
PHD PRELIMINARY EXAMINATION IN APPLIED ANALYSIS
FEBRUARY 11, 2021

Student ID:

• The examination consists of four parts associated with four skills and content areas
summarized to students via email. We summarize this below.

– Part 1: Skills and Content Area. Produce straightforward proofs based on
general metric space definitions for point-set topology and continuous functions
that may, for establishing certain steps in the proofs, utilize standard results from
either undergraduate or graduate analysis (MATH 4310 or 5070, respectively).
Students solve both problems in this part.

– Part 2: Skills and Content Area. Produce proofs involving commonly stud-
ied sequence/function spaces such as `p (for 1 ≤ p ≤ ∞) or Ck(X, Y ) for some
k ∈ N. Students solve both problems in this part.

– Part 3: Skills and Content Area. Identify the correct theorem to apply
to prove a result by proper verification of the theorem’s hypothesis. The focus
is on major theorems spanning all content including some of the major results
from undergraduate analysis. Such theorems include, but are not limited to, the
intermediate value theorem, the mean value theorem, the Fundamental Theorem
of Calculus, the Arzelà–Ascoli theorem, and the contraction mapping theorem.
Students are to choose to solve only one of two problems in this part.
If students do both problems, then only the first one will be graded.

– Part 4: Skills and Content Area. Prove results requiring definitions and/or
theorems for differentiation/integration. Students are to choose to solve
only one of two problems in this part. If students do both problems,
then only the first one will be graded.

• Make sure to justify your solutions/proofs by citing theorems that you use, provide
counter-examples with explanations, follow proper proof-writing techniques, etc.
• Write legibly using a dark pencil or pen. Rewrite your solution if it gets too messy.
• Please begin solution to every problem on a new page; write only on one side of

each piece of paper; number all pages throughout; and, just in case, write your
student ID on every page.
• Do not submit scratch paper or multiple alternative solutions. If you do, we will

grade the first solution to its end.
• Ask the proctor if you have any questions.

Examination committee: Troy Butler (chair), Burt Simon, Dmitriy Ostrovskiy
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Part 1
Students should complete both problems.
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(1) Let (X, d) be a metric space and A ⊂ X.

We say that x ∈ X is a limit point of A if for all ε > 0, Bε(x)∩ (A\ {x}) 6= ∅. Here,
A\ {x} = A∩{x}c. The set Bε(x) denotes the ball of radius ε centered at the point x.

(a) (10 points) Use the given definition to prove that if A ⊂ X has a finite number
of points then A has no limit points.

(b) (5 points) Give an example of (X, d) and infinite set A ⊂ X that has no limit
points. Justify your example using the given definition.

(c) (5 points) Give an example of (X, d) and infinite set A ⊂ X such that every
point of A is also a limit point of A. Justify your example using the given defi-
nition.

Part (a). The key is to use the logical negation of the definition: We say that x ∈ X
is not a limit point of A if there exists ε > 0 such that Bε(x) ∩ (A\ {x}) = ∅.

Proof.

Let {xn}Nn=1 denote an enumeration of the finite points of A and let x ∈ X.

There are two cases. Either x ∈ A or x /∈ A.

In the first case, x = xm for some 1 ≤ m ≤ N . Choose this m and choose
ε = min {d(xn, x) : 1 ≤ n ≤ N, n 6= m} > 0 (this is greater than zero because it
is a minimum of a finite set of positive numbers).

By construction, Bε(x) ∩ (A\ {x}) = ∅.

In the second case, choose ε = min {d(xn, x) : 1 ≤ n ≤ N} > 0 (this is again greater
than zero because it is a minimum of a finite set of positive numbers).

By construction, Bε(x) ∩ (A\ {x}) = ∅.
�

Part (b). Consider R with the usual metric and let A = Z. Let x ∈ R. If x ∈ A,
choosing ε = 1 gives Bε(x) ∩ (A\ {x}) = ∅. If x /∈ A, then x ∈ (n, n + 1) for some
integer n and choosing ε = min {|x− n| , |n+ 1− x|} gives Bε(x) ∩ (A\ {x}) = ∅.

Part (c). Consider R with the usual metric and let A = (0, 1). Let x ∈ A, then
for any ε > 0, Bε(x) ∩ (A\ {x}) defines a sub-interval of (0, 1) containing an infinite
number of points from A, i.e., Bε(x) ∩ (A\ {x}) 6= ∅.
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(2) Let (X, dX) and (Y, dY ) be metric spaces.

We say that f : A ⊆ X → Y is uniformly continuous on A if for all ε > 0 there
exists δ > 0 such that for all x, z ∈ A with dX(x, z) < δ implies dY (f(x), f(z)) < ε.

Let f : R→ R be continuous with limx→−∞ f(x) = α ∈ R and limx→∞ f(x) = β ∈ R.
Use the given definition of uniform continuity, appropriately adapted to R, to prove
that f is uniformly continuous on R.

Note: Appropriately adapted here simply means we use R with the usual metric
instead of (X, dX) and (Y, dY ) in the definition. Also, the set A in the definition is
clearly R in the problem statement.

Proof.

Let ε > 0.

Since the limits at ±∞ exist and are finite, choose a < 0 and b > 0 such that x ≤ a
implies |f(x)− α| < ε/2 and x ≥ b implies |f(x)− β| < ε/2. Since f is continuous
on R, a standard result is that f is uniformly continuous on [a − 1, b + 1]. Choose
δ1 > 0 such that x, z ∈ [a − 1, b + 1] with |x− z| < δ1 implies |f(x)− f(z)| < ε/2.
Choose δ = min {δ1, 1}.

Let x, z ∈ R such that |x− z| < δ. Without loss of generality, assume x < z.

There are three (non-mutually exclusive) cases: (i) a − 1 < x < z < b + 1, (ii)
x < z < a, or (iii) b < x < z.

Case (i): |x− z| < δ ≤ δ1 implies |f(x)− f(z)| < ε/2 < ε.

Case (ii): |f(x)− f(z)| = |f(x)− α + α− f(z)| ≤ |f(x)− α| + |α− f(z)| (by the
triangle inequality), and |f(x)− α|+ |α− f(z)| < ε/2 + ε/2 = ε since x < z < a.

Case (iii): |f(x)− f(z)| = |f(x)− β + β − f(z)| ≤ |f(x)− β| + |β − f(z)| (by the
triangle inequality), and |f(x)− β|+ |β − f(z)| < ε/2 + ε/2 = ε since b < x < z. �
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Part 2
Students should complete both problems.
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(3) Let F be a family of functions from a metric space (X, dX) to a metric space (Y, dY ).
The family F is equicontinuous if for every x ∈ X and ε > 0 there is a δ > 0 such
that for z ∈ X with dX(x, z) < δ implies dY (f(x), f(z)) < ε for all f ∈ F .

Let (X, dX) and (Y, dY ) be metric spaces and C(X, Y ) be the space of all continuous
functions from X to Y . Given a sequence of functions (fn) ⊂ C(X, Y ), we say that
fn → f uniformly if

sup
x∈X

dY (f(x), fn(x))→ 0.

(a) (10 points) Prove that if (fn) ⊂ C(X, Y ) and fn → f uniformly, then {fn}n∈N ∪
{f} is equicontinuous using the given definition.

(b) (10 points) Show the necessity of uniform convergence by providing an example
of (X, dX), (Y, dY ) and (fn) ⊂ C(X, Y ) that converges pointwise but not uni-
formly to f : X → Y such that {fn}n∈N is not equicontinuous. Make sure to
justify your example.

Part (a). We provide a proof that is not based on any other prior results. A slightly
shorter proof is possible by using the standard result to establish the continuity of f
first and incorporating the associated δf > 0 into the construction of δ.

Proof.
Let x ∈ X and ε > 0.

For each n ∈ N, fn : X → Y is continuous, so choose δn > 0 such that for
z ∈ X with dX(x, z) < δn implies dY (fn(x), fn(z)) < ε/6. Since fn → f uni-
formly, choose N such that n ≥ N implies supx∈X dY (f(x), fn(x)) < ε/6. Choose
δ = min {δ1, δ2, . . . , δN} > 0.

Let z ∈ X such that dX(x, z) < δ.

Let g ∈ {fn}n∈N ∪ {f}. There are three cases: (i) g = f , (ii) g = fn for some n ≥ N ,
or (iii) g = fn for some n < N .

For case (i), the triangle inequality implies

dY (f(x), f(z)) ≤ dY (f(x), fN(x)) + dY (fN(z), fN(z)) + dY (fN(z), f(z)),

and the first and third terms on the right-hand side are less than ε/6 because of the
choice of N whereas the middle term on the right-hand side is less than ε/6 by the
choice of δ, so dY (f(x), f(z)) < ε/2 < ε.
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For case (ii), the triangle inequality implies

dY (fn(x), fn(z)) ≤ dY (fn(x), f(x)) + dY (f(x), f(z)) + dY (f(z), fn(z)),

and the first and third terms on the right-hand side are less than ε/6 because of
n ≥ N whereas the middle term on the right-hand side is less than ε/2 by the choice
of δ and the conclusion of case (i) above, so dY (fn(x), fn(z)) < 5ε/6 < ε.

For case (iii), δ ≤ δn implies dY (fn(x), fn(z)) < ε/6 < ε.
�

Part (b). (2 points for a correct example, 3 points for justifying convergence is not
uniform, 5 points for justifying not equicontinuous). Let X = Y = [0, 1] with the
usual metric and for each n ∈ N,

fn(x) = xn

Clearly, fn(x) → 0 for each x ∈ [0, 1) and fn(1) → 1. Defining f as this pointwise
limit, supx∈[0,1] |xn − f(x)| = supx∈[0,1) x

n = 1 for each n, so the convergence is not
uniform. Choose x = 1, ε = 0.5 and let δ > 0, then choose y ∈ (1−δ, 1) and choose n
such that yn < ε. This implies |fn(x)− fn(y)| ≥ ε, so {fn}n∈N is not equicontinuous.
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(4) If (X, dX) is a metric space and S ⊆ X, then we say that S is dense in X if x ∈ X
implies either x ∈ S or x is a limit point of S. A metric space is called separable if
it contains a countable dense subset. Examples of uncountable but separable metric
spaces include Rk for any finite positive integer k.

Let (`∞, d) denote the usual metric space defined by bounded real-valued sequences,
i.e., for all (ξi) ∈ `∞, then there exists c ≥ 0 such that supi∈N |ξi| ≤ c, and for each
x = (ξi), y = (ηi) ∈ `∞,

d(x, y) := sup
i∈N
|ξi − ηi|.

Let A := {(ξi) ∈ `∞ : ξi = 0 or 1 ∀i ∈ N}.

(a) (5 points) Prove that A is uncountable.

(b) (5 points) Prove that A has no limit points using the definition of limit points
from Problem (1) of this exam.

(c) (10 points) Prove that `∞ is not separable.

Part (a). This requires Cantor’s diagonalization argument.

Part (b). Let x ∈ `∞. Choose ε = 1/2, then Bε(x)∩A can contain at most one point
of A by construction since each point in A is a distance of 1 away from all other
points in A. Thus, by construction Bε(x) ∩ (A\ {x}) = ∅. 2

Part (c). Let S ⊂ `∞ be countable. By parts (a) and (b), {B1/2(x)}x∈S contains
at most a countably infinite number of points from the uncountably infinite set A.
Thus, there exists a point x ∈ A ⊂ `∞ such that x /∈ B1/2(x) ∩ S meaning x /∈ S nor
is x a limit point of S. 2
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Part 3
Students should choose one of the following

two problems to complete.
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(5) Let f : [0, 1]→ (0, 1) be continuously differentiable and max0≤x≤1 |f ′(x)| ≤ 1− ε for
some ε > 0. Prove that f has exactly one fixed point.

Proof.

Since f : [0, 1]→ (0, 1), we have that f(0) > 0 and f(1) < 1.

The function g(x) = f(x) − x is then continuous with g(0) = f(0) − 0 = f(0) > 0
and g(1) = f(1)− 1 < 0.

Thus, by the Intermediate Value Theorem, g(x) has a zero in the interval (0, 1).
Choose c ∈ (0, 1) such that g(c) = f(c)− c = 0, which implies f(c) = c.

To show uniqueness of c, note that max0≤x≤1 |f ′(x)| ≤ 1− ε < 1 implies that g′(x) =
f ′(x) − 1 < 0, so g is strictly decreasing on (0, 1) and cannot have more than one
zero. �
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(6) Let K ∈ C([0, 1]× [0, 1]). For f ∈ C([0, 1]), let

Tf(x) :=

∫ 1

0

K(x, y)f(y) dy.

(a) (10 points) Prove that Tf ∈ C([0, 1]).

(b) (10 points) Let C([0, 1]) be equipped with the sup-norm metric. Show that
F := {Tf : ‖f‖∞ ≤ 1} is precompact in C([0, 1]). Recall that a set is called
precompact if its closure is compact.

Part (a).

Proof.

Let x ∈ [0, 1] and ε > 0.

Since [0, 1] is compact and f is continuous, f is bounded by a standard result, so
choose M ≥ 0 such that supx∈[0,1] |f(x)| ≤ M . Since K ∈ C([0, 1] × [0, 1]), choose

δ > 0 such that ‖(x1, y1)− (x2, y2)‖ < δ (where ‖ · ‖ denotes the usual 2-norm on R2)
implies |K(x1, y1)−K(x2, y2)| < ε/(M + 1).

Let z ∈ [0, 1] such that |x− z| < δ, then

|Tf(x)− Tf(z)| =
∣∣∣∣∫ 1

0

K(x, y)f(y) dy −
∫ 1

0

K(z, y)f(y) dy

∣∣∣∣
=

∣∣∣∣∫ 1

0

(K(x, y)−K(z, y)) f(y) dy

∣∣∣∣ (linearity of integral)

≤
∫ 1

0

|K(x, y)−K(z, y)| |f(y)| dy (standard integral result)

<

∫ 1

0

ε

= ε.

�

Part (b).

Proof.

Let Tf ∈ F , then by standard integral results ‖f(x)‖∞ ≤ 1 implies

|Tf(x)| =
∣∣∣∣∫ 1

0

K(x, y)f(y) dy

∣∣∣∣ ≤ ∫ 1

0

|K(x, y)| dy.
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Since K(x, y) is continuous on compact [0, 1] × [0, 1], K is bounded by a standard
result, which implies F is uniformly bounded by the above inequality.

In the proof of Part (a), the δ was chosen independent of f , so F is equicontinuous.

It follows that the Arzelá-Ascoli theorem applies, which finishes the proof.
�
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Part 4
Students should choose one of the following

two problems to complete.
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(7) Suppose that for every n ∈ N, fn : R → R is a differentiable function and that
supx∈R,n∈N |f ′n(x)| = M <∞. Furthermore, suppose that (fn) converges for all x ∈ R
and define f(x) = limn→∞ fn(x) for each x ∈ R.

(a) (10 points) Show that {fn}n∈N is uniformly bounded on each fixed interval [a, b].

(b) (10 points) Show that f is continuous on R.

Part (a). By the Fundamental Theorem of Calculus, for each n and any x ∈ R,

fn(x) = fn(a) +

∫ x

a

f ′n(t) dt.

Since fn(a) → f(a), a standard result implies that the sequence of numbers (fn(a))
is bounded. Choose M ≥ 0 such that supn∈N |fn(a)| ≤ M . Then, for each n, the
triangle inequality implies

|fn(x)| ≤ |fn(a)|+
∣∣∣∣∫ x

a

f ′n(t) dt

∣∣∣∣ ≤ N +M |x− a| .

Thus, if x ∈ [a, b], then |fn(x)| ≤ N +M |b− a|. 2.

Part (b). Using the Fundamental Theorem of Calculus as in part (a), we have that
for any x, y ∈ R with x < y,

|f(y)− f(x)| = lim
n→∞

|fn(y)− fn(x)|

= lim
n→∞

∣∣∣∣[fn(a) +

∫ y

a

f ′n(t) dt

]
−
[
fn(a) +

∫ x

a

f ′n(t) dt

]∣∣∣∣
= lim

n→∞

∣∣∣∣∫ y

x

f ′n(t) dt

∣∣∣∣
≤ lim sup

n→∞

∫ y

x

|f ′n(t) dt|

≤M |y − x| .

This shows f is Lipschitz continuous from which uniform and pointwise continuity
follow from standard results.
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(8) The Fundamental Theorem of Calculus states that if f is a real-valued continuous
function on [a, b] that is differentiable on (a, b), and if f ′ is Riemann integrable on
[a, b], then ∫ b

a

f ′(x) dx = f(b)− f(a).

Prove the above version of the Fundamental Theorem of Calculus.

Proof. Found in any standard advanced calculus textbook. �
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