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Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to complete
all six problems.

• Please begin each problem on a new page, and write the problem number and page
number at the top of each page. (For example, 6-1, 6-2, 6-3 for pages 1, 2 and 3 of
problem 6). Please write only on one side of the paper.

• There are 8 total problems. Do all 4 problems in the first part (problems 1 to
4), and pick two problems in the second part (problems 5 to 8). Do not submit
more than two solved problems from the second part. If you do, only the first two
attempted problems will be graded. Each problem is worth 20 points.

• Do not submit multiple alternative solutions to any problem; if you do, only the
first solution will be graded.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Notation: Throughout the exam, R and C denote the sets of real and complex
numbers, respectively. F denotes either R or C. Fn and Fn,n are the vector spaces
of n-tuples and n × n matrices, respectively, over the field F. L(V ) denotes the
set of linear operators on the vector space V . T ∗ is the adjoint of the operator T
and λ∗ is the complex conjugate of the scalar λ. In an inner product space V , U⊥

denotes the orthogonal complement of the subspace U .

• If you are confused or stuck on a problem, either ask a question or move on to
another problem.

Problem Points Score Problem Points Score

1. 20 5. 20

2. 20 6. 20

3. 20 7. 20

4. 20 8. 20

Total 120
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Part I. Work all of problems 1 through 4.

Problem 1.

1. Let v1, v2, v3 be linear dependent, and v2, v3, v4 linear independent.

(a) Show that v1 is a linear combination of v2 and v3.

(b) Show that v4 is not a linear combination of v1, v2, v3.

2. Find 10 vectors in R3 so that any three of them form a basis. Justify your answer.

Solution

1. (a) Let a1v1 + a2v2 + a3v3 = 0, where we do not have a1 = a2 = a3 = 0.
Such a1, a2, a3 exist since {v1, v2, v3} is linearly dependent. If a1 = 0, then
a2v2 + a3v3 = 0 and thus a2 = a3 = 0, since {v2, v3, v4} and thus {v2, v3} are
linearly independent, a contradiction. Thus, a1 6= 0 and thus a−1

1 exists. This
implies that v1 = −a−1

1 a2v2 − a−1
1 a3v3, the desired linear combination.

(b) Assume that v4 = b1v1 + b2v2 + b3v3. Then by (a), v4 = (b2 − b1a−1
1 a2)v2 +

(b3 − b1a−1
1 a3)v3, contradicting that {v2, v3, v4} is linearly independent.

2. One such set of vectors is the set of (1, i, i2) for i = 1, 2, . . . , 10. To see this, for

i < j < k consider the (Vandermonde) matrix A =

1 i i2

1 j j2

1 k k2

 with

detA = jk2 + ki2 + ij2 − kj2 − ji2 − ik2 = (k − i)(k − j)(j − i) > 0.

Alternative: Any set of vectors (1, i, f(i)) with f > 0 growing fast enough will
work, albeit the argument will be less elegant.

Again, take 1 ≤ i < j < k ≤ 10, and assume that

(1, i, f(i)) = a(1, j, f(j)) + b(1, k, f(k)).

Then 1 = a+ b and i = aj + bk, so a = i−k
j−k and b = i−j

k−j . Further,

f(i) = af(j) + bf(k) =
i− k
j − k

f(j) +
i− j
k − j

f(k).

If f(k) > k−i
j−if(j), then this implies that f(i) < 0, a contradiction.

Since k−i
j−i ≤ k − i ≤ 9, using f(i) = 10i works for this purpose.



Problem 2.

Let ‖ · ‖ denote an arbitrary vector norm on Rp. The matrix norm induced by ‖ · ‖ is
defined by

‖P‖ = max
x 6=0

‖Px‖
‖x‖

for each p× p real matrix P .

1. Prove that ‖ · ‖ is a norm on the vector space of real p× p matrices.

2. Let A,B be p× p real matrices. Show that

‖AB‖ ≤ ‖A‖‖B‖.

3. Let P be a p×p real matrix. Suppose that ‖P‖ < 1. Prove that I+P is nonsingular
and that

1

1 + ‖P‖
≤ ‖(I + P )−1‖ ≤ 1

1− ‖P‖
.

Solution

1. We need to verify that the induced norm satisfies the three properties of norms:
1) ‖P‖ > 0 for P 6= 0 ; 2) for any scalar α and matrix P , ‖αP‖ = |α|‖P‖ and 3)
for any two matrix P and Q, ‖P‖+ ‖Q‖ ≤ ‖P‖+ ‖Q‖.
1) Since ‖·‖ is a vector norm, ‖Px‖ ≥ 0 for all P and x. Thus, the right hand side in
the definition above is always nonnegative, so ‖P‖ ≥ 0. Moreover, if P 6= 0, it has

rank ≥ 1; thus, we can find x̄ ∈ Rp such that Px̄ 6= 0. But then ‖P‖ ≥ ‖P x̄‖‖x‖ > 0.

Thus, ‖P‖ > 0 for all P 6= 0.

2) For any scalar α we have

‖αP‖ = max
x 6=0

‖αPx‖
‖x‖

= max
x 6=0

|α|‖Px‖
‖x‖

= |α|max
x 6=0

‖Px‖
‖x‖

= |α|‖P‖.

3) For two matrices P and Q, we have

‖P +Q‖ = max
x 6=0

‖(P +Q)x‖
‖x‖

≤ max
x 6=0

‖Px‖+ ‖Qx‖
‖x‖

≤ max
x 6=0

‖Px‖
‖x‖

+ max
y 6=0

‖Qy‖
‖y‖

= ‖P‖+ ‖Q‖



2.

‖AB‖ = max
x 6=0

‖ABx‖
‖x‖

≤ max
x 6=0

‖A‖‖Bx‖
‖x‖

= ‖A‖max
x 6=0

‖Bx‖
‖x‖

= ‖A‖‖B‖

3. Suppose x is a solution to the equation (I + P )x = 0. Then x = −Px, so

‖x‖ = ‖ − Px‖ ≤ ‖P‖‖x‖.

Since ‖P‖ < 1, this implies that x = 0. (Otherwise, we get the contradiction
‖x‖ < ‖x‖). Thus, the only solution to (I + P )x = 0 is the trivial solution x = 0,
so I + P is nonsingular.

Let B = (I + P )−1. Then I = B(I + P ). Thus,

1 = ‖I‖ = ‖B(I + P )‖ ≤ ‖B‖‖I + P‖ ≤ ‖B‖(1 + ‖P‖).

Thus,
1

1 + ‖P‖
≤ ‖B‖ = ‖(I + P )−1‖.

To get the second inequality, observe that I = B +BP , so B = I −BP . Thus,

‖B‖ = ‖I −BP‖ ≤ 1 + ‖BP‖ ≤ 1 + ‖B‖‖P‖.

Hence, ‖B‖(1− ‖P‖) ≤ 1 and ‖B‖ ≤ 1
1−‖P‖ .

Problem 3. Let A be a Hermitian n× n complex matrix. Show that if < Av,v >≥ 0
for all v ∈ Cn then there exists an n × n matrix T such that A = T ∗T (Here T ∗ is the
conjugate transpose of T ).

Solution Due to the spectral theorem, an orthonormal basis {v1, . . . ,vn} exists such
that

Av1 = λ1v1, . . . , Avn = λnvn

Note that λi, 1 ≤ i ≤ n, are real, since A is Hermitian.

For each i, we further have

< Avi,vi >=< λvi,vi >= λi < vi,vi >

which is nonnegative. So λi, 1 ≤ 1 ≤ n, must be nonnegative.

Hence, it makes sense to define the linear map (matrix) T such that

Tvi =
√
λivi



Such matrix exists and is unique, since both vi and
√
λivi are bases of Cn. Note that

the matrix of T , M(T ), with respect to the basis {v1, . . . ,vn} is diagonal, with
√
λi’s

on the diagonal. Therefore M(T ∗) is also diagonal, with
√
λi =

√
λi on the diagonal.

So we have
T ∗(vi) =

√
λivi

Finally, we have

Avi = λivi =
√
λi(
√
λivi) =

√
λiT

∗vi = T ∗(
√
λivi) = T ∗Tvi

This means A and TT ∗ agree on the basis vi, and it implies A = TT ∗.

Problem 4.

Let n be an integer. Let A be the n-by-n matrix

A =



0 1 1 1 . . . 1 1
1 0 1 1 . . . 1 1
1 1 0 1 . . . 1 1
1 1 1 0 . . . 1 1
...

...
...

...
...

...
1 1 1 1 . . . 0 1
1 1 1 1 . . . 1 0


.

So A has 1’s everywhere but 0’s on the diagonal. Or in other words, for all 1 ≤ i, j ≤ n,
aij = 1 if i 6= j and aij = 0 if i = j.

Give the determinant of A as a function of n.

Solution

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1 1
1 0 1 1 . . . 1 1
1 1 0 1 . . . 1 1
1 1 1 0 . . . 1 1
...

...
...

...
...

...
1 1 1 1 . . . 0 1
1 1 1 1 . . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We substract the first row to all other rows. So we perform the following elementary
row operations: L2 → L2 − L1, then L3 → L3 − L1, then L4 → L4 − L1, etc. These



operations do not change the determinant. and we get

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1 1
1 −1 0 0 . . . 0 0
1 0 −1 0 . . . 0 0
1 0 0 −1 . . . 0 0
...

...
...

...
...

...
1 0 0 0 . . . −1 0
1 0 0 0 . . . 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We add the second to the last columns to the first column. So we perform the following
elementary column operations: C1 → C1 +C2, then C1 → C1 +C3, then C1 → C1 +C4,
etc. These operations do not change the determinant. We get

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(n− 1) 1 1 1 . . . 1 1
0 −1 0 0 . . . 0 0
0 0 −1 0 . . . 0 0
0 0 0 −1 . . . 0 0
...

...
...

...
...

...
0 0 0 0 . . . −1 0
0 0 0 0 . . . 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We can now conclude that

det(A) = (−1)n−1(n− 1).

Solution 2: (Alternate)

• Let x(1) be the vector with all ones. We have that Ax(1) = (n − 1)x(1). So x(1) is an
eigenvector of eigenvalue (n− 1) of A.

• For 2 ≤ k ≤ n, let x(k) be the vector with x
(k)
k−1 = 1 and x

(k)
k = −1 and x

(k)
j = 0

if (j 6= k − 1 and j 6= k). We have that Ax(k) = −x(k). So x(k) is an eigenvector of
eigenvalue −1 of A.

• The n vectors x(n) look like

x(1) =



1
1
1
1
...
1
1


, x(2) =



1
−1

0
0
...
0
0


, x(3) =



0
1
−1

0
...
0
0


, x(4) =



0
0
1
−1

...
0
0


, . . . , x(n) =



0
0
0
0
...
−1

1


.



• The set of vectors
(
x(k)

)
2≤k≤n is linearly independent based on its zero structure. So

the eigenspace associated with the eigenvalue −1 is of dimension at least n− 1. And the
dimension is actually exactly n − 1 because we have a second eigenvalue distinct from
−1, namely n− 1.

• In all, A has the eignvalue n − 1 with (geometric and algebraic) multiplicity 1. and
the eignvalue −1 with (geometric and algebraic) multiplicity n− 1.

• Note relevant for our proof: A is diagonalizable.

• The determinant is the product of the eigenvalues with their algebraic multiplicity,
therefore

det(A) = (−1)n−1(n− 1).



Part II. Work two of problems 5 through 8.

Problem 5.

We assume that the following result is true.

Let A = (aij) in Mn(R) with aii = 0 for all i and |aij | = 1 for all i 6= j. (So that, for
i 6= j, aij is either 1 or −1.) If n is even, then A is invertible.

Let n ≥ 1. Let us consider 2n+ 1 stones. We assume that each subset of 2n stones can
be divided in 2 sets of n stones such that the two sets have same weight. Show that all
the stones have the same weight.

Solution • We number the stones from 1 to 2n+ 1. For 1 ≤ i ≤ 2n+ 1, let wi be the
weight of stone i. Let w be the vectors of the weights.

• Let 1 ≤ i ≤ 2n+1. We consider the set of 2n stones made of the 2n+1 stones without
stone i. Per assumption, we can partition this set in 2 sets of n stones such that the

two sets have same weight. Let us call these two sets S(i)
1 and S(i)

2 . We have that the

cardinal of S(i)
1 and the cardinal of S(i)

2 is n. The fact that the sets have the same weight
reads ∑

k∈S(i)1

wk =
∑
k∈S(i)2

wk. (1)

So we get an equation of the type: ∑
1≤j≤2n+1

aijwj = 0, (2)

where
|aij | = 1, for (1 ≤ j ≤ 2n+ 1, j 6= i); and aij = 0, for j = i; (3)∑

1≤j≤2n+1

aij = 0 (4)

Equation (4) comes from the fact that, for 1 ≤ j ≤ 2n+1, (a) one aij is 0, namely aii, (b)
n aij are 1, and (c) n aij are −1, so that the sum of all is zero. The fact that ((n aij are



1) and (n aij are −1)) comes from the fact that the two sets S(i)
1 and S(i)

2 have cardinals n.

• Let A = (aij) in M2n+1(R).

• Let x the vector of size 2n + 1 with all ones. Equation (4) implies that Ax = 0. So
that x ∈ Null(A) and dim(Null(A)) ≥ 1.

• Comment: dim(Null(A)) ≥ 1 means that A is not invertible. “A is not invertible” is
not a contradiction of the “result” because the “result” is valid when the size of A is
even. Here the size of A is 2n+ 1 and therefore odd.

• Equation (2) implies that Aw = 0. So that w ∈ Null(A).

• Time to use the “result”. We note that the (2n)-by-(2n) submatrix A(1 : 2n, 1 : 2n)
has the property of the “result”. Therefore A(1 : 2n, 1 : 2n) is invertible. Therefore,
because A has a (2n)-by-(2n) invertible submatrix, we can say that Rank(A) ≥ 2n.

• We have (a) dim(Null(A)) ≥ 1, (b) Rank(A) ≥ 2n, and (c), by rank theorem,
dim(Null(A)) + Rank(A) = 2n + 1, therefore we conclude that dim(Null(A)) = 1 and
Rank(A) = 2n.

• We know that (a) dim(Null(A)) = 1, (v) w ∈ Null(A), and (c) x ∈ Null(A). It must
therefore be that w and x are colinear vectors. In other words, since x is not zero, there
exists α ∈ R such that w = αx.

• There exists α ∈ R such that w = αx. But x is the vector of all ones. So this means
that, for 1 ≤ i ≤ 2n+ 1, wi = α.

All 2n+ 1 stones weigh the same.

Comment:

We can prove the result given as a hint in this problem (Problem #5)

Let A = (aij) in Mn(R) with aii = 0 for all i and |aij | = 1 for all i 6= j. (So that, for
i 6= j, aij is either 1 or −1.) If n is even, then A is invertible.

with a result related to Problem #4. Let us explain.



Actually the assumptions on matrix A can only be that aij , for all i 6= j, are odd and
aii are even. (Which is a larger class of matrices than aij , for all i 6= j, are ±1 and aii
are zero.)

We can mod 2 the matrix with the ±1 and the zeros and then we obtain the matrix of
Problem #4, a matrix with all ones but on the diagonal, the diagonal is zero. In Problem
#4, we proved that the determinant of this matrix is (−1)n−1(n− 1). Therefore if n is
even, we see that the determinant is odd. And so the determinant mod 2 is 1. All in
all, we can prove that the determinant of the initial matrix (with the ±1) is odd, (if n is
even,) and therefore the initial matrix is invertible.

In this problem we are going back and forth from the field R to the field GF(2). We
use the fact that, if we have A over R, then the modulo 2 of the determinant of A is
the determinant computed in GF(2) of A modulo 2. This fact is easily determined by
realizing that the determinant is a product and addition of numbers and we know that
the modulo 2 of an addition of two real numbers is the same as the addition in GF(2) of
the modulo 2 of these two real numbers. Similar for multiplication.

Going from the field R to the field GF(2) is convenient to remove all the ±1. They all
become ones. And we end up computing the parity of the determinant using GF(2).
Keeping the ±1 would be impractical.

Another way to view the problem (which is the excatly same thing as working in GF(2))
is to write each entry as “odd” or “even” and do the determinant computation (as in
Problem #4) by doing “odd”+“odd” = “even”, “odd”+“even” = “odd”, “odd”*“odd”
= “odd”, “odd”*“even” = “even”, etc. Which is exactly what is going on in GF(2)
arithmetic. This might easier to understand. That way we can prove that if n is even,
the determinant is odd. If n is odd, the determinant is even.

If we can prove that the determinant is odd, then we proved that the matrix invertible.
If we can prove that the determinant is even, then we cannot conclude anything with
respect of invertibility of the matrix.

In our case, if n is even, we can prove that the determinant is odd, so we proved that
the matrix invertible.

If n is odd, we can prove that the determinant is even, then we cannot conclude anything
with respect of invertibility of the matrix. Indeed, in the n-is-odd case, there are cases
(of combination of ±1) when the matrix is invertible. There are cases when the matrix
is not invertible.

As explained the result below is also true and follows the same proof:

Let A = (aij) inMn(R) with aii even for all i and aij is odd integer for all i 6= j. If n is
even integer, then A is invertible.



Problem 6.

Let A ∈Mn(C), and λ be an eigenvalue of A.

1. Show that λr is an eigenvalue of Ar.

2. Provide an example showing that the geometric multiplicity of λr as an eigenvalue
of Ar may be strictly higher than the geometric multiplicity of λ as an eigenvalue
of A.

3. Show that A> has the same eigenvalues as A.

4. Show: If A is orthogonal, then 1
λ is also an eigenvalue of A.

Solution

1. Let v 6= 0 such that Av = λv. Then Arv = Ar−1Av = Ar−1(λv) = λAr−1v =
λ2Ar−2v = . . . = λrv, so v is eigenvector of Ar with eigenvalue λr.

2. Let A =

(
0 1
1 0

)
, so A has eingenvalues 1 and −1 (eigenvectors

(
1
1

)
and

(
1
−1

)
,

respectively), each with multiplicity 1. But A2 =

(
1 0
0 1

)
, a matrix with eigenvalue

1 with multiplicity 2.

3. Note that (Ak)> = (A>)k. Thus, any polynomial in A evaluates as singular if and
only if it is singular in A>. This is true for the characteristic polynomial for all
eigenvalues, so the eigenvalues are the same.

4. If A is orthogonal, then A−1 = A>. For an eigenvector v with Av = λv (note
that λ 6= 0 for invertible matrices), we have v = A−1Av = A>(λv) = λA>v, so
A>v = 1

λv, and 1
λ is eigenvalue of A>, and thus by (c) also eigenvalue of A.

Problem 7. Let T be a linear operator on a four dimensional complex vector space
that satisfies the polynomial equation P (T ) = T 4 + 2T 3 − 2T − I = 0, where I is the
identity operator on V . Suppose that |trace(T )| = 2 and that dim range (T + I) = 2.
Give a Jordan canonical form of T .



Solution First, notice x = 1 is a solution to the polynomial p(x) = x4+2x3−2x−1 = 0.
A long division of p(x) by x− 1 shows

p(x) = (x− 1)(x3 + 3x2 + 3x+ 1) = (x− 1)(x+ 1)3

So possible eigenvalues of T are λ1 = −1 and λ2 = 1.

Based on the rank-nullity theorem:

dim null (T + I) = 4− dim range (T + I) = 4− 2 = 2

So the geometric multiplicity of λ1 = −1 is 2, which means there must be 2 blocks for −1.
Its algebraic multiplicity is greater than or equal to 2. Combined with trace(T ) = ±2, the
only possibility for the diagonal elements of the Jordan canonical forms is −1,−1,−1, 1,
i.e., the algebraic multiplicity for −1 is 3. So a possible Jordan canonical form is:

−1 1 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



Problem 8.

1. Let T be an idempotent operator on an n-dimensional vector space V ; that is,
T 2 = T , show that

(a) V = rangeT ⊕ nullT .

(b) traceT = dim rangeT

2. Let T1, T2, . . . , Tm be idempotent operators on an n-dimensional vector space V .
Show that if

T1 + T2 + · · ·+ Tm = I

then
V = rangeT1 ⊕ rangeT2 ⊕ · · · ⊕ rangeTm

and
TiTj = 0, i, j = 1, 2, . . . ,m, i 6= j



Solution

1. (a) First notice that V = nullT + rangeT , since v ∈ V can be written as v =
Tv + (v − Tv). Now we show their intersection is {0}.
Let u ∈ nullT ∩ rangeT . Then u = T ũ, for some ũ ∈ V . Now

0 = Tu = T (T ũ) = T 2ũ = T ũ = u

So the intersection is indeed {0}, and the sum must be a direct sum.

(b) Let {u1, . . . ,un1} be a basis of rangeT , and {v1, . . . ,vn2} be a basis of nullT .
Then

u1, . . . ,un1 ,v1, . . . ,vn2

is a basis of V . Note that ui = T ũi, i = 1, . . . , n1, for some ũi ∈ V . We have

Tui = T (T ũi) = T 2ũi = T ũi = ui, i = 1, . . . , n1

and
Tvi = 0

So the matrix of T corresponding to this set of basis vectors is in the form of
(1, . . . , 1, 0, . . . , 0). The matrix has a trace of 1 + · · · + 1 = n1, which is the
dimension of rangeT . So traceT = dim rangeT .

2. For v ∈ V , we have

v = Iv = (T1 + · · ·+ Tm)v = T1v + · · ·+ Tmv

which means
V = rangeT1 + · · ·+ rangeTm

Now we show that

dimV = dim rangeT1 + · · ·+ dim rangeTm

Recall that we just showed that

dim rangeTi = traceTi

So

dimV = n = traceIn = trace(T1 + · · ·+ Tm) = traceT1 + · · ·+ traceTm

= dim rangeT1 + · · ·+ dim rangeTm

Now we show TiTj = 0 for distinct i, j. For any v ∈ V , we have

Tjv = (

n∑
i=1

Ti)Tjv =

n∑
i=1

TiTjv



which is equivalent to

(Tjv − T 2
j v)−

n∑
i=1,i 6=j

TiTjv = 0

Note that
Tjv ∈ rangeTj , T

2
j v ∈ rangeTj , TiTjv ∈ rangeTi

and V is a direct sum of rangeTi’s. So we know each term above is 0, due to the
unique way of decomposing 0. So

(TiTj)v = 0, i 6= j.


