University of Colorado Denver
 Department of Mathematical and Statistical Sciences
 Applied Linear Algebra Ph.D. Preliminary Exam Solutions
 February 4, 2022

Name: \qquad
Exam Rules:

- This is a closed book exam. Once the exam begins, you have 4 hours to complete all six problems.
- Please begin each problem on a new page, and write the problem number and page number at the top of each page. (For example, 6-1, 6-2, 6-3 for pages 1,2 and 3 of problem 6). Please write only on one side of the paper.
- There are 8 total problems. Do all 4 problems in the first part (problems 1 to 4), and pick two problems in the second part (problems 5 to 8). Do not submit more than two solved problems from the second part. If you do, only the first two attempted problems will be graded. Each problem is worth 20 points.
- Do not submit multiple alternative solutions to any problem; if you do, only the first solution will be graded.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Notation: Throughout the exam, \mathbb{R} and \mathbb{C} denote the sets of real and complex numbers, respectively. \mathbb{F} denotes either \mathbb{R} or $\mathbb{C} . \mathbb{F}^{n}$ and $\mathbb{F}^{n, n}$ are the vector spaces of n-tuples and $n \times n$ matrices, respectively, over the field \mathbb{F}. $\mathcal{L}(V)$ denotes the set of linear operators on the vector space $V . T^{*}$ is the adjoint of the operator T and λ^{*} is the complex conjugate of the scalar λ. In an inner product space V, U^{\perp} denotes the orthogonal complement of the subspace U.
- If you are confused or stuck on a problem, either ask a question or move on to another problem.

Problem	Points	Score		Problem	Points	Score
1.	20			5.	20	
2.	20			6.	20	
3.	20			7.	20	
4.	20			8.	20	
				Total	120	

Applied Linear Algebra Preliminary Exam Committee:
Julien Langou, Yaning Liu (Chair), Florian Pfender

Part I. Work all of problems 1 through 4.

Problem 1. Let V be a vector space of dimension n over a field F. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ be a basis of V and T be an operator on V. Prove: T is invertible if and only if $T \boldsymbol{v}_{1}, T \boldsymbol{v}_{2}, \ldots, T \boldsymbol{v}_{n}$ is linearly independent.

Solution First we prove " \Rightarrow ". Suppose T is invertible and its inverse is T^{-1}. So T^{-1} is an operator on V. Suppose $T \boldsymbol{v}_{1}, T \boldsymbol{v}_{2}, \ldots, T \boldsymbol{v}_{n}$ is linearly dependent. Then $T^{-1}\left(T \boldsymbol{v}_{1}\right), T^{-1}\left(T \boldsymbol{v}_{2}\right), \ldots, T^{-1}\left(T \boldsymbol{v}_{n}\right)$ is linearly dependent, i.e., $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ is linearly dependent. This leads to a contradiction. So $T \boldsymbol{v}_{1}, T \boldsymbol{v}_{2}, \ldots, T \boldsymbol{v}_{n}$ must be linearly dependent.

Now we prove " \Leftarrow ". Suppose $T \boldsymbol{v}_{1}, T \boldsymbol{v}_{2}, \ldots, T \boldsymbol{v}_{n}$ is linearly independent. Since V is n dimensional, $T \boldsymbol{v}_{1}, T \boldsymbol{v}_{2}, \ldots, T \boldsymbol{v}_{n}$ is a basis of V. For any $\boldsymbol{w} \in V$, there exist $k_{1}, k_{2}, \ldots, k_{n}$ such that

$$
\boldsymbol{w}=k_{1}\left(T \boldsymbol{v}_{1}\right)+k_{2}\left(T \boldsymbol{v}_{2}\right)+\cdots+k_{n}\left(T \boldsymbol{v}_{n}\right)=T\left(k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{n} \boldsymbol{v}_{n}\right)
$$

i.e., there exists $\boldsymbol{u}=k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{n} \boldsymbol{v}_{n}$ such that $T \boldsymbol{u}=\boldsymbol{w}$. So T is surjective.

On the other hand, if there exists $\boldsymbol{u}_{1}=l_{1} \boldsymbol{v}_{1}+l_{2} \boldsymbol{v}_{2}+\cdots+l_{n} \boldsymbol{v}_{n}$ such that $T \boldsymbol{u}_{1}=\boldsymbol{w}$, i.e.,
$T \boldsymbol{u}_{1}=T\left(l_{1} \boldsymbol{v}_{1}+l_{2} \boldsymbol{v}_{2}+\cdots+l_{n} \boldsymbol{v}_{n}\right)=l_{1} T\left(\boldsymbol{v}_{1}\right)+l_{2} T\left(\boldsymbol{v}_{2}\right)+\cdots+l_{n} T\left(\boldsymbol{v}_{n}\right)=k_{1}\left(T \boldsymbol{v}_{1}\right)+k_{2}\left(T \boldsymbol{v}_{2}\right)+\cdots+k_{n}\left(T \boldsymbol{v}_{n}\right)$
Since $T \boldsymbol{v}_{1}, T \boldsymbol{v}_{2}, \ldots, T \boldsymbol{v}_{n}$ is a basis,

$$
l_{i}=k_{i}, \quad(i=1,2, \ldots, n)
$$

So $\boldsymbol{u}=\boldsymbol{u}_{1}$ and hence T is injective. So T is invertible.

Problem 2.

1. Give an orthonormal basis for null T, where $T \in \mathcal{L}\left(\mathbb{C}^{4}\right)$ (with the standard inner product) and

$$
\mathcal{M}(T)=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

2. Prove or disprove:

There exists an inner product $\langle.,$.$\rangle on \mathbb{R}^{2}$ such that for every $v=\binom{x}{y} \in \mathbb{R}^{2}$, we have

$$
\langle v, v\rangle=|x|+|y| .
$$

Solution

1. Note first that $\mathcal{M}(T)$ has rank 1 , so dim null $T=3$. A vector is in null T if and only if its entries sum up to 0 .

$$
\left(\begin{array}{c}
0.5 \\
0.5 \\
-0.5 \\
-0.5
\end{array}\right),\left(\begin{array}{c}
0.5 \\
-0.5 \\
0.5 \\
-0.5
\end{array}\right),\left(\begin{array}{c}
0.5 \\
-0.5 \\
-0.5 \\
0.5
\end{array}\right) \text { is an ONB of null } T .
$$

2. There is no such inner product. Otherwise, consider $x=y=1$. Then $\langle v, v\rangle=$ $1+1=2$. Further, $\langle 2 v, 2 v\rangle=2+2=4$. On the other hand, by bilinearity of the inner product, $\langle 2 v, 2 v\rangle=4\langle v, v\rangle=8$, a contradiction.

Problem 3. Prove or give a counterexample to each of the following statements:

1. Let $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$, and dim (null $T \cap$ range $\left.T\right) \geq 1$. Then T is nilpotent.
2. Let $T \in \mathcal{L}\left(\mathbb{R}^{4}\right)$, and $\operatorname{dim}($ null $T \cap$ range $T) \geq 2$. Then T is nilpotent.

Solution

1. Counterexample

$$
\mathcal{M}(T)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

then null $T \cap$ range $T=\alpha\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and $T^{k}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \neq 0$ for all k.
2. This is true. Since dim range $T+\operatorname{dim}$ null $T=4$ we have dim range $T=$ dim null $T=\operatorname{dim}($ null $T \cap$ range T) $=2$, and thus range $T=$ null T, and therefore $T^{2}=0$.

Problem 4. Let G, O, L, Y, N, X be 6 real numbers.
Note: the letter O is not the same as the number 0 . Please make sure that you see the difference between the letters O and the numbers 0 .

We consider the following 6-by-6 "Go Lynx" matrix A :

$$
A=\left(\begin{array}{rrrrrr}
G & O & L & Y & N & X \\
G & -O & L & -Y & N & -X \\
G & O & L & Y & -N & -X \\
G & -O & L & -Y & -N & X \\
G & O & -L & -Y & N & X \\
G & -O & -L & Y & N & -X
\end{array}\right) .
$$

Compute the determinant of A. Answer needs to be a closed form algebraic formula with variables G, O, L, Y, N, X. No matrix in final answer.

Solution First we have that
$\operatorname{det}(A)=\left|\begin{array}{rrrrrr}G & O & L & Y & N & X \\ G & -O & L & -Y & N & -X \\ G & O & L & Y & -N & -X \\ G & -O & L & -Y & -N & X \\ G & O & -L & -Y & N & X \\ G & -O & -L & Y & N & -X\end{array}\right|=G O L Y N X \cdot\left|\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1\end{array}\right|$.
We perfom the row operations $L_{2} \leftarrow L_{2}-L_{1}, L_{3} \leftarrow L_{3}-L_{1}, L_{4} \leftarrow L_{4}-L_{1}, L_{5} \leftarrow L_{5}-L_{1}$, $L_{6} \leftarrow L_{6}-L_{1}$, and get that

$$
\operatorname{det}(A)=G O L Y N X \cdot\left(\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & -2 & 0 & -2 & 0 & -2 \\
0 & 0 & 0 & 0 & -2 & -2 \\
0 & -2 & 0 & -2 & -2 & 0 \\
0 & 0 & -2 & -2 & 0 & 0 \\
0 & -2 & -2 & 0 & 0 & -2
\end{array}\right)
$$

We expand with first column and get that

$$
\operatorname{det}(A)=G O L Y N X \cdot\left(\begin{array}{rrrrr}
-2 & 0 & -2 & 0 & -2 \\
0 & 0 & 0 & -2 & -2 \\
-2 & 0 & -2 & -2 & 0 \\
0 & -2 & -2 & 0 & 0 \\
-2 & -2 & 0 & 0 & -2
\end{array}\right)
$$

We scale each row by $-\frac{1}{2}$ and get

$$
\operatorname{det}(A)=-32 \cdot G O L Y N X \cdot\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

We perfom the row operations $L_{3} \leftarrow L_{3}-L_{1}, L_{5} \leftarrow L_{5}-L_{1}$, and get that

$$
\operatorname{det}(A)=-32 \cdot G O L Y N X \cdot\left(\begin{array}{rrrrr}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0
\end{array}\right)
$$

We expand with first column and get that

$$
\operatorname{det}(A)=-32 \cdot G O L Y N X \cdot\left(\begin{array}{rrrr}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0
\end{array}\right)
$$

We perfom the row operations $L_{2} \leftarrow L_{2}-L_{1}, L_{4} \leftarrow L_{4}-L_{3}$, and get that

$$
\operatorname{det}(A)=-32 \cdot G O L Y N X \cdot\left(\begin{array}{rrrr}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & -2 \\
1 & 1 & 0 & 0 \\
0 & -2 & 0 & 0
\end{array}\right)
$$

We expand with third column and get that

$$
\operatorname{det}(A)=-32 \cdot G O L Y N X \cdot\left(\begin{array}{rrr}
0 & 0 & -2 \\
1 & 1 & 0 \\
0 & -2 & 0
\end{array}\right)
$$

We expand with third column and get that

$$
\operatorname{det}(A)=64 \cdot G O L Y N X \cdot\left(\begin{array}{rr}
1 & 1 \\
0 & -2
\end{array}\right)
$$

We expand with first column and get that

$$
\operatorname{det}(A)=64 \cdot G O L Y N X \cdot(-2)
$$

Finally

$$
\operatorname{det}(A)=-128 \cdot G O L Y N X
$$

\qquad

Part II. Work two of problems 5 through 8.

Problem 5. Let \boldsymbol{u} be a unit vector in an n-dimensional inner product space V over \mathbb{R}. Define $T \in \mathcal{L}(V)$ as:

$$
T(\boldsymbol{x})=\boldsymbol{x}-2\langle\boldsymbol{x}, \boldsymbol{u}\rangle \boldsymbol{u}, \boldsymbol{x} \in V
$$

Show that

1. T is an isometry.
2. If $A=\mathcal{M}(T)$ is a matrix representation of T, then $\operatorname{det} A=-1$.
3. If $S \in \mathcal{L}(V)$ is an isometry with 1 as an eigenvalue, and if the eigenspace of 1 is of dimension $n-1$, then

$$
S(\boldsymbol{x})=\boldsymbol{x}-2\langle\boldsymbol{x}, \boldsymbol{w}\rangle \boldsymbol{w}, \boldsymbol{x} \in V
$$

for some unit vector $\boldsymbol{w} \in V$.

Solution

(a) Extend \boldsymbol{u} to an orthonormal basis $\left\{\boldsymbol{u}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$. Then

$$
\begin{aligned}
T(\boldsymbol{u}) & =\boldsymbol{u}-2\langle\boldsymbol{u}, \boldsymbol{u}\rangle \boldsymbol{u}=-\boldsymbol{u} \\
T\left(\boldsymbol{u}_{i}\right) & =\boldsymbol{u}_{i}-2\left\langle\boldsymbol{u}_{i}, \boldsymbol{u}\right\rangle \boldsymbol{u}=\boldsymbol{u}_{i}, i=2, \ldots, n
\end{aligned}
$$

Theorem 7.42 Part (d) guarantees that T is an isometry. (Note that a student pointing out a theorem in the textbook is OK.)
(b) The matrix of T under the above basis is

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & I_{n-1}
\end{array}\right)
$$

Thus $\operatorname{det} A=-1$. A matrix representation of T under any basis is similar to A, and hence the determinant remains the same.
(c) Denote the eigenspace of 1 by V_{1} and suppose that

$$
\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n-1}\right\}
$$

is a basis for V_{1}. Extend the basis of V_{1} to $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n-1}, \boldsymbol{u}_{n}\right\}$, a basis of V. WLOG, we can assume that \boldsymbol{u}_{n} is a unit vector. Considering the matrix
representation of S with respect to this basis, for the matrix to be orthogonal, the only possible case is $S\left(\boldsymbol{u}_{n}\right)=-\boldsymbol{u}_{n}$. That is, -1 is an eigenvalue of S, with \boldsymbol{u}_{n} as a corresponding eigenvector. Hence now we have

$$
S \boldsymbol{u}_{i}=\boldsymbol{u}_{i}, i=1,2, \ldots, n-1, S \boldsymbol{u}_{n}=-\boldsymbol{u}_{n}
$$

Replacing \boldsymbol{u}_{n} by \boldsymbol{w}, we see the basis vectors $\left\{\boldsymbol{u}_{1}, \ldots \boldsymbol{u}_{n-1}, \boldsymbol{w}\right\}$ satisfy $S(\boldsymbol{x})=$ $\boldsymbol{x}-2\langle\boldsymbol{x}, \boldsymbol{w}\rangle \boldsymbol{w}$, and thus any vector $\boldsymbol{x} \in V$ satisfies it too. So $S(\boldsymbol{x})=\boldsymbol{x}-2\langle\boldsymbol{x}, \boldsymbol{w}\rangle \boldsymbol{w}$.

Problem 6. Let V be an n-dimensional vector space, and let $T_{1}, \ldots, T_{n+1} \in \mathcal{L}(V)$ such that
(i) $T_{i} T_{j}=T_{j} T_{i}$ for every $1 \leq i \leq j \leq n+1$ (the operators commute), and
(ii) $T_{1} T_{2} \ldots T_{n+1}=0$.

1. (15 points)

Show that there exists some k such that $T_{1} \ldots T_{k-1} T_{k+1} \ldots T_{n+1}=0$ as follows:
Show that for every k, we have
(a) range $\left(T_{1} T_{2} \ldots T_{k}\right) \subseteq$ range $\left(T_{1} T_{2} \ldots T_{k-1}\right)$, and
(b) range $\left(T_{1} T_{2} \ldots T_{k}\right) \subseteq$ null $\left(T_{k+1} T_{k+2} \ldots T_{n}\right)$.

Then argue that for some k, we must have equality in (a), and explain why this implies the statement.
2. (5 points)

Show that (i) is necessary for the previous conclusion by providing three operators (or matrices) $T_{1}, T_{2}, T_{3} \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ with $T_{1} T_{2} T_{3}=0$, but $T_{1} T_{2} \neq 0, T_{1} T_{3} \neq 0$, and $T_{2} T_{3} \neq 0$.

Solution

1. For (a), observe that $T_{1} T_{2} \ldots T_{k}(v)=T_{1} T_{2} \ldots T_{k-1}\left(T_{k} v\right) \in$ range $T_{1} T_{2} \ldots T_{k-1}$ for every v.
For (b), observe that $\left(T_{k+1} T_{k+2} \ldots T_{n}\right)\left(T_{1} T_{2} \ldots T_{k}(v)\right)=T_{1} T_{2} \ldots T_{n}(v)=0$.
If we have \subsetneq for every k in (a), then

$$
0=\operatorname{dim} \text { range } T_{1} \ldots T_{n+1}<\operatorname{dim} \text { range } T_{1} \ldots T_{n}<\ldots<\operatorname{dim} \text { range } T_{1} \leq n
$$

Since all dimensions are integers, this implies that dim range $T_{1} \ldots T_{k}=n+1-k$ for all k, and in particular that T_{1} is injective and thus bijective. This implies that

$$
\text { range } T_{2} \ldots T_{n+1}=\text { range } T_{2} \ldots T_{n+1} T_{1}=\{0\}
$$

so $T_{2} \ldots T_{n+1}=0$.
On the other hand, if we have " $=$ " in (a) for some k, then

$$
\text { range }\left(T_{1} T_{2} \ldots T_{k-1}\right)=\operatorname{range}\left(T_{1} T_{2} \ldots T_{k}\right) \subseteq \text { null }\left(T_{k+1} T_{k+2} \ldots T_{n}\right)
$$

and $T_{1} \ldots T_{k-1} T_{k+1} \ldots T_{n+1}=T_{k+1} \ldots T_{n+1} T_{1} \ldots T_{k-1}=0$.
2.

$$
\begin{gathered}
T_{1}=T_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), T_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
T_{1} T_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), T_{1} T_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), T_{2} T_{3}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), T_{1} T_{2} T_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

Problem 7. Let V be a finite dimensional real vector space with basis e_{1}, \ldots, e_{n}.

1. Let A be a positive bijective matrix in V. For any $v, w \in V$ expressed as coordinate vectors according to this basis, define

$$
\langle v, w\rangle:=v^{t} A w .
$$

Show that this defines an inner product.
2. Let $\langle.,$.$\rangle be an inner product in V$. Show that $a_{i j}=\left\langle e_{i}, e_{j}\right\rangle$ is a positive bijective matrix such that $\langle v, w\rangle=v^{t} A w$.

Solution

1. Linearity in the second argument follows from linearity of matrix multiplication. Symmetry follows from (using $\left.A^{t}=A\right) w^{t} A v=w^{t} A^{t} v=\left(v^{t} A w\right)^{t}=v^{t} A w$, since the transpose of a scalar is the scalar itself.
Since A is positive, we have $v^{t} A v \geq 0$ for all v. It remains to show that $v^{t} A v \neq 0$ for $v \neq 0$. Use an ONB b_{1}, \ldots, b_{n} which diagonalizes A, with eigenvalues $0<\lambda_{1} \leq$ $\ldots \lambda_{n}$ (0 is not an eigenvalue since A is bijective). If $\left(w_{1}, \ldots, w_{n}\right)$ is the coordinate vector of v in this basis, then $v^{t} A v=\sum \lambda_{i} w_{i}^{2}>0$.
2. Since the inner product is symmetric, we have $a_{i j}=a_{j i}$, so A is symmetric. In the basis e_{1}, \ldots, e_{n}, each vector e_{i} has i th coordinate 1 , and all other coordinates 0 , so $e_{i}^{t} A e_{j}=a_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. The statement $\langle v, w\rangle=v^{t} A w$ follows directly from linearity of inner product and matrix multiplication. Further, $v^{t} A v=\langle v, v\rangle>0$ for $v \neq 0$, so A is positive. By the same argument, 0 is not an eigenvalue of A, so A is bijective.

Problem 8. Let A be an n-by- n matrix with complex entries. Prove that A is the sum of two nonsingular matrices.

Solution To prove existence, we will construct such a sum. So given a matrix A, we will give two matrices $A^{(1)}$ and $A^{(2)}$ such that $A^{(1)}$ and $A^{(2)}$ are invertible and that $A=A^{(1)}+A^{(2)}$.

We take a singular value decomposition of A. So we have $A=U S V^{H}$ where

- U is n-by- n and orthogonal (so that $U^{H} U=U U^{H}=I$),
- V is n-by- n and orthogonal (so that $V^{H} V=V V^{H}=I$),
- S is n-by- n and diagonal with real nonnegative entries on the diagonal, s_{1}, \ldots, s_{n}.

Note that such a decomposition exists for any n-by- n matrix A.
Now, we create two diagonal matrices $S^{(1)}$ and $S^{(2)}$ such that (1) $S=S^{(1)}+S^{(2)}$ and (2) $S^{(1)}$ and $S^{(2)}$ have real nonzero entries on the diagonal.

To do so, we can, for example, do as follows. For all i from 1 to n, we define $s_{i}^{(1)}$ and $s_{i}^{(2)}$, the (i, i)-th entries of the matrices $S^{(1)}$ and $S^{(2)}$ respectively as follows.

- If $s_{i}=0$ then we define $s_{i}^{(1)}=1$ and $s_{i}^{(2)}=-1$. (Then, indeed, $s_{i}=s_{i}^{(1)}+s_{i}^{(2)}$ and (2) $s_{i}^{(1)}$ and $s_{i}^{(2)}$ are nonzeros.)
- If $s_{i} \neq 0$ then we define $s_{i}^{(1)}=s_{i} / 2$ and $s_{i}^{(2)}=s_{i} / 2$. (Then, indeed, $s_{i}=s_{i}^{(1)}+s_{i}^{(2)}$ and (2) $s_{i}^{(1)}$ and $s_{i}^{(2)}$ are nonzeros.)

Then we create the matrix

$$
A^{(1)}=U S^{(1)} V^{H} \quad \text { and } \quad A^{(2)}=U S^{(2)} V^{H}
$$

Now we claime that both matrices $A^{(1)}$ and $A^{(2)}$ are invertible and that $A=A^{(1)}+A^{(2)}$ Both matrices $A^{(1)}$ and $A^{(2)}$ are invertible since they are products of three invertible matrices, or since these matrices have nonzero singular values.
$A=A^{(1)}+A^{(2)}$ since $A^{(1)}+A^{(2)}=U S^{(1)} V^{H}+U S^{(2)} V^{H}=U\left(S^{(1)}+S^{(2)}\right) V^{H}=U S V^{H}$.
\qquad

