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Name:

Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to complete
all six problems.

• Please begin each problem on a new page, and write the problem number and page
number at the top of each page. (For example, 6-1, 6-2, 6-3 for pages 1, 2 and 3 of
problem 6). Please write only on one side of the paper.

• There are 8 total problems. Do all 4 problems in the first part (problems 1 to
4), and pick two problems in the second part (problems 5 to 8). Do not submit
more than two solved problems from the second part. If you do, only the first two
attempted problems will be graded. Each problem is worth 20 points.

• Do not submit multiple alternative solutions to any problem; if you do, only the
first solution will be graded.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Notation: Throughout the exam, R and C denote the sets of real and complex
numbers, respectively. F denotes either R or C. Fn and Fn,n are the vector spaces
of n-tuples and n × n matrices, respectively, over the field F. L(V ) denotes the
set of linear operators on the vector space V . T ∗ is the adjoint of the operator T
and λ∗ is the complex conjugate of the scalar λ. In an inner product space V , U⊥

denotes the orthogonal complement of the subspace U .

• If you are confused or stuck on a problem, either ask a question or move on to
another problem.

Problem Points Score Problem Points Score

1. 20 5. 20

2. 20 6. 20

3. 20 7. 20

4. 20 8. 20

Total 120
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Stephen Billups, Yaning Liu (Chair), Dmitriy Ostrovskiy



Part I. Work all of problems 1 through 4.

Problem 1. Suppose U,W are subspaces of a finite-dimensional vector space V .

(a) Show that dim (U ∩W ) = dimU + dimW − dim (U +W ).

(b) Let n = dimV . Show that if k < n then an intersection of k subspaces of dimension
n− 1 always has dimension at least n− k.

Solution

(a) Let {x1, . . . ,xk} be a basis for U∩W . Extend it separately to a basis {x1, . . . ,xk,u1, . . . ,ul}
of U and {x1, . . . ,xk,w1, . . . ,wm} of W . Then dimU ∩W = k, dimU = k + l
and dimW = k+m. So it remains to prove that dimU +W = k+ l+m. To show
this, we will show all the vectors together

x1, . . . ,xk,u1, . . . ,ul,w1, . . . ,wm

form a basis for U +W .

Let y ∈ U + W . Then y can be written as u + w, where u ∈ U and w ∈ W .
Since u can be written as a linear combination of {x1, . . . ,xk,u1, . . . ,ul} and w
can be written as a linear combination of {x1, . . . ,xk,w1, . . . ,wm}, we conclude
{x1, . . . ,xk,u1, . . . ,ul,w1, . . . ,wm} spans U +W .

Take scalars α1, . . . , αk, β1, . . . , βl, γ1, . . . , γm such that

α1x1 + · · ·+ αkxk + β1u1 + · · ·+ βlul + γ1w1 + · · ·+ γmwm = 0.

Note that w := γ1w1+ · · ·+γmwm = −(α1x1+ · · ·+αkxk+β1u1+ · · ·+βlul) ∈ U .
Also, it is clear w ∈ W . So w ∈ U ∩W . Therefore, there are scalars µ1, . . . , µk
such that

w = µ1x1 + · · ·+ µkxk

As a result,
γ1w1 + · · ·+ γmwm − µ1x1 − · · · − µkxk = 0

Since {w1, . . . ,wm,x1, . . . ,xk} is linearly independent, γ1, . . . , γm, µ1, . . . , µk are
all zeros. Further, we can conclude α1, . . . , αk, β1, . . . , βl are all zeros. So

{x1, . . . ,xk,u1, . . . ,ul,w1, . . . ,wm}

is a linearly independent set, and hence forms a basis for U +W .



(b) We prove it by induction.

If k = 1, the result is trivial. Suppose the result holds for some k ≥ 1. Let
V1, . . . , Vk, Vk+1 be subspaces of V of dimension n− 1. Then

dim (∩k+1
i=1 Vi) = dim (Vk+1 ∩ (∩ki=1Vi)) = dimVk+1+dim (∩ki=1Vk)−dim (Vk+1 + ∩ki=1Vi)

Note that dim (Vk+1 + ∩ki=1Vi) has dimension at most n, Vk+1 has dimension n− 1
and by the inductive hypothesis, ∩ki=1Vi has dimension at least n− k. Then

dim (∩k+1
i=1 Vi) ≥ n− 1 + n− k − n = n− (k + 1)

This completes the proof.

Problem 2.

(a) For each pair of vectors x and y in C3, assign a scalar (x,y) as follows:

(x,y) = y∗

1 0 1
0 2 0
1 0 2

x.
where y∗ is the conjugate transpose of y. Is (·, ·) an inner product on C3?

(b) Let V be an inner product space and u,v,w ∈ V . Prove or disprove

(i) ‖u+ v‖ ≤ ‖u+w‖+ ‖w + v‖;
(ii) |〈u,v〉| ≤ |〈u,w〉|+ |〈w,v〉|.

Solution

(a) positivity and definiteness: for x = (x1, x2, x3)
T , (x,x) = 2 |x2|2 + |x1|2 + x̄1x3 +

x1x̄3+2 |x3|2. Since |x1|2+x̄1x3+x1x̄3+|x3|2 = (x1+x3)(x1 + x3) ≥ 0, (x,x) ≥ 0,
and the equality holds if and only if x = 0.

additivity in first slot: (x+ y, z) = z∗A(x+ y) = z∗Ax+ z∗Ay = (x, z) + (y, z)
where A denotes the 3× 3 matrix.

homogeneity in first slot: (λx,y) = y∗Aλx = λy∗Ax = λ(x,y)

conjugate symmetry: (x,y) = y∗Ax = x∗A∗y = x∗Ay = (y,x). So it is an inner
product.

(b) (i) False. Take u = v, w = −u.



(ii) False. Consider the standard inner product on R2. Consider the counterex-
ample: u = v = (1, 1) and w = (1,−1).

Problem 3. Let T be a positive operator on a complex inner product space V and S
be an operator on V such that ST = −TS. Show that ST = TS = 0.

Solution Because T is a positive operator on a complex inner product space it is
self-adjoint and has only non-negative eigenvalues (Axler 7.27). Therefore, by Complex
Spectral theorem V has a basis consisting of eigenvectors of T . Let v be an eigenvector
of T with eigenvalue λ. Then T (Sv) = −STv = −λSv. If Sv 6= 0 and λ > 0 then Sv
would be an eigenvector of T with eigenvalue −λ < 0, which is impossible. Therefore,
λ = 0 or Sv = 0; in either case TSv = −λSv = 0. Because (TS)v = 0 for all basis
vectors, it is true for any vector of V and therefore TS = 0 and ST = −TS = 0.

Problem 4. Let V be a vector space over a field F. Suppose T ∈ L(V ) has minimal
polynomial p(z) = 3 + 2z − z2 + 5z3 + z4.

(a) (5 pts) Prove that T is invertible.

(b) (15 pts) Find the minimal polynomial of T−1.

Solution

1. T is invertible if and only if 0 is not an eigenvalue of T . Since p(0) = 3, 0 is not
an eigenvalue of T , so T is invertible.

2. By the definition of the minimal polynomial,

0 = p(T ) = 3I + 2T − T 2 + 5T 3 + T 4.

Muliplying both sides by 1
3T
−4 gives

0 = T−4 +
2

3
T−3 − 1

3
T−2 +

5

3
T−1 +

1

3
I.

Thus, q(z) = z4 + 2
3z

3− 1
3z

2 + 5
3z+ 1

3 is a monic polynomial such that q(T−1) = 0.

To show that q is the minimal polynomial of T−1, we need to show that there is
no nonzero polynomial r(z) of smaller degree such that r(T−1) = 0. Suppose such
a polynomial r(z) exists, with degree m < 4. Define s(z) = zmr(1/z). Then

s(T ) = Tmr(T−1) = 0.



Thus, s(z) is a nonzero polynomial of degree at most m < 4 such that s(T ) = 0,
which contradicts the statement that p is the minimal polynomial of T . Thus, no
such polynomial r(z) exists.

It follows that q is the monic polynomial of smallest degree such that q(T−1) = 0.
Hence q is the minimal polynomial of T−1.



Part II. Work two of problems 5 through 8.

Problem 5. Suppose A is a normal matrix such that A5 = A4.

(a) (8 pts) Prove that A is self-adjoint.

(b) (5 pts) Give a counterexample to Part (a) if A is not normal.

(c) (7 pts) Prove or disprove that A is a projection matrix. (Recall that a matrix A is
a projection matrix if A2 = A.)

Solution:

(a) Suppose that A is an n×n normal matrix. Since A is normal, it has an orthogonal
set of n eigenvectors {v1, . . . , vn}. Let λi be the eigenvalue associated with vi.
Then

λ5vi = A5vi = A4vi = λ4vi.

Since vi 6= 0, λi = 0 or 1. Since A is normal with real eigenvalues, it is self-adjoint.

(b) A counter example is

A =

[
1 0
1 0

]
.

Note that An = A, for any n > 0. However, AAT 6= ATA, and AT 6= A.

(c) Furthermore, λ2i = λi (since λi = 0 or 1). Thus,

A2vi = λ2i vi = λvi = Avi.

Since A2vi = Avi for all vi in basis of n vectors, it follows that A2 = A, so A is a
projection matrix.

Problem 6. Let V be a finite-dimensional inner product space over C. Let T be a
normal operator on V . Let λ ∈ C and let v ∈ V be a unit vector (i.e. ‖v‖ = 1). Prove
that T has an eigenvalue λ′ such that

‖λ− λ′‖ ≤ ‖Tv − λv‖.



Solution: Since T is normal, V has an orthonormal basis (v1, . . . , vn) consisting of
eigenvectors of T . Let λ1, . . . , λn be the corresponding eigenvalues. Using this basis, we
can write v = a1v1 + · · ·+ anvn for some scalars a1, . . . , an ∈ C. Hence,

‖Tv − λv‖2 = ‖T (a1v1 + · · · anvn)− λ(a1v1 + · · · anvn)‖2

= ‖(λ1 − λ)a1v1 + · · ·+ (λn − λ)anvn‖2

= |λ1 − λ|2|a1|2 + · · ·+ |λn − λ|2|an|2 (since vis are orthonormal)

≥ min
i
|λi − λ|2(|a1|2 + · · · |an|2)

= min
i
|λi − λ|2 ‖v‖2

= min
i
|λi − λ|2

= |λj − λ|2 for some j.

Thus, for some eigenvalue λj , we have

‖λ− λj‖ ≤ ‖Tv − λv‖.

Problem 7. Let {u1,u2, . . . ,un} and {v1,v2, . . . ,vn} be two sets of vectors of an
inner product space V of dimension n. Suppose

〈ui,uj〉 = 〈vi,vj〉 , i, j = 1, 2, . . . , n.

(a) Let {u1, . . . ,ut}, t ≤ n, be a basis for span {u1, . . . ,un}. Show that {v1, . . . ,vt}
is a basis for span {v1, . . . ,vn}.

(b) Show that there exists an isometry S on V such that

S(ui) = vi, i = 1, 2, . . . , n.

Solution

(a) First we show {v1, . . . ,vt} is linearly independent. Let

α1v1 + · · ·αtvt = 0

Then 0 = 〈α1v1 + · · ·+ αtvt,vi〉 = 〈α1u1 + · · ·+ αtut,ui〉 for all i ≤ t, which
means α1u1 + · · ·+αtut is orthogonal to all basis vectors, so α1u1 + · · ·+αtut = 0.
Due to the linear indepdence of u1, . . . ,ut, we have α1 = · · · = αt = 0.



Now we show that dim (span {v1, . . . ,vn}) ≤ t. For any v ∈ V , v = α1v1 + · · · +
αnvn, so

〈v,vi〉 = 〈α1v1 + · · ·+ αnvn,vi〉 = 〈α1u1 + · · ·+ αnun,ui〉
= 〈β1u1 + · · ·+ βtut,ui〉 = 〈β1v1 + · · ·+ βtvt,vi〉

for all i = 1, . . . , n. Therefore

〈v − (β1v1 + · · ·+ βtvt),vi〉 = 0

for all i = 1, . . . , n, which means v = β1v1 + · · · + βtvt. So the dimension of V
is no greater than t. Combining the fact that {v1, . . . ,vt} is linearly independent,
we can conclude {v1, . . . ,vt} is a basis for span {v1, . . . ,vn}.

(b) Without loss of generality, let {u1, . . . ,ut} be a basis for span {u1, . . . ,un}. Then
by Part (a), {v1, . . . ,vt} is a basis for span {v1, . . . ,vn}. Now let {α1, . . . ,αn−t}
and {β1, . . . ,βn−t} be orthonormal bases for (span {u1, . . . ,ut})⊥ and (span {v1, . . . ,vt})⊥,
respectively. Then

{u1, . . . ,ut,α1, . . . ,αn−t} and {v1, . . . ,vt,β1, . . . ,βn−t}

are two bases for V . Now suppose x ∈ V . If

x =
t∑

i=1

xiui +
n−t∑
i=1

yiαi,

then the linear map S (constructed based on Theorem 3.5 of Axler), defined by

Sx =

t∑
i=1

xivi +

n−t∑
i=1

yiβi

is the isometry wanted.

To verify it, first notice S(ui) = S(1ui) = 1vi = vi. Second, we have

‖Sx‖ =
√
〈Sx, Sx〉 =

√√√√ t∑
i=1

t∑
j=1

xix̄j 〈vi,vj〉+
n−t∑
i=1

yiȳi 〈βi,βi〉

=

√√√√ t∑
i=1

t∑
j=1

xix̄j 〈ui,uj〉+
n−t∑
i=1

yiȳi

=
√
〈x,x〉 = ‖x‖ .



Problem 8. Let V be a real inner product space and P a projection operator on V ,
P 2 = P . Prove that operator I − 2P is an isometry if and only if P is self-adjoint.

Solution:

For all x ∈ V , 〈(I − 2P )x, (I − 2P )x〉 = ||x||2 − 2 〈Px, x〉 − 2 〈x, Px〉 + 4 〈Px, Px〉. If
P is self-adjoint, 〈Px, Px〉 =

〈
P 2x, x

〉
= 〈Px, x〉 and 〈(I − 2P )x, (I − 2P )x〉 = ||x||2 −

2 〈Px, x〉−2 〈x, Px〉+ 4 〈Px, x〉 = ||x||2 + 2 〈Px, x〉−2 〈x, Px〉 = ||x||2. The last equality
uses the self-adjoint property as well. Thus, I − 2P is an isometry.

Conversely, suppose I − 2P is an isometry. Then for all x ∈ V , ||(I − 2P )x||2 = ||x||2, so

〈(I − 2P )x, (I − 2P )x〉 = ||x||2 − 2 〈Px, x〉 − 2 〈x, Px〉+ 4 〈Px, Px〉 = ||x||2,

and therefore
2 〈Px, Px〉 = 〈Px, x〉+ 〈x, Px〉 .

We can now show that P is self-adjoint. Define indices 1 and 2 such that x1 = Px and
x2 = (I − P )x. For any two vectors y, z ∈ V , consider x = y1 + z2 so that Px = y1 and
(I − P )x = z2 and substitute it into the equation above

2 〈y1, y1〉 = 〈y1, y1 + z2〉+ 〈y1 + z2, y1〉 = 2 〈y1, y1〉+ 〈y1, z2〉+ 〈z2, y1〉 .

Therefore, 〈y1, z2〉+ 〈z2, y1〉 = 0 and 〈y1, z2〉 = −〈z2, y1〉 = 0 because real inner product
is symmetric.

Finally, one concludes that

〈y, Pz〉 = 〈y1 + y2, z1〉 = 〈y1, z1〉 = 〈y1, z1 + z2〉 = 〈Py, z〉 .

Since this is true for all y, z ∈ V , P is self-adjoint.


