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Name:

Exam Rules:

e This is a closed book exam. Once the exam begins, you have 4 hours to complete
all six problems.

e Please begin each problem on a new page, and write the problem number and page
number at the top of each page. (For example, 6-1, 6-2, 6-3 for pages 1, 2 and 3 of
problem 6). Please write only on one side of the paper.

e There are 8 total problems. Do all 4 problems in the first part (problems 1 to
4), and pick two problems in the second part (problems 5 to 8). Do not submit
more than two solved problems from the second part. If you do, only the first two
attempted problems will be graded. Each problem is worth 20 points.

e Do not submit multiple alternative solutions to any problem; if you do, only the
first solution will be graded.

e Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

e If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

e Notation: Throughout the exam, R and C denote the sets of real and complex
numbers, respectively. [ denotes either R or C. F" and F™" are the vector spaces
of n-tuples and n x n matrices, respectively, over the field F. L£(V) denotes the
set of linear operators on the vector space V. T™ is the adjoint of the operator T
and \* is the complex conjugate of the scalar \. In an inner product space V, U+
denotes the orthogonal complement of the subspace U.

e If you are confused or stuck on a problem, either ask a question or move on to
another problem.

’ Problem ‘ Points \ Score \ \ Problem \ Points \ Score ‘
1. 20 5. 20
2. 20 6. 20
3. 20 7. 20
4 20 8. 20
\ \ | | Total | 120 | |
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Part I. Work all of problems 1 through 4.

Problem 1. Suppose U, W are subspaces of a finite-dimensional vector space V.

(a) Show that dim (UNW) =dimU + dim W — dim (U + W).

(b) Let n = dim V. Show that if k& < n then an intersection of k subspaces of dimension
n — 1 always has dimension at least n — k.

Solution

(a) Let {x1,...,x} beabasis for UNW. Extend it separately to a basis {x1, ...,z u1,...

of U and {x1,...,xk, wi,...,wy}t of W. Then dimUNW =k, dimU =k + 1
and dim W = k+m. So it remains to prove that dimU + W = k+ 1+ m. To show
this, we will show all the vectors together

Llyeooy L, Uy ..., U, W],..., W

form a basis for U + W.
Let y € U+ W. Then y can be written as u + w, where v € U and w € W.

Since w can be written as a linear combination of {x1,...,zg, u1,...,u} and w
can be written as a linear combination of {x1,..., &g, w1,...,w,}, we conclude
{Z1,..., @, 01, ..., 4, wy,..., Wy} spans U + W.

Take scalars aq,...,a, 81,..., 81,71, - - -, ¥m Such that
oy + -+ apx + frur + -+ frug + nwr + -+ ywy, = 0.

Note that w := ywi+- - +ypwn = —(q @1+ -+ apey +Brur+- -+ Fw) € U.
Also, it is clear w € W. So w € U NW. Therefore, there are scalars p1,...,

such that
w=x1 + -+ Uy
As a result,
NWLF -+ YW — (@1 — - = T = 0
Since {w1,...,Wn,&1,..., Tk} is linearly independent, v1,..., Ym, fi1, ..., pg are
all zeros. Further, we can conclude aq,...,ax, B, ..., 5, are all zeros. So
{z1,..., ¢, w1, ..., 4, W,..., Wy}

is a linearly independent set, and hence forms a basis for U + W.



(b) We prove it by induction.

If £k = 1, the result is trivial. Suppose the result holds for some k& > 1. Let
Vi, ..., Vi, Vi1 be subspaces of V' of dimension n — 1. Then

dim (N5F1V;) = dim (Viy 1 N (NE_1V5)) = dim Vi y g 4+-dim (0¥ Vi) —dim (Vi + 0F_, V5)

Note that dim (Vy41 + ﬂle Vi) has dimension at most n, Vi41 has dimension n — 1
and by the inductive hypothesis, ﬂle‘/; has dimension at least n — k. Then

dim (") >n—14+n—k—n=n—(k+1)

)

This completes the proof.

Problem 2.

(a) For each pair of vectors x and y in C3, assign a scalar (z,y) as follows:
1 01
(x,y)=y*" [0 2 0]
1 0 2

where y* is the conjugate transpose of y. Is (-,-) an inner product on C3?
(b) Let V be an inner product space and u, v, w € V. Prove or disprove

(1) flu+ 2| < flu+w|+ |w+of;
(i) [(w,v)| < [(u, w)| + |(w, v)].

Solution

(a) positivity and definiteness: for @ = (1, 2, 23)T, (@, ) = 2 |xa|* + |21* + T103 +
r123+2 |1’3’2. Since |$1‘2+ZL‘_1£L'3—|—{L‘1E3—|—‘$3|2 = (r1+x3)(x1 +x3) >0, (x,x) >0,
and the equality holds if and only if & = 0.
additivity in first slot: (x +y,2) = 2*A(x + y) = z* Az + z* Ay = (x, 2) + (y, 2)
where A denotes the 3 x 3 matrix.

homogeneity in first slot: (Ax,y) = y*Alx = \y* Az = \(z,y)

conjugate symmetry: (x,y) = y*Ax = £*A*y = ** Ay = (y,x). So it is an inner
product.

(b) (i) False. Take u = v, w = —u.



(ii) False. Consider the standard inner product on R?. Consider the counterex-
ample: v =v = (1,1) and w = (1,-1).

Problem 3. Let T be a positive operator on a complex inner product space V and S
be an operator on V such that ST = —T'S. Show that ST =TS = 0.

Solution Because T is a positive operator on a complex inner product space it is
self-adjoint and has only non-negative eigenvalues (Axler 7.27). Therefore, by Complex
Spectral theorem V' has a basis consisting of eigenvectors of T'. Let v be an eigenvector
of T' with eigenvalue A\. Then T'(Sv) = —STv = —ASv. If Sv # 0 and A > 0 then Sv
would be an eigenvector of 1" with eigenvalue —A < 0, which is impossible. Therefore,
A = 0 or Sv = 0; in either case TSv = —ASv = 0. Because (T'S)v = 0 for all basis
vectors, it is true for any vector of V' and therefore 'S = 0 and ST = —T'S = 0.

Problem 4. Let V be a vector space over a field F. Suppose T' € £(V) has minimal
polynomial p(z) = 3 + 2z — 2% + 523 + 2%,

(a) (5 pts) Prove that T is invertible.

(b) (15 pts) Find the minimal polynomial of 7.

Solution

1. T is invertible if and only if 0 is not an eigenvalue of T'. Since p(0) = 3, 0 is not
an eigenvalue of T', so T is invertible.

2. By the definition of the minimal polynomial,
0=p(T)=3I+2T —T? + 513 + T
Muliplying both sides by %T*‘l gives
0=T"*+ %T_?’ - éT‘Q + gT_l + %I.
Thus, q(z) = 24 + %23 — %22 + %z + % is a monic polynomial such that ¢(7~') = 0.

To show that ¢ is the minimal polynomial of 7!, we need to show that there is
no nonzero polynomial r(z) of smaller degree such that r(T~!) = 0. Suppose such
a polynomial r(z) exists, with degree m < 4. Define s(z) = z™r(1/z). Then

s(T) =T™r(T™1) = 0.



Thus, s(z) is a nonzero polynomial of degree at most m < 4 such that s(7") = 0,
which contradicts the statement that p is the minimal polynomial of T'. Thus, no
such polynomial r(z) exists.

It follows that g is the monic polynomial of smallest degree such that ¢(T~!) = 0.
Hence ¢ is the minimal polynomial of 7.




Part II. Work two of problems 5 through 8.

Problem 5. Suppose A is a normal matrix such that A% = A%.

(a) (8 pts) Prove that A is self-adjoint.

(b) (5 pts) Give a counterexample to Part (a) if A is not normal.

(c) (7 pts) Prove or disprove that A is a projection matrix. (Recall that a matrix A is
a projection matrix if 42 = A.)

Solution:

(a) Suppose that A is an n X n normal matrix. Since A is normal, it has an orthogonal
set of n eigenvectors {vi,...,v,}. Let \; be the eigenvalue associated with v;.
Then

ABUZ' = A5vi = A4Ui = /\41}1'.

Since v; # 0, A; = 0 or 1. Since A is normal with real eigenvalues, it is self-adjoint.

[

Note that A” = A, for any n > 0. However, AAT # AT A, and AT +# A.

(b) A counter example is

(c) Furthermore, \? = \; (since \; = 0 or 1). Thus,

AQ’UZ' = )\2’1)1' = )\’U,; = A’UZ'.

2

Since A%v; = Av; for all v; in basis of n vectors, it follows that A2 = A, so A is a
projection matrix.

Problem 6. Let V be a finite-dimensional inner product space over C. Let T be a
normal operator on V. Let A € C and let v € V' be a unit vector (i.e. ||v|]| =1). Prove
that T' has an eigenvalue A’ such that

1A =N < [T = Mol



Solution: Since T is normal, V has an orthonormal basis (v1,...,v,) consisting of
eigenvectors of T'. Let A1,..., A\, be the corresponding eigenvalues. Using this basis, we
can write v = ajvy + - - - + apv, for some scalars aq, ..., a, € C. Hence,

[Tv — Mo||> = || T(a101 + - - - anvy) — AMagvr + - - anvy) ||
= |\ = Narvr + -+ (A — Nagva|”
= M = M a1)* 4+ -+ [A = M?|an|®  (since v;s are orthonormal)

> min [ = AP (Jax|* + -+ |an])
= min A — A o]
= min [A; — A*
= |\; — A|? for some j.
Thus, for some eigenvalue \;, we have

A =Xl < [ Tv = Avll.

Problem 7. Let {uj,ug,...,u,} and {v1,v2,...,v,} be two sets of vectors of an
inner product space V' of dimension n. Suppose

(ui,uj):<v,;,vj>, i,j:1,2,...,n.

(a) Let {uy,...,us}, t <n, be a basis for span {ui,...,u,}. Show that {vy,...,v:}
is a basis for span{vi,...,v,}.

(b) Show that there exists an isometry S on V' such that

S(ui):vi, i:1,2,...,n.

Solution

(a) First we show {v1,..., v} is linearly independent. Let
oV + vy =0
Then 0 = (ayvy + -+ + ooy, v;) = (qug + -+ + qpuyg, u;) for all @ < ¢, which

means aqu] + - - -+ azuyg is orthogonal to all basis vectors, so ajuy +- - -+ apu; = 0.
Due to the linear indepdence of uq,...,u;, we have o = --- = a3 = 0.



Now we show that dim (span{vi,...,v,}) <t. Foranyv € V, v = ajv1 +--- +
Uy, SO

(v,v;) = (V1 + - + U, V) = (U1 + -+ - + QpUy, U;)
= (Brur + - - + Brug, ui) = (1o + - - - + Brog, vy)

forall ¢ = 1,...,n. Therefore

(v —(Brv1 + -+ Bror),vi) =0

for all ¢ = 1,...,n, which means v = S1v1 + --- + Biv¢. So the dimension of V'
is no greater than ¢t. Combining the fact that {v1,..., v} is linearly independent,
we can conclude {vy,...,v;} is a basis for span{vy,...,v,}.

Without loss of generality, let {wu1,...,u:} be a basis for span{ui,...,u,}. Then
by Part (a), {vi,...,v:} is a basis for span{vy,...,v,}. Now let {a,...,qp—¢}

and {B4, ..., 3,_;} be orthonormal bases for (span {1, ..., u;})* and (span {vy,...,v})*,
respectively. Then
{u1,...,us, o1, ...,an_¢} and {v1,...,v,8,...,Bn_t}

are two bases for V. Now suppose x € V. If
t n—t
T = Zﬂﬁzuz + Zyiaia
i=1 i=1
then the linear map S (constructed based on Theorem 3.5 of Axler), defined by
t n—t
Sx=> zvit+ Y b
i=1 i=1

is the isometry wanted.

To verify it, first notice S(u;) = S(1lu;) = 1lv; = v;. Second, we have

t t n—t
|Sx| = \/(Sx, Sx) = ZZ%@ (i, v5) + > yi%i (By, Bi)
i=1 j=1 i=1
t t n—t
= Z injj <uz>uj> + Zyzyz
i=1 j=1 i=1




Problem 8. Let V be a real inner product space and P a projection operator on V,
P? = P. Prove that operator I — 2P is an isometry if and only if P is self-adjoint.

Solution:

For all z € V, (I —2P)x, (I —2P)z) = ||z||> — 2(Pz,x) — 2 (x, Pz) + 4 (Pz, Px). If
P is self-adjoint, (Pxz, Pz) = (P?z,z) = (Pz,z) and ((I — 2P)z, (I — 2P)z) = ||z]|* —
2(Pz,x) —2(z, Px)+4 (Px,x) = ||z||*+2 (Px,2) — 2 (z, Pz) = ||z||?>. The last equality
uses the self-adjoint property as well. Thus, I — 2P is an isometry.

Conversely, suppose I — 2P is an isometry. Then for all z € V, ||(I —2P)z||? = ||z||?, so

and therefore
2(Pz, Px) = (Px,z) + (x, Px).

We can now show that P is self-adjoint. Define indices 1 and 2 such that z; = Pz and
x9 = (I — P)z. For any two vectors y, z € V, consider x = y; + 22 so that Pz = y; and
(I — P)x = z9 and substitute it into the equation above

2y, y1) = (Wi, y1 + 22) + (y1 + 22,91) = 2(y1,91) + (Y1, 22) + (22, 91) -

Therefore, (y1,22) + (z2,y1) = 0 and (y1, 22) = — (22, y1) = 0 because real inner product
is symmetric.

Finally, one concludes that

(y, Pz) = (1 +y2,21) = (Y1, 21) = (Y1, 21 + 22) = (Py, 2) .

Since this is true for all y, z € V', P is self-adjoint.




