then,

|fn (xn)− f (x)| ≤ |fn (xn)− f (xn)|+ |f (xn)− f (x)| < ε

2
+

ε

2
= ε

(b) The converse is: Suppose that fn → f pointwise. If for every convergent sequence
(xn) ⊂ X, xn → x, limn→∞ fn (xn) = f (x), then fn ⇒ f on X.

A counterexample should construct fn such that fn → f on X pointwise and
limn→∞ fn (xn) = f (x) for every convergent sequence (xn) ⊂ X, xn → x, but the
convergence of fn to f is not uniform.

Counterexample: Take X = R,

fn (t) =

{
1− (t− n)2 if |t− n| < 1,

0 otherwise.

Then fn are continuous on R, and fn(t) = 0 for all n > t + 1, so fn(t) → f(t),
where f(t) = 0, for all t ∈ R. The convergence is not uniform because fn(n) = 1,
so supt∈R |fn(t)−f(t)| ≥ 1, for all n. Suppose xn → x. From the definition of limit
and from the Archimedean principle, there exists N > x such that |xn − x| < 1
for all n ≥ N . It follows that fn(xn) = 0 for all n ≥ N + 1. In particular,
fn(xn) → f(x) = 0.


