University of Colorado Denver Mathematical and Statistical Sciences Applied Analysis Preliminary Exam January 20, 2023

Student number (not your name):

Exam Rules:

- This is a closed book exam. You may not use external aides during the exam, such as
- communicating with anyone other than the exam proctor;
- consulting the internet, textbooks, solutions of previous exams, etc.
- using calculators or mathematical software.
- You have 4 hours to complete the exam.
- There are 8 total problems. Do all 4 problems in the first part (problems 1 to 4), and pick two problems in the second part (problems 5 to 8). Do not submit more than two solved problems from the second part. If you do, only the first two attempted problems will be graded.
- Do not submit multiple alternative solutions to any problem; if you do, only the first solution will be graded.
- Each problem is worth 20 points. The weights for each part on multi-step problems are indicated in the problem.
- Be sure to show all work that is relevant for each problem, but do not turn in scratch work.
- Justify your solutions: cite theorems that you use, justify that their assumptions are satisfied, provide specific counter-examples for disproof, give explanations, and show calculations for numerical computations.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- If you use a statement from Rudin, Pugh, or class, state it. If you are unsure if a statement must be proved or may merely be stated, ask the proctor.
- This exam uses the definitions from Pugh. If you want to use definitions from Rudin, please state them and use them consistently.
- Begin each solution on a new page and write on only one side of the paper. Put your student number (not your name) and page number on the top of every page. Write legibly using a dark pencil or pen.
- In case of a major disruption due to which the exam cannot be completed, for example due to health reasons or a campus evacuation, students are entitled to a choice between acceptance of partial work and a partial new problem set, or a full new problem set.

Part 1: Solve all problems 1-4.

1. Construct a compact subset of \mathbb{R} with a denumerable set of cluster points. (Definitions: y is a cluster point of A if every neighborhood of y contains an element of A besides y, or, equivalently, infinitely many points of A. Denumerable set is countable and infinite.)
Solution. Example: Define

$$
A=\left\{a_{i n}: a_{i n}=\frac{1}{n}+\frac{1}{i}\left(\frac{1}{n}-\frac{1}{n+1}\right), \quad i, n \in \mathbb{N}\right\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}
$$

Then $\lim _{i \rightarrow \infty} a_{i n}=\frac{1}{n}$ for all n, so $\frac{1}{n}$ are cluster points of S. The point 0 is also a cluster point, since $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
We need to show that no other points are cluster points of S. We have

$$
\frac{1}{n}<a_{n 1}<2 \quad \text { for } n=1 \text { and all } i \in \mathbb{N}
$$

and

$$
\frac{1}{n}<a_{i n}<\frac{1}{n-1} \quad \text { for all } n>1 \text { and all } i \in \mathbb{N}
$$

because $\frac{1}{n}-\frac{1}{n+1}<\frac{1}{n-1}-\frac{1}{n}$. Thus, the sets $A_{n}=\left\{a_{i n}: i \in \mathbb{N}\right\}$ are contained in disjoint intervals. Since for each n, the set A_{n} has no cluster points other than $\frac{1}{n}$, the cluster points of S are exactly $\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$, a countable set. The set A is closed since it contains its cluster points, it is bounded since $A \subset[0,2]$, therefore it is compact.
2. Let (X, d) be a metric space and f and g be continuous maps $f, g: X \rightarrow \mathbb{R}$. Let E be a dense subset of X.
(a) (10 points) Prove that $f(E)$ is dense in $f(X)$.
(b) (10 points) If $g(x)=f(x)$ for all $x \in E$, prove that $g(x)=f(x)$ for all $x \in X$.

Solution.
(a) Definitions from Pugh: If $S \subset M$ and $\bar{S}=M$ then S is dense in M. Closure $\bar{S}=\{p \in M: p$ is a limit of $S\}$. A point p is a limit of S if there exists a sequence $\left(p_{n}\right)$ in S that converges to it.
In summary, S is dense in M if for every $p \in M$ exists a sequence $\left(p_{n}\right) \subset S$ such that $p_{n} \rightarrow p$.
Let $y \in f(X)$. Then there exists $x \in X$ such that $f(x)=y$. Since E is dense in X, there exists sequence $\left(x_{n}\right) \subset E$ such that $x_{n} \rightarrow x$. Define $y_{n}=f\left(x_{n}\right)$. Then $y_{n} \in f(E)$ and $y_{n} \rightarrow y$ because f is continuous.
(b) Let $x \in X$. Since E is dense in X, there exists sequence $\left(x_{n}\right) \subset E$ such that $x_{n} \rightarrow$ x. Since f is continuous, $f\left(x_{n}\right) \rightarrow f(x)$ and since g is continuous, $g\left(x_{n}\right) \rightarrow g(x)$. Since $x_{n} \in E, f\left(x_{n}\right)=g\left(x_{n}\right)$, so from the uniqueness of limit, $f(x)=g(x)$.
3. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be bounded nonnegative sequences. Prove that

$$
\liminf _{n \rightarrow \infty}\left(a_{n} b_{n}\right) \geq\left(\liminf _{n \rightarrow \infty} a_{n}\right)\left(\liminf _{n \rightarrow \infty} b_{n}\right)
$$

Solution: Let $m \in \mathbb{N}$. Denote $A=\inf \left\{a_{n}: n \geq m\right\}$ and $B=\inf \left\{b_{n}: n \geq m\right\}$. Since $A \geq 0$ and $B \geq 0$, it follows that $a_{n} b_{n} \geq A B$ for all $n \geq m$. Therefore,

$$
\inf \left\{a_{n} b_{n}: n \geq m\right\} \geq \inf \left\{a_{n}: n \geq m\right\} \inf \left\{b_{n}: n \geq m\right\}
$$

Taking the limit for $m \rightarrow \infty$, we get

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left(a_{n} b_{n}\right) & =\lim _{m \rightarrow \infty} \inf \left\{a_{n} b_{n}: n \geq m\right\} \\
& \geq \lim _{m \rightarrow \infty} \inf \left\{a_{n}: n \geq m\right\} \inf \left\{b_{n}: n \geq m\right\} \\
& =\lim _{m \rightarrow \infty} \inf \left\{a_{n}: n \geq m\right\} \lim _{m \rightarrow \infty} \inf \left\{b_{n}: n \geq m\right\} \\
& =\left(\liminf _{n \rightarrow \infty}\right)\left(a_{n}\right)\left(\liminf _{n \rightarrow \infty}\right) .
\end{aligned}
$$

Another solution. Denote

$$
a=\liminf _{n \rightarrow \infty} a_{n}, \quad b=\liminf _{n \rightarrow \infty} b_{n} .
$$

The sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are assumed to be nonnegative and bounded, i.e., for some $M \in \mathbb{R}$ and all $n \in \mathbb{N}$,

$$
0 \leq a_{n} \leq M, \quad 0 \leq b_{n} \leq M
$$

Let $\varepsilon>0$. From the definition of $\lim \inf$ and using the fact that a, b are finite because the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are bounded, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
a-\varepsilon<a_{n}, \quad b-\varepsilon<b_{n},
$$

and, consequently, for all $n \geq N$,

$$
a b<\left(a_{n}+\varepsilon\right)\left(b_{n}+\varepsilon\right) \leq a_{n} b_{n}+2 M \varepsilon+\varepsilon^{2} .
$$

Therefore,

$$
a b \leq \liminf _{n \rightarrow \infty} a_{n} b_{n}+2 M \varepsilon+\varepsilon^{2}
$$

Since $\varepsilon>0$ was arbitrary, it follows that $a b \leq \liminf _{n \rightarrow \infty} a_{n} b_{n}$.
4. Let $f_{n}(x)=\sin (n+x), x \in[0,2 \pi], n=1,2, \ldots$. Prove that $\left(f_{n}\right)$ has a pointwise convergent subsequence.
Solution: The interval $[0,2 \pi]$ is closed and bounded. $f_{n}(x) \mid \leq 1$ for all $x \in[0,2 \pi]$, so $\left(f_{n}\right)$ is uniformly bounded. Also, $\left|f_{n}^{\prime}(x)\right|=|\cos (n+x)| \leq 1$, so $\left(f_{n}\right)$ is equicontinuous. By Arzèla-Ascoli theorem, uniformly bounded and equicontinuous sequence of functions on a closed and bounded interval has a uniformly convergent subsequence. Since uniformly convergent sequence of functions is pointwise convergent, $\left(f_{n}\right)$ has a pointwise convergent subsequence.

Part 2 - Solve 2 out of the following 4 problems.

5. Let $f: X \rightarrow \mathbb{R}$. Define the graph of f to be the set $G=\{(x, y) \in X \times \mathbb{R}: y=f(x)\}$. Prove:
(a) (10 points) If f is continuous then G is closed.
(b) (10 points) If f is continuous and X is compact, then G is compact.

Solution.
(a) $G \subset X \times \mathbb{R}$, so closed here means closed in the product metric space $X \times \mathbb{R}$ with the distance function $d_{X \times \mathbb{R}}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d\left(x, x^{\prime}\right)+\left|y-y^{\prime}\right|$. Let $\left(x_{n}, y_{n}\right) \subset G$ with $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$. Thus, $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Since f is continuous, $y_{n}=f\left(x_{n}\right) \rightarrow f(x)$. But $y_{n} \rightarrow y$, by uniqueness of the limit it follows that $f(x)=y$, which implies $(x, y) \in G$.
Note: Solutions assuming $X \subset \mathbb{R}$ and $G \subset \mathbb{R} \times \mathbb{R}$ were also accepted.
(b) Since f is continuous and X is compact, it follows that f is bounded. Thus, $f(X) \subset[a, b]$ for some $-\infty<a<b<\infty$, so $G \subset X \times[a, b]$, which is compact as the product of compact metric spaces. Since G is closed by part (a), it is a closed subset of a compact set, therefore compact.
6. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of Darboux integrable functions which converge pointwise to a function $f:[0,1] \rightarrow \mathbb{R}$. Prove or find a counterexample:
The function f is Darboux integrable on $[0,1]$.
(Darboux integral as defined in Pugh is called Riemann integral in Rudin.)
Solution: Counterexample. Enumerate all rational numbers in $[0,1]$ by $q_{1}, q_{2}, q_{3}, \ldots$. Choose

$$
f_{n}(x)= \begin{cases}1, & \text { if } x=q_{k} \text { for some } k<n \\ 0, & \text { otherwise }\end{cases}
$$

For each n, f_{n} has finitely many discontinuities and it is bounded, thus it is Darboux integrable. But $\lim _{n \rightarrow \infty} f_{n}=f$,

$$
f(x)= \begin{cases}1, & \text { if } x \text { rational } \\ 0, & \text { if } x \text { irrational }\end{cases}
$$

which is known not to be Darboux integrable.
Another solution: Define

$$
f_{n}(x)=\left\{\begin{array}{c}
n^{2} x \text { if } x \in[0,1 / n] \\
1 / x \text { if } x \in(1 / n, 1]
\end{array}, \quad f_{n}(x)=\left\{\begin{array}{c}
0 \text { if } x=0 \\
1 / x \text { if } x \in(0,1]
\end{array}\right.\right.
$$

Then $f_{n}(x) \rightarrow f(x)$ for all $x \in[0,1], f_{n}$ is continuous on $[0,1]$ thus Darboux integrable, but f is not bounded and thus not Darboux integrable on $[0,1]$.
7. Define an open mapping $f: X \rightarrow Y$ to be one where $f(V)$ is open in Y whenever V is open in X. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is open and continuous then it is monotone.
Solution: Suppose f is not monotone. Then there is $a<b<c$ with $f(a)<f(b)$ and $f(b)>f(c)$, or the reverse. Suppose $f(a)<f(b)$ and $f(b)>f(c)$ (the other case is analogous). Since f is continuous, it attains its maximum on $[a, c]$ (Extreme Value Theorem), so there is $d \in(a, c)$ with $f(d) \geq f(x)$ for every $x \in(a, c)$. Thus, $f(d) \in f((a, c))$, but for every $\epsilon>0,(f(d)-\epsilon, f(d)+\epsilon) \not \subset(f((a, c))$. Thus, $f((a, c))$ is not open, so f is not an open map.
8. Suppose that (X, d) is a metric space and $\left(f_{n}\right)$ is a sequence of continuous functions $f_{n}: X \rightarrow \mathbb{R}$ convergent pointwise on X to a function f.
(a) (10 points) Prove that if $f_{n} \rightrightarrows f$ on X, then for every convergent sequence $\left(x_{n}\right) \subset X, \lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)$, where $x=\lim _{n \rightarrow \infty} x_{n}$.
(b) (10 points) Is the converse true? Prove or provide a counterexample.

Solution.
(a) Let $x_{n} \rightarrow x$ in (X, d). Since $f_{n} \rightrightarrows f$ on X and f_{n} are continuous, f is continuous. Let $\varepsilon>0$. Since f is continuous, there exists a $\delta>0$ such that $|f(t)-f(x)|<$ $\frac{\varepsilon}{2}$ for all $t \in X$ such that $d(x, t)<\delta$. Since $x_{n} \rightarrow x$, here exists $N_{1}>0$ such that for all $n \geq N_{1}, d\left(x_{n}, x\right)<\delta$. Since $f_{n} \rightrightarrows f$ on X, there exists $N_{2}>0$ such that for all $n \geq N_{2}$ and all $t \in X,\left|f_{n}(t)-f(t)\right|<\frac{\varepsilon}{2}$. Let $n>\max \left\{N_{1}, N_{2}\right\}$.Then,

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right| \leq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(x)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

(b) The converse is: Suppose that $f_{n} \rightarrow f$ pointwise. If for every convergent sequence $\left(x_{n}\right) \subset X, x_{n} \rightarrow x, \lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)$, then $f_{n} \rightrightarrows f$ on X.
A counterexample should construct f_{n} such that $f_{n} \rightarrow f$ on X pointwise and $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)$ for every convergent sequence $\left(x_{n}\right) \subset X, x_{n} \rightarrow x$, but the convergence of f_{n} to f is not uniform.
Counterexample: Take $X=\mathbb{R}$,

$$
f_{n}(t)=\left\{\begin{array}{c}
1-(t-n)^{2} \text { if }|t-n|<1 \\
0 \text { otherwise }
\end{array}\right.
$$

Then f_{n} are continuous on \mathbb{R}, and $f_{n}(t)=0$ for all $n>t+1$, so $f_{n}(t) \rightarrow f(t)$, where $f(t)=0$, for all $t \in \mathbb{R}$. The convergence is not uniform because $f_{n}(n)=1$, so $\sup _{t \in \mathbb{R}}\left|f_{n}(t)-f(t)\right| \geq 1$, for all n. Suppose $x_{n} \rightarrow x$. From the definition of limit and from the Archimedean principle, there exists $N>x$ such that $\left|x_{n}-x\right|<1$ for all $n \geq N$. It follows that $f_{n}\left(x_{n}\right)=0$ for all $n \geq N+1$. In particular, $f_{n}\left(x_{n}\right) \rightarrow f(x)=0$.

